1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, MagicHash #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.List
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : stable
-- Portability : portable
--
-- Operations on lists.
--
-----------------------------------------------------------------------------
module Data.List
(
#ifdef __NHC__
[] (..)
,
#endif
-- * Basic functions
(++) -- :: [a] -> [a] -> [a]
, head -- :: [a] -> a
, last -- :: [a] -> a
, tail -- :: [a] -> [a]
, init -- :: [a] -> [a]
, null -- :: [a] -> Bool
, length -- :: [a] -> Int
-- * List transformations
, map -- :: (a -> b) -> [a] -> [b]
, reverse -- :: [a] -> [a]
, intersperse -- :: a -> [a] -> [a]
, intercalate -- :: [a] -> [[a]] -> [a]
, transpose -- :: [[a]] -> [[a]]
, subsequences -- :: [a] -> [[a]]
, permutations -- :: [a] -> [[a]]
-- * Reducing lists (folds)
, foldl -- :: (a -> b -> a) -> a -> [b] -> a
, foldl' -- :: (a -> b -> a) -> a -> [b] -> a
, foldl1 -- :: (a -> a -> a) -> [a] -> a
, foldl1' -- :: (a -> a -> a) -> [a] -> a
, foldr -- :: (a -> b -> b) -> b -> [a] -> b
, foldr1 -- :: (a -> a -> a) -> [a] -> a
-- ** Special folds
, concat -- :: [[a]] -> [a]
, concatMap -- :: (a -> [b]) -> [a] -> [b]
, and -- :: [Bool] -> Bool
, or -- :: [Bool] -> Bool
, any -- :: (a -> Bool) -> [a] -> Bool
, all -- :: (a -> Bool) -> [a] -> Bool
, sum -- :: (Num a) => [a] -> a
, product -- :: (Num a) => [a] -> a
, maximum -- :: (Ord a) => [a] -> a
, minimum -- :: (Ord a) => [a] -> a
-- * Building lists
-- ** Scans
, scanl -- :: (a -> b -> a) -> a -> [b] -> [a]
, scanl1 -- :: (a -> a -> a) -> [a] -> [a]
, scanr -- :: (a -> b -> b) -> b -> [a] -> [b]
, scanr1 -- :: (a -> a -> a) -> [a] -> [a]
-- ** Accumulating maps
, mapAccumL -- :: (a -> b -> (a,c)) -> a -> [b] -> (a,[c])
, mapAccumR -- :: (a -> b -> (a,c)) -> a -> [b] -> (a,[c])
-- ** Infinite lists
, iterate -- :: (a -> a) -> a -> [a]
, repeat -- :: a -> [a]
, replicate -- :: Int -> a -> [a]
, cycle -- :: [a] -> [a]
-- ** Unfolding
, unfoldr -- :: (b -> Maybe (a, b)) -> b -> [a]
-- * Sublists
-- ** Extracting sublists
, take -- :: Int -> [a] -> [a]
, drop -- :: Int -> [a] -> [a]
, splitAt -- :: Int -> [a] -> ([a], [a])
, takeWhile -- :: (a -> Bool) -> [a] -> [a]
, dropWhile -- :: (a -> Bool) -> [a] -> [a]
, dropWhileEnd -- :: (a -> Bool) -> [a] -> [a]
, span -- :: (a -> Bool) -> [a] -> ([a], [a])
, break -- :: (a -> Bool) -> [a] -> ([a], [a])
, stripPrefix -- :: Eq a => [a] -> [a] -> Maybe [a]
, group -- :: Eq a => [a] -> [[a]]
, inits -- :: [a] -> [[a]]
, tails -- :: [a] -> [[a]]
-- ** Predicates
, isPrefixOf -- :: (Eq a) => [a] -> [a] -> Bool
, isSuffixOf -- :: (Eq a) => [a] -> [a] -> Bool
, isInfixOf -- :: (Eq a) => [a] -> [a] -> Bool
-- * Searching lists
-- ** Searching by equality
, elem -- :: a -> [a] -> Bool
, notElem -- :: a -> [a] -> Bool
, lookup -- :: (Eq a) => a -> [(a,b)] -> Maybe b
-- ** Searching with a predicate
, find -- :: (a -> Bool) -> [a] -> Maybe a
, filter -- :: (a -> Bool) -> [a] -> [a]
, partition -- :: (a -> Bool) -> [a] -> ([a], [a])
-- * Indexing lists
-- | These functions treat a list @xs@ as a indexed collection,
-- with indices ranging from 0 to @'length' xs - 1@.
