summaryrefslogtreecommitdiff
path: root/compiler/simplCore/SimplCore.lhs
blob: ea8131792802ed443d6166aeaedbec66d7301e22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[SimplCore]{Driver for simplifying @Core@ programs}

\begin{code}
module SimplCore ( core2core, simplifyExpr ) where

#include "HsVersions.h"

import DynFlags		( DynFlags, DynFlag(..), dopt )
import CoreSyn
import CoreSubst
import HscTypes
import CSE		( cseProgram )
import Rules		( RuleBase, emptyRuleBase, mkRuleBase, unionRuleBase,
			  extendRuleBaseList, ruleCheckProgram, addSpecInfo, )
import PprCore		( pprCoreBindings, pprCoreExpr )
import OccurAnal	( occurAnalysePgm, occurAnalyseExpr )
import IdInfo
import CoreUtils	( coreBindsSize )
import Simplify		( simplTopBinds, simplExpr )
import SimplUtils	( simplEnvForGHCi, activeRule )
import SimplEnv
import SimplMonad
import CoreMonad
import qualified ErrUtils as Err 
import FloatIn		( floatInwards )
import FloatOut		( floatOutwards )
import FamInstEnv
import Id
import BasicTypes       ( CompilerPhase, isDefaultInlinePragma )
import VarSet
import VarEnv
import LiberateCase	( liberateCase )
import SAT		( doStaticArgs )
import Specialise	( specProgram)
import SpecConstr	( specConstrProgram)
import DmdAnal		( dmdAnalPgm )
import WorkWrap	        ( wwTopBinds )
import Vectorise        ( vectorise )
import FastString
import Util

import UniqSupply	( UniqSupply, mkSplitUniqSupply, splitUniqSupply )
import Outputable
import Control.Monad
\end{code}

%************************************************************************
%*									*
\subsection{The driver for the simplifier}
%*									*
%************************************************************************

\begin{code}
core2core :: HscEnv -> ModGuts -> IO ModGuts
core2core hsc_env guts 
  = do { us <- mkSplitUniqSupply 's'
       ; (guts2, stats) <- runCoreM hsc_env hpt_rule_base us mod $ 
                           doCorePasses (getCoreToDo dflags) guts

       ; Err.dumpIfSet_dyn dflags Opt_D_dump_simpl_stats
             "Grand total simplifier statistics"
             (pprSimplCount stats)

       ; return guts2 }
  where
    dflags         = hsc_dflags hsc_env
    home_pkg_rules = hptRules hsc_env (dep_mods (mg_deps guts))
    hpt_rule_base  = mkRuleBase home_pkg_rules
    mod            = mg_module guts
    -- mod: get the module out of the current HscEnv so we can retrieve it from the monad.
    -- This is very convienent for the users of the monad (e.g. plugins do not have to
    -- consume the ModGuts to find the module) but somewhat ugly because mg_module may
    -- _theoretically_ be changed during the Core pipeline (it's part of ModGuts), which
    -- would mean our cached value would go out of date.


type CorePass = CoreToDo

doCorePasses :: [CorePass] -> ModGuts -> CoreM ModGuts
doCorePasses passes guts 
  = foldM do_pass guts passes
  where
    do_pass guts CoreDoNothing = return guts
    do_pass guts (CoreDoPasses ps) = doCorePasses ps guts
    do_pass guts pass 
       = do { dflags <- getDynFlags
       	    ; liftIO $ showPass dflags pass
       	    ; guts' <- doCorePass pass guts
       	    ; liftIO $ endPass dflags pass (mg_binds guts') (mg_rules guts')
       	    ; return guts' }

doCorePass :: CorePass -> ModGuts -> CoreM ModGuts
doCorePass pass@(CoreDoSimplify {})  = {-# SCC "Simplify" #-}
                                       simplifyPgm pass

doCorePass CoreCSE                   = {-# SCC "CommonSubExpr" #-}   
				       doPass cseProgram

doCorePass CoreLiberateCase          = {-# SCC "LiberateCase" #-}
                                       doPassD liberateCase