, (!!) -- :: [a] -> Int -> a
, elemIndex -- :: (Eq a) => a -> [a] -> Maybe Int
, elemIndices -- :: (Eq a) => a -> [a] -> [Int]
, findIndex -- :: (a -> Bool) -> [a] -> Maybe Int
, findIndices -- :: (a -> Bool) -> [a] -> [Int]
-- * Zipping and unzipping lists
, zip -- :: [a] -> [b] -> [(a,b)]
, zip3
, zip4, zip5, zip6, zip7
, zipWith -- :: (a -> b -> c) -> [a] -> [b] -> [c]
, zipWith3
, zipWith4, zipWith5, zipWith6, zipWith7
, unzip -- :: [(a,b)] -> ([a],[b])
, unzip3
, unzip4, unzip5, unzip6, unzip7
-- * Special lists
-- ** Functions on strings
, lines -- :: String -> [String]
, words -- :: String -> [String]
, unlines -- :: [String] -> String
, unwords -- :: [String] -> String
-- ** \"Set\" operations
, nub -- :: (Eq a) => [a] -> [a]
, delete -- :: (Eq a) => a -> [a] -> [a]
, (\\) -- :: (Eq a) => [a] -> [a] -> [a]
, union -- :: (Eq a) => [a] -> [a] -> [a]
, intersect -- :: (Eq a) => [a] -> [a] -> [a]
-- ** Ordered lists
, sort -- :: (Ord a) => [a] -> [a]
, insert -- :: (Ord a) => a -> [a] -> [a]
-- * Generalized functions
-- ** The \"@By@\" operations
-- | By convention, overloaded functions have a non-overloaded
-- counterpart whose name is suffixed with \`@By@\'.
--
-- It is often convenient to use these functions together with
-- 'Data.Function.on', for instance @'sortBy' ('compare'
-- \`on\` 'fst')@.
-- *** User-supplied equality (replacing an @Eq@ context)
-- | The predicate is assumed to define an equivalence.
, nubBy -- :: (a -> a -> Bool) -> [a] -> [a]
, deleteBy -- :: (a -> a -> Bool) -> a -> [a] -> [a]
, deleteFirstsBy -- :: (a -> a -> Bool) -> [a] -> [a] -> [a]
, unionBy -- :: (a -> a -> Bool) -> [a] -> [a] -> [a]
, intersectBy -- :: (a -> a -> Bool) -> [a] -> [a] -> [a]
, groupBy -- :: (a -> a -> Bool) -> [a] -> [[a]]
-- *** User-supplied comparison (replacing an @Ord@ context)
-- | The function is assumed to define a total ordering.
, sortBy -- :: (a -> a -> Ordering) -> [a] -> [a]
, insertBy -- :: (a -> a -> Ordering) -> a -> [a] -> [a]
, maximumBy -- :: (a -> a -> Ordering) -> [a] -> a
, minimumBy -- :: (a -> a -> Ordering) -> [a] -> a
-- ** The \"@generic@\" operations
-- | The prefix \`@generic@\' indicates an overloaded function that
-- is a generalized version of a "Prelude" function.
, genericLength -- :: (Integral a) => [b] -> a
, genericTake -- :: (Integral a) => a -> [b] -> [b]
, genericDrop -- :: (Integral a) => a -> [b] -> [b]
, genericSplitAt -- :: (Integral a) => a -> [b] -> ([b], [b])
, genericIndex -- :: (Integral a) => [b] -> a -> b
, genericReplicate -- :: (Integral a) => a -> b -> [b]
) where
#ifdef __NHC__
import Prelude
#endif
import Data.Maybe
import Data.Char ( isSpace )
#ifdef __GLASGOW_HASKELL__
import GHC.Num
import GHC.Real
import GHC.List
import GHC.Base
#endif
infix 5 \\ -- comment to fool cpp
-- -----------------------------------------------------------------------------
-- List functions
-- | The 'dropWhileEnd' function drops the largest suffix of a list
-- in which the given predicate holds for all elements. For example:
--
-- > dropWhileEnd isSpace "foo\n" == "foo"
-- > dropWhileEnd isSpace "foo bar" == "foo bar"
-- > dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
dropWhileEnd :: (a -> Bool) -> [a] -> [a]
dropWhileEnd p = foldr (\x xs -> if p x && null xs then [] else x : xs) []
-- | The 'stripPrefix' function drops the given prefix from a list.
-- It returns 'Nothing' if the list did not start with the prefix
-- given, or 'Just' the list after the prefix, if it does.
--
-- > stripPrefix "foo" "foobar" == Just "bar"
-- > stripPrefix "foo" "foo" == Just ""
-- > stripPrefix "foo" "barfoo" == Nothing
-- > stripPrefix "foo" "barfoobaz" == Nothing
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
stripPrefix [] ys = Just ys
stripPrefix (x:xs) (y:ys)
| x == y = stripPrefix xs ys
stripPrefix _ _ = Nothing
-- | The 'elemIndex' function returns the index of the first element
-- in the given list which is equal (by '==') to the query element,
-- or 'Nothing' if there is no such element.
elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x = findIndex (x==)
-- | The 'elemIndices' function extends 'elemIndex', by returning the
-- indices of all elements equal to the query element, in ascending order.
elemIndices :: Eq a => a -> [a] -> [Int]
elemIndices x = findIndices (x==)
-- | The 'find' function takes a predicate and a list and returns the
-- first element in the list matching the predicate, or 'Nothing' if
-- there is no such element.
find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p
-- | The 'findIndex' function takes a predicate and a list and returns
-- the index of the first element in the list satisfying the predicate,
-- or 'Nothing' if there is no such element.
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p = listToMaybe . findIndices p
-- | The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
findIndices :: (a -> Bool) -> [a] -> [Int]
#if defined(USE_REPORT_PRELUDE) || !defined(__GLASGOW_HASKELL__)
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x]
#else
-- Efficient definition
findIndices p ls = loop 0# ls
where
loop _ [] = []
loop n (x:xs) | p x = I# n : loop (n +# 1#) xs
| otherwise = loop (n +# 1#) xs
#endif /* USE_REPORT_PRELUDE */
-- | The 'isPrefixOf' function takes two lists and returns 'True'
-- iff the first list is a prefix of the second.
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys)= x == y && isPrefixOf xs ys
-- | The 'isSuffixOf' function takes two lists and returns 'True'
-- iff the first list is a suffix of the second.
-- Both lists must be finite.
isSuffixOf :: (Eq a) => [a] -> [a] -> Bool
isSuffixOf x y = reverse x `isPrefixOf` reverse y
-- | The 'isInfixOf' function takes two lists and returns 'True'
-- iff the first list is contained, wholly and intact,
-- anywhere within the second.
--
-- Example:
--
-- >isInfixOf "Haskell" "I really like Haskell." == True
-- >isInfixOf "Ial" "I really like Haskell." == False
isInfixOf :: (Eq a) => [a] -> [a] -> Bool
isInfixOf needle haystack = any (isPrefixOf needle) (tails haystack)
-- | /O(n^2)/. The 'nub' function removes duplicate elements from a list.
-- In particular, it keeps only the first occurrence of each element.
-- (The name 'nub' means \`essence\'.)
-- It is a special case of 'nubBy', which allows the programmer to supply
-- their own equality test.
nub :: (Eq a) => [a] -> [a]
#ifdef USE_REPORT_PRELUDE
nub = nubBy (==)
#else
-- stolen from HBC
nub l = nub' l [] -- '
where
nub' [] _ = [] -- '
nub' (x:xs) ls -- '
| x `elem` ls = nub' xs ls -- '
| otherwise = x : nub' xs (x:ls) -- '
#endif
-- | The 'nubBy' function behaves just like 'nub', except it uses a
-- user-supplied equality predicate instead of the overloaded '=='
-- function.
nubBy :: (a -> a -> Bool) -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\ y -> not (eq x y)) xs)
#else
nubBy eq l = nubBy' l []
where
nubBy' [] _ = []
nubBy' (y:ys) xs
| elem_by eq y xs = nubBy' ys xs
| otherwise = y : nubBy' ys (y:xs)
-- Not exported:
-- Note that we keep the call to `eq` with arguments in the
-- same order as in the reference implementation
-- 'xs' is the list of things we've seen so far,
-- 'y' is the potential new element
elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool
elem_by _ _ [] = False
elem_by eq y (x:xs) = y `eq` x || elem_by eq y xs
#endif
-- | 'delete' @x@ removes the first occurrence of @x@ from its list argument.
-- For example,
--
-- > delete 'a' "banana" == "bnana"
--
-- It is a special case of 'deleteBy', which allows the programmer to
-- supply their own equality test.
delete :: (Eq a) => a -> [a] -> [a]
delete = deleteBy (==)
-- | The 'deleteBy' function behaves like 'delete', but takes a
-- user-supplied equality predicate.
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
deleteBy _ _ [] = []
deleteBy eq x (y:ys) = if x `eq` y then ys else y : deleteBy eq x ys
-- | The '\\' function is list difference (non-associative).
-- In the result of @xs@ '\\' @ys@, the first occurrence of each element of
-- @ys@ in turn (if any) has been removed from @xs@. Thus
--
-- > (xs ++ ys) \\ xs == ys.
--
-- It is a special case of 'deleteFirstsBy', which allows the programmer
-- to supply their own equality test.
(\\) :: (Eq a) => [a] -> [a] -> [a]
(\\) = foldl (flip delete)
-- | The 'union' function returns the list union of the two lists.