doCorePass CoreDoFloatInwards        = {-# SCC "FloatInwards" #-}
                                       doPass floatInwards

doCorePass (CoreDoFloatOutwards f)   = {-# SCC "FloatOutwards" #-}
                                       doPassDUM (floatOutwards f)

doCorePass CoreDoStaticArgs          = {-# SCC "StaticArgs" #-}
                                       doPassU doStaticArgs

doCorePass CoreDoStrictness          = {-# SCC "Stranal" #-}
                                       doPassDM dmdAnalPgm

doCorePass CoreDoWorkerWrapper       = {-# SCC "WorkWrap" #-}
                                       doPassU wwTopBinds

doCorePass CoreDoSpecialising        = {-# SCC "Specialise" #-}
                                       specProgram

doCorePass CoreDoSpecConstr          = {-# SCC "SpecConstr" #-}
                                       specConstrProgram

doCorePass CoreDoVectorisation       = {-# SCC "Vectorise" #-}
                                       vectorise

doCorePass CoreDoGlomBinds              = doPassDM  glomBinds
doCorePass CoreDoPrintCore              = observe   printCore
doCorePass (CoreDoRuleCheck phase pat)  = ruleCheck phase pat
doCorePass CoreDoNothing                = return
doCorePass (CoreDoPasses passes)        = doCorePasses passes
doCorePass pass = pprPanic "doCorePass" (ppr pass)
\end{code}

%************************************************************************
%*									*
\subsection{Core pass combinators}
%*									*
%************************************************************************

\begin{code}
printCore :: a -> [CoreBind] -> IO ()
printCore _ binds = Err.dumpIfSet True "Print Core" (pprCoreBindings binds)

ruleCheck :: CompilerPhase -> String -> ModGuts -> CoreM ModGuts
ruleCheck current_phase pat guts = do
    rb <- getRuleBase
    dflags <- getDynFlags
    liftIO $ Err.showPass dflags "RuleCheck"
    liftIO $ printDump (ruleCheckProgram current_phase pat rb (mg_binds guts))
    return guts


doPassDUM :: (DynFlags -> UniqSupply -> [CoreBind] -> IO [CoreBind]) -> ModGuts -> CoreM ModGuts
doPassDUM do_pass = doPassM $ \binds -> do
    dflags <- getDynFlags
    us     <- getUniqueSupplyM
    liftIO $ do_pass dflags us binds

doPassDM :: (DynFlags -> [CoreBind] -> IO [CoreBind]) -> ModGuts -> CoreM ModGuts
doPassDM do_pass = doPassDUM (\dflags -> const (do_pass dflags))

doPassD :: (DynFlags -> [CoreBind] -> [CoreBind]) -> ModGuts -> CoreM ModGuts
doPassD do_pass = doPassDM (\dflags -> return . do_pass dflags)

doPassDU :: (DynFlags -> UniqSupply -> [CoreBind] -> [CoreBind]) -> ModGuts -> CoreM ModGuts
doPassDU do_pass = doPassDUM (\dflags us -> return . do_pass dflags us)

doPassU :: (UniqSupply -> [CoreBind] -> [CoreBind]) -> ModGuts -> CoreM ModGuts
doPassU do_pass = doPassDU (const do_pass)

-- Most passes return no stats and don't change rules: these combinators
-- let us lift them to the full blown ModGuts+CoreM world
doPassM :: Monad m => ([CoreBind] -> m [CoreBind]) -> ModGuts -> m ModGuts
doPassM bind_f guts = do
    binds' <- bind_f (mg_binds guts)
    return (guts { mg_binds = binds' })

doPass :: ([CoreBind] -> [CoreBind]) -> ModGuts -> CoreM ModGuts
doPass bind_f guts = return $ guts { mg_binds = bind_f (mg_binds guts) }

-- Observer passes just peek; don't modify the bindings at all
observe :: (DynFlags -> [CoreBind] -> IO a) -> ModGuts -> CoreM ModGuts
observe do_pass = doPassM $ \binds -> do
    dflags <- getDynFlags
    _ <- liftIO $ do_pass dflags binds
    return binds
\end{code}