-- For example,
--
-- > "dog" `union` "cow" == "dogcw"
--
-- Duplicates, and elements of the first list, are removed from the
-- the second list, but if the first list contains duplicates, so will
-- the result.
-- It is a special case of 'unionBy', which allows the programmer to supply
-- their own equality test.
union :: (Eq a) => [a] -> [a] -> [a]
union = unionBy (==)
-- | The 'unionBy' function is the non-overloaded version of 'union'.
unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs
-- | The 'intersect' function takes the list intersection of two lists.
-- For example,
--
-- > [1,2,3,4] `intersect` [2,4,6,8] == [2,4]
--
-- If the first list contains duplicates, so will the result.
--
-- > [1,2,2,3,4] `intersect` [6,4,4,2] == [2,2,4]
--
-- It is a special case of 'intersectBy', which allows the programmer to
-- supply their own equality test. If the element is found in both the first
-- and the second list, the element from the first list will be used.
intersect :: (Eq a) => [a] -> [a] -> [a]
intersect = intersectBy (==)
-- | The 'intersectBy' function is the non-overloaded version of 'intersect'.
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersectBy _ [] _ = []
intersectBy _ _ [] = []
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
-- | The 'intersperse' function takes an element and a list and
-- \`intersperses\' that element between the elements of the list.
-- For example,
--
-- > intersperse ',' "abcde" == "a,b,c,d,e"
intersperse :: a -> [a] -> [a]
intersperse _ [] = []
intersperse sep (x:xs) = x : prependToAll sep xs
-- Not exported:
-- We want to make every element in the 'intersperse'd list available
-- as soon as possible to avoid space leaks. Experiments suggested that
-- a separate top-level helper is more efficient than a local worker.
prependToAll :: a -> [a] -> [a]
prependToAll _ [] = []
prependToAll sep (x:xs) = sep : x : prependToAll sep xs
-- | 'intercalate' @xs xss@ is equivalent to @('concat' ('intersperse' xs xss))@.
-- It inserts the list @xs@ in between the lists in @xss@ and concatenates the
-- result.
intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss = concat (intersperse xs xss)
-- | The 'transpose' function transposes the rows and columns of its argument.
-- For example,
--
-- > transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]
transpose :: [[a]] -> [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss) = (x : [h | (h:_) <- xss]) : transpose (xs : [ t | (_:t) <- xss])
-- | The 'partition' function takes a predicate a list and returns
-- the pair of lists of elements which do and do not satisfy the
-- predicate, respectively; i.e.,
--
-- > partition p xs == (filter p xs, filter (not . p) xs)
partition :: (a -> Bool) -> [a] -> ([a],[a])
{-# INLINE partition #-}
partition p xs = foldr (select p) ([],[]) xs
select :: (a -> Bool) -> a -> ([a], [a]) -> ([a], [a])
select p x ~(ts,fs) | p x = (x:ts,fs)
| otherwise = (ts, x:fs)
-- | The 'mapAccumL' function behaves like a combination of 'map' and
-- 'foldl'; it applies a function to each element of a list, passing
-- an accumulating parameter from left to right, and returning a final
-- value of this accumulator together with the new list.
mapAccumL :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s'',y:ys)
where (s', y ) = f s x
(s'',ys) = mapAccumL f s' xs
-- | The 'mapAccumR' function behaves like a combination of 'map' and
-- 'foldr'; it applies a function to each element of a list, passing
-- an accumulating parameter from right to left, and returning a final
-- value of this accumulator together with the new list.
mapAccumR :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumR _ s [] = (s, [])
mapAccumR f s (x:xs) = (s'', y:ys)
where (s'',y ) = f s' x
(s', ys) = mapAccumR f s xs
-- | The 'insert' function takes an element and a list and inserts the
-- element into the list at the last position where it is still less
-- than or equal to the next element. In particular, if the list
-- is sorted before the call, the result will also be sorted.
-- It is a special case of 'insertBy', which allows the programmer to
-- supply their own comparison function.
insert :: Ord a => a -> [a] -> [a]
insert e ls = insertBy (compare) e ls
-- | The non-overloaded version of 'insert'.
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
insertBy _ x [] = [x]
insertBy cmp x ys@(y:ys')
= case cmp x y of
GT -> y : insertBy cmp x ys'
_ -> x : ys
#ifdef __GLASGOW_HASKELL__
-- | 'maximum' returns the maximum value from a list,
-- which must be non-empty, finite, and of an ordered type.
-- It is a special case of 'Data.List.maximumBy', which allows the
-- programmer to supply their own comparison function.
maximum :: (Ord a) => [a] -> a
{-# NOINLINE [1] maximum #-}
maximum [] = errorEmptyList "maximum"
maximum xs = foldl1 max xs
{-# RULES
"maximumInt" maximum = (strictMaximum :: [Int] -> Int);
"maximumInteger" maximum = (strictMaximum :: [Integer] -> Integer)
#-}
-- We can't make the overloaded version of maximum strict without
-- changing its semantics (max might not be strict), but we can for
-- the version specialised to 'Int'.
strictMaximum :: (Ord a) => [a] -> a
strictMaximum [] = errorEmptyList "maximum"
strictMaximum xs = foldl1' max xs
-- | 'minimum' returns the minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
-- It is a special case of 'Data.List.minimumBy', which allows the
-- programmer to supply their own comparison function.
minimum :: (Ord a) => [a] -> a
{-# NOINLINE [1] minimum #-}
minimum [] = errorEmptyList "minimum"
minimum xs = foldl1 min xs
{-# RULES
"minimumInt" minimum = (strictMinimum :: [Int] -> Int);
"minimumInteger" minimum = (strictMinimum :: [Integer] -> Integer)
#-}
strictMinimum :: (Ord a) => [a] -> a
strictMinimum [] = errorEmptyList "minimum"
strictMinimum xs = foldl1' min xs
#endif /* __GLASGOW_HASKELL__ */
-- | The 'maximumBy' function takes a comparison function and a list
-- and returns the greatest element of the list by the comparison function.
-- The list must be finite and non-empty.
maximumBy :: (a -> a -> Ordering) -> [a] -> a
maximumBy _ [] = error "List.maximumBy: empty list"
maximumBy cmp xs = foldl1 maxBy xs
where
maxBy x y = case cmp x y of
GT -> x
_ -> y
-- | The 'minimumBy' function takes a comparison function and a list
-- and returns the least element of the list by the comparison function.
-- The list must be finite and non-empty.
minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy _ [] = error "List.minimumBy: empty list"
minimumBy cmp xs = foldl1 minBy xs
where
minBy x y = case cmp x y of
GT -> y
_ -> x
-- | The 'genericLength' function is an overloaded version of 'length'. In
-- particular, instead of returning an 'Int', it returns any type which is
-- an instance of 'Num'. It is, however, less efficient than 'length'.
genericLength :: (Num i) => [b] -> i
{-# NOINLINE [1] genericLength #-}
genericLength [] = 0
genericLength (_:l) = 1 + genericLength l
{-# RULES
"genericLengthInt" genericLength = (strictGenericLength :: [a] -> Int);
"genericLengthInteger" genericLength = (strictGenericLength :: [a] -> Integer);
#-}
strictGenericLength :: (Num i) => [b] -> i
strictGenericLength l = gl l 0
where
gl [] a = a
gl (_:xs) a = let a' = a + 1 in a' `seq` gl xs a'
-- | The 'genericTake' function is an overloaded version of 'take', which
-- accepts any 'Integral' value as the number of elements to take.
genericTake :: (Integral i) => i -> [a] -> [a]
genericTake n _ | n <= 0 = []
genericTake _ [] = []
genericTake n (x:xs) = x : genericTake (n-1) xs
-- | The 'genericDrop' function is an overloaded version of 'drop', which
-- accepts any 'Integral' value as the number of elements to drop.
genericDrop :: (Integral i) => i -> [a] -> [a]
genericDrop n xs | n <= 0 = xs
genericDrop _ [] = []
genericDrop n (_:xs) = genericDrop (n-1) xs
-- | The 'genericSplitAt' function is an overloaded version of 'splitAt', which
-- accepts any 'Integral' value as the position at which to split.
genericSplitAt :: (Integral i) => i -> [b] -> ([b],[b])
genericSplitAt n xs | n <= 0 = ([],xs)
genericSplitAt _ [] = ([],[])
genericSplitAt n (x:xs) = (x:xs',xs'') where
(xs',xs'') = genericSplitAt (n-1) xs
-- | The 'genericIndex' function is an overloaded version of '!!', which
-- accepts any 'Integral' value as the index.
genericIndex :: (Integral a) => [b] -> a -> b
genericIndex (x:_) 0 = x
genericIndex (_:xs) n
| n > 0 = genericIndex xs (n-1)
| otherwise = error "List.genericIndex: negative argument."
genericIndex _ _ = error "List.genericIndex: index too large."
-- | The 'genericReplicate' function is an overloaded version of 'replicate',
-- which accepts any 'Integral' value as the number of repetitions to make.
genericReplicate :: (Integral i) => i -> a -> [a]
genericReplicate n x = genericTake n (repeat x)
-- | The 'zip4' function takes four lists and returns a list of
-- quadruples, analogous to 'zip'.
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (,,,)
-- | The 'zip5' function takes five lists and returns a list of
-- five-tuples, analogous to 'zip'.
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)
-- | The 'zip6' function takes six lists and returns a list of six-tuples,
-- analogous to 'zip'.