%************************************************************************
%*									*
	Gentle simplification
%*									*
%************************************************************************

\begin{code}
simplifyExpr :: DynFlags -- includes spec of what core-to-core passes to do
	     -> CoreExpr
	     -> IO CoreExpr
-- simplifyExpr is called by the driver to simplify an
-- expression typed in at the interactive prompt
--
-- Also used by Template Haskell
simplifyExpr dflags expr
  = do	{
	; Err.showPass dflags "Simplify"

	; us <-  mkSplitUniqSupply 's'

	; let (expr', _counts) = initSmpl dflags emptyRuleBase emptyFamInstEnvs us $
				 simplExprGently (simplEnvForGHCi dflags) expr

	; Err.dumpIfSet_dyn dflags Opt_D_dump_simpl "Simplified expression"
			(pprCoreExpr expr')

	; return expr'
	}

simplExprGently :: SimplEnv -> CoreExpr -> SimplM CoreExpr
-- Simplifies an expression 
-- 	does occurrence analysis, then simplification
--	and repeats (twice currently) because one pass
--	alone leaves tons of crud.
-- Used (a) for user expressions typed in at the interactive prompt
--	(b) the LHS and RHS of a RULE
--	(c) Template Haskell splices
--
-- The name 'Gently' suggests that the SimplifierMode is SimplGently,
-- and in fact that is so.... but the 'Gently' in simplExprGently doesn't
-- enforce that; it just simplifies the expression twice

-- It's important that simplExprGently does eta reduction; see
-- Note [Simplifying the left-hand side of a RULE] above.  The
-- simplifier does indeed do eta reduction (it's in Simplify.completeLam)
-- but only if -O is on.

simplExprGently env expr = do
    expr1 <- simplExpr env (occurAnalyseExpr expr)
    simplExpr env (occurAnalyseExpr expr1)
\end{code}


%************************************************************************
%*									*
\subsection{Glomming}
%*									*
%************************************************************************

\begin{code}
glomBinds :: DynFlags -> [CoreBind] -> IO [CoreBind]
-- Glom all binds together in one Rec, in case any
-- transformations have introduced any new dependencies
--
-- NB: the global invariant is this:
--	*** the top level bindings are never cloned, and are always unique ***
--
-- We sort them into dependency order, but applying transformation rules may
-- make something at the top refer to something at the bottom:
--	f = \x -> p (q x)
--	h = \y -> 3
--	
--	RULE:  p (q x) = h x
--
-- Applying this rule makes f refer to h, 
-- although it doesn't appear to in the source program.  
-- This pass lets us control where it happens.
--
-- NOTICE that this cannot happen for rules whose head is a locally-defined
-- function.  It only happens for rules whose head is an imported function
-- (p in the example above).  So, for example, the rule had been
--	RULE: f (p x) = h x
-- then the rule for f would be attached to f itself (in its IdInfo) 
-- by prepareLocalRuleBase and h would be regarded by the occurrency 
-- analyser as free in f.

glomBinds dflags binds
  = do { Err.showPass dflags "GlomBinds" ;
	 let { recd_binds = [Rec (flattenBinds binds)] } ;
	 return recd_binds }
	-- Not much point in printing the result... 
	-- just consumes output bandwidth
\end{code}


%************************************************************************
%*									*
\subsection{The driver for the simplifier}
%*									*
%************************************************************************

\begin{code}
simplifyPgm :: CoreToDo -> ModGuts -> CoreM ModGuts
simplifyPgm pass guts
  = do { hsc_env <- getHscEnv
       ; us <- getUniqueSupplyM
       ; rb <- getRuleBase
       ; liftIOWithCount $  
       	 simplifyPgmIO pass hsc_env us rb guts }

simplifyPgmIO :: CoreToDo
	      -> HscEnv
	      -> UniqSupply
	      -> RuleBase
	      -> ModGuts
	      -> IO (SimplCount, ModGuts)  -- New bindings

simplifyPgmIO pass@(CoreDoSimplify max_iterations mode)
              hsc_env us hpt_rule_base 
              guts@(ModGuts { mg_binds = binds, mg_rules = rules
                            , mg_fam_inst_env = fam_inst_env })
  = do { (termination_msg, it_count, counts_out, guts') 
	   <- do_iteration us 1 [] binds rules 