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[(a,b,c,d,e,f)]
zip6 = zipWith6 (,,,,,)
-- | The 'zip7' function takes seven lists and returns a list of
-- seven-tuples, analogous to 'zip'.
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (,,,,,,)
-- | The 'zipWith4' function takes a function which combines four
-- elements, as well as four lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
-- | The 'zipWith5' function takes a function which combines five
-- elements, as well as five lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
zipWith5 :: (a->b->c->d->e->f) ->
[a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
-- | The 'zipWith6' function takes a function which combines six
-- elements, as well as six lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
-- | The 'zipWith7' function takes a function which combines seven
-- elements, as well as seven lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
-- | The 'unzip4' function takes a list of quadruples and returns four
-- lists, analogous to 'unzip'.
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
-- | The 'unzip5' function takes a list of five-tuples and returns five
-- lists, analogous to 'unzip'.
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
-- | The 'unzip6' function takes a list of six-tuples and returns six
-- lists, analogous to 'unzip'.
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
-- | The 'unzip7' function takes a list of seven-tuples and returns
-- seven lists, analogous to 'unzip'.
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])
-- | The 'deleteFirstsBy' function takes a predicate and two lists and
-- returns the first list with the first occurrence of each element of
-- the second list removed.
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
deleteFirstsBy eq = foldl (flip (deleteBy eq))
-- | The 'group' function takes a list and returns a list of lists such
-- that the concatenation of the result is equal to the argument. Moreover,
-- each sublist in the result contains only equal elements. For example,
--
-- > group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]
--
-- It is a special case of 'groupBy', which allows the programmer to supply
-- their own equality test.
group :: Eq a => [a] -> [[a]]
group = groupBy (==)
-- | The 'groupBy' function is the non-overloaded version of 'group'.
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs
-- | The 'inits' function returns all initial segments of the argument,
-- shortest first. For example,
--
-- > inits "abc" == ["","a","ab","abc"]
--
-- Note that 'inits' has the following strictness property:
-- @inits _|_ = [] : _|_@
inits :: [a] -> [[a]]
inits xs = [] : case xs of
[] -> []
x : xs' -> map (x :) (inits xs')
-- | The 'tails' function returns all final segments of the argument,
-- longest first. For example,
--
-- > tails "abc" == ["abc", "bc", "c",""]
--
-- Note that 'tails' has the following strictness property:
-- @tails _|_ = _|_ : _|_@
tails :: [a] -> [[a]]
tails xs = xs : case xs of
[] -> []
_ : xs' -> tails xs'
-- | The 'subsequences' function returns the list of all subsequences of the argument.
--
-- > subsequences "abc" == ["","a","b","ab","c","ac","bc","abc"]
subsequences :: [a] -> [[a]]
subsequences xs = [] : nonEmptySubsequences xs
-- | The 'nonEmptySubsequences' function returns the list of all subsequences of the argument,
-- except for the empty list.
--
-- > nonEmptySubsequences "abc" == ["a","b","ab","c","ac","bc","abc"]
nonEmptySubsequences :: [a] -> [[a]]
nonEmptySubsequences [] = []
nonEmptySubsequences (x:xs) = [x] : foldr f [] (nonEmptySubsequences xs)
where f ys r = ys : (x : ys) : r
-- | The 'permutations' function returns the list of all permutations of the argument.
--
-- > permutations "abc" == ["abc","bac","cba","bca","cab","acb"]
permutations :: [a] -> [[a]]
permutations xs0 = xs0 : perms xs0 []
where
perms [] _ = []
perms (t:ts) is = foldr interleave (perms ts (t:is)) (permutations is)
where interleave xs r = let (_,zs) = interleave' id xs r in zs
interleave' _ [] r = (ts, r)
interleave' f (y:ys) r = let (us,zs) = interleave' (f . (y:)) ys r
in (y:us, f (t:y:us) : zs)
------------------------------------------------------------------------------
-- Quick Sort algorithm taken from HBC's QSort library.
-- | The 'sort' function implements a stable sorting algorithm.
-- It is a special case of 'sortBy', which allows the programmer to supply
-- their own comparison function.
sort :: (Ord a) => [a] -> [a]
-- | The 'sortBy' function is the non-overloaded version of 'sort'.
sortBy :: (a -> a -> Ordering) -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
sort = sortBy compare
sortBy cmp = foldr (insertBy cmp) []
#else
{-
GHC's mergesort replaced by a better implementation, 24/12/2009.
This code originally contributed to the nhc12 compiler by Thomas Nordin
in 2002. Rumoured to have been based on code by Lennart Augustsson, e.g.
http://www.mail-archive.com/haskell@haskell.org/msg01822.html
and possibly to bear similarities to a 1982 paper by Richard O'Keefe:
"A smooth applicative merge sort".
Benchmarks show it to be often 2x the speed of the previous implementation.
Fixes ticket http://hackage.haskell.org/trac/ghc/ticket/2143
-}
sort = sortBy compare
sortBy cmp = mergeAll . sequences
where
sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]
descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs
descending a as bs = (a:as): sequences bs
ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
ascending a as bs = as [a]: sequences bs
mergeAll [x] = x
mergeAll xs = mergeAll (mergePairs xs)
mergePairs (a:b:xs) = merge a b: mergePairs xs
mergePairs xs = xs
merge as@(a:as') bs@(b:bs')
| a `cmp` b == GT = b:merge as bs'
| otherwise = a:merge as' bs
merge [] bs = bs
merge as [] = as
{-
sortBy cmp l = mergesort cmp l
sort l = mergesort compare l
Quicksort replaced by mergesort, 14/5/2002.
From: Ian Lynagh <igloo@earth.li>
I am curious as to why the List.sort implementation in GHC is a
quicksort algorithm rather than an algorithm that guarantees n log n
time in the worst case? I have attached a mergesort implementation along
with a few scripts to time it's performance, the results of which are
shown below (* means it didn't finish successfully - in all cases this
was due to a stack overflow).
If I heap profile the random_list case with only 10000 then I see
random_list peaks at using about 2.5M of memory, whereas in the same
program using List.sort it uses only 100k.
Input style Input length Sort data Sort alg User time
stdin 10000 random_list sort 2.82
stdin 10000 random_list mergesort 2.96
stdin 10000 sorted sort 31.37
stdin 10000 sorted mergesort 1.90
stdin 10000 revsorted sort 31.21
stdin 10000 revsorted mergesort 1.88
stdin 100000 random_list sort *
stdin 100000 random_list mergesort *
stdin 100000 sorted sort *
stdin 100000 sorted mergesort *
stdin 100000 revsorted sort *
stdin 100000 revsorted mergesort *
func 10000 random_list sort 0.31
func 10000 random_list mergesort 0.91
func 10000 sorted sort 19.09
func 10000 sorted mergesort 0.15
func 10000 revsorted sort 19.17
func 10000 revsorted mergesort 0.16
func 100000 random_list sort 3.85
func 100000 random_list mergesort *
func 100000 sorted sort 5831.47
func 100000 sorted mergesort 2.23
func 100000 revsorted sort 5872.34
func 100000 revsorted mergesort 2.24
mergesort :: (a -> a -> Ordering) -> [a] -> [a]
mergesort cmp = mergesort' cmp . map wrap
mergesort' :: (a -> a -> Ordering) -> [[a]] -> [a]
mergesort' _ [] = []
mergesort' _ [xs] = xs
mergesort' cmp xss = mergesort' cmp (merge_pairs cmp xss)
merge_pairs :: (a -> a -> Ordering) -> [[a]] -> [[a]]
merge_pairs _ [] = []
merge_pairs _ [xs] = [xs]
merge_pairs cmp (xs:ys:xss) = merge cmp xs ys : merge_pairs cmp xss
merge :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
merge _ [] ys = ys
merge _ xs [] = xs
merge cmp (x:xs) (y:ys)
= case x `cmp` y of
GT -> y : merge cmp (x:xs) ys
_ -> x : merge cmp xs (y:ys)
wrap :: a -> [a]
wrap x = [x]
OLDER: qsort version
-- qsort is stable and does not concatenate.
qsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
qsort _ [] r = r
qsort _ [x] r = x:r
qsort cmp (x:xs) r = qpart cmp x xs [] [] r
-- qpart partitions and sorts the sublists
qpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
qpart cmp x [] rlt rge r =
-- rlt and rge are in reverse order and must be sorted with an
-- anti-stable sorting
rqsort cmp rlt (x:rqsort cmp rge r)
qpart cmp x (y:ys) rlt rge r =
case cmp x y of
GT -> qpart cmp x ys (y:rlt) rge r
_ -> qpart cmp x ys rlt (y:rge) r
-- rqsort is as qsort but anti-stable, i.e. reverses equal elements
rqsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
rqsort _ [] r = r
rqsort _ [x] r = x:r
rqsort cmp (x:xs) r = rqpart cmp x xs [] [] r
rqpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
rqpart cmp x [] rle rgt r =
qsort cmp rle (x:qsort cmp rgt r)
rqpart cmp x (y:ys) rle rgt r =
case cmp y x of
GT -> rqpart cmp x ys rle (y:rgt) r
_ -> rqpart cmp x ys (y:rle) rgt r
-}
#endif /* USE_REPORT_PRELUDE */
-- | The 'unfoldr' function is a \`dual\' to 'foldr': while 'foldr'
-- reduces a list to a summary value, 'unfoldr' builds a list from
-- a seed value. The function takes the element and returns 'Nothing'
-- if it is done producing the list or returns 'Just' @(a,b)@, in which
-- case, @a@ is a prepended to the list and @b@ is used as the next
-- element in a recursive call. For example,
--
-- > iterate f == unfoldr (\x -> Just (x, f x))
--
-- In some cases, 'unfoldr' can undo a 'foldr' operation:
--
-- > unfoldr f' (foldr f z xs) == xs
--
-- if the following holds:
--
-- > f' (f x y) = Just (x,y)
-- > f' z = Nothing
--
-- A simple use of unfoldr:
--
-- > unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- > [10,9,8,7,6,5,4,3,2,1]
--
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
unfoldr f b =
case f b of
Just (a,new_b) -> a : unfoldr f new_b
Nothing -> []
-- -----------------------------------------------------------------------------
-- | A strict version of 'foldl'.
foldl' :: (a -> b -> a) -> a -> [b] -> a
#ifdef __GLASGOW_HASKELL__
foldl' f z0 xs0 = lgo z0 xs0
where lgo z [] = z
lgo z (x:xs) = let z' = f z x in z' `seq` lgo z' xs
#else
foldl' f a [] = a
foldl' f a (x:xs) = let a' = f a x in a' `seq` foldl' f a' xs
#endif
#ifdef __GLASGOW_HASKELL__
-- | 'foldl1' is a variant of 'foldl' that has no starting value argument,
-- and thus must be applied to non-empty lists.
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = errorEmptyList "foldl1"
#endif /* __GLASGOW_HASKELL__ */
-- | A strict version of 'foldl1'
foldl1' :: (a -> a -> a) -> [a] -> a
foldl1' f (x:xs) = foldl' f x xs
foldl1' _ [] = errorEmptyList "foldl1'"
#ifdef __GLASGOW_HASKELL__
-- -----------------------------------------------------------------------------
-- List sum and product
{-# SPECIALISE sum :: [Int] -> Int #-}
{-# SPECIALISE sum :: [Integer] -> Integer #-}
{-# SPECIALISE product :: [Int] -> Int #-}
{-# SPECIALISE product :: [Integer] -> Integer #-}
-- | The 'sum' function computes the sum of a finite list of numbers.
sum :: (Num a) => [a] -> a
-- | The 'product' function computes the product of a finite list of numbers.
product :: (Num a) => [a] -> a
#ifdef USE_REPORT_PRELUDE
sum = foldl (+) 0
product = foldl (*) 1
#else
sum l = sum' l 0
where
sum' [] a = a
sum' (x:xs) a = sum' xs (a+x)
product l = prod l 1
where
prod [] a = a
prod (x:xs) a = prod xs (a*x)
#endif
-- -----------------------------------------------------------------------------
-- Functions on strings
-- | 'lines' breaks a string up into a list of strings at newline
-- characters. The resulting strings do not contain newlines.
lines :: String -> [String]
lines "" = []
#ifdef __GLASGOW_HASKELL__
-- Somehow GHC doesn't detect the selector thunks in the below code,
-- so s' keeps a reference to the first line via the pair and we have
-- a space leak (cf. #4334).
-- So we need to make GHC see the selector thunks with a trick.
lines s = cons (case break (== '\n') s of
(l, s') -> (l, case s' of
[] -> []
_:s'' -> lines s''))
where
cons ~(h, t) = h : t
#else
lines s = let (l, s') = break (== '\n') s
in l : case s' of
[] -> []
(_:s'') -> lines s''
#endif
-- | 'unlines' is an inverse operation to 'lines'.
-- It joins lines, after appending a terminating newline to each.
unlines :: [String] -> String
#ifdef USE_REPORT_PRELUDE
unlines = concatMap (++ "\n")
#else
-- HBC version (stolen)
-- here's a more efficient version
unlines [] = []
unlines (l:ls) = l ++ '\n' : unlines ls
#endif
-- | 'words' breaks a string up into a list of words, which were delimited
-- by white space.
words :: String -> [String]
words s = case dropWhile {-partain:Char.-}isSpace s of
"" -> []
s' -> w : words s''
where (w, s'') =
break {-partain:Char.-}isSpace s'
-- | 'unwords' is an inverse operation to 'words'.
-- It joins words with separating spaces.
unwords :: [String] -> String
#ifdef USE_REPORT_PRELUDE
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
#else
-- HBC version (stolen)
-- here's a more efficient version
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ' ' : unwords ws
#endif
#else /* !__GLASGOW_HASKELL__ */
errorEmptyList :: String -> a
errorEmptyList fun =
error ("Prelude." ++ fun ++ ": empty list")
#endif /* !__GLASGOW_HASKELL__ */
|