	; Err.dumpIfSet (dump_phase && dopt Opt_D_dump_simpl_stats dflags)
		  "Simplifier statistics for following pass"
		  (vcat [text termination_msg <+> text "after" <+> ppr it_count <+> text "iterations",
			 blankLine,
			 pprSimplCount counts_out])

	; return (counts_out, guts')
    }
  where
    dflags      = hsc_dflags hsc_env
    dump_phase  = dumpSimplPhase dflags mode
    simpl_env   = mkSimplEnv mode
    active_rule = activeRule dflags simpl_env

    do_iteration :: UniqSupply
                 -> Int		 -- Counts iterations
		 -> [SimplCount] -- Counts from earlier iterations, reversed
		 -> [CoreBind]	 -- Bindings in
		 -> [CoreRule]	 -- and orphan rules
		 -> IO (String, Int, SimplCount, ModGuts)

    do_iteration us iteration_no counts_so_far binds rules
	-- iteration_no is the number of the iteration we are
	-- about to begin, with '1' for the first
      | iteration_no > max_iterations	-- Stop if we've run out of iterations
      = WARN( debugIsOn && (max_iterations > 2)
            , ptext (sLit "Simplifier baling out after") <+> int max_iterations
              <+> ptext (sLit "iterations") 
              <+> (brackets $ hsep $ punctuate comma $ 
                   map (int . simplCountN) (reverse counts_so_far))
              <+> ptext (sLit "Size =") <+> int (coreBindsSize binds) )

		-- Subtract 1 from iteration_no to get the
		-- number of iterations we actually completed
	return ( "Simplifier baled out", iteration_no - 1 
               , totalise counts_so_far
               , guts { mg_binds = binds, mg_rules = rules } )

      -- Try and force thunks off the binds; significantly reduces
      -- space usage, especially with -O.  JRS, 000620.
      | let sz = coreBindsSize binds in sz == sz
      = do {
		-- Occurrence analysis
	   let { tagged_binds = {-# SCC "OccAnal" #-} 
                     occurAnalysePgm active_rule rules binds } ;
	   Err.dumpIfSet_dyn dflags Opt_D_dump_occur_anal "Occurrence analysis"
		     (pprCoreBindings tagged_binds);

	   	-- Get any new rules, and extend the rule base
		-- See Note [Overall plumbing for rules] in Rules.lhs
		-- We need to do this regularly, because simplification can
		-- poke on IdInfo thunks, which in turn brings in new rules
		-- behind the scenes.  Otherwise there's a danger we'll simply
		-- miss the rules for Ids hidden inside imported inlinings
	   eps <- hscEPS hsc_env ;
	   let	{ rule_base1 = unionRuleBase hpt_rule_base (eps_rule_base eps)
	        ; rule_base2 = extendRuleBaseList rule_base1 rules
		; simpl_binds = {-# SCC "SimplTopBinds" #-} 
				simplTopBinds simpl_env tagged_binds
		; fam_envs = (eps_fam_inst_env eps, fam_inst_env) } ;
	   
		-- Simplify the program
		-- We do this with a *case* not a *let* because lazy pattern
		-- matching bit us with bad space leak!
		-- With a let, we ended up with
		--   let
		--	t = initSmpl ...
		--	counts1 = snd t
		--   in
		-- 	case t of {(_,counts1) -> if counts1=0 then ... }
		-- So the conditional didn't force counts1, because the
		-- selection got duplicated.  Sigh!
	   case initSmpl dflags rule_base2 fam_envs us1 simpl_binds of {
	  	(env1, counts1) -> do {

	   let	{ binds1 = getFloats env1
                ; rules1 = substRulesForImportedIds (mkCoreSubst (text "imp-rules") env1) rules
	        } ;

		-- Stop if nothing happened; don't dump output
	   if isZeroSimplCount counts1 then
		return ( "Simplifier reached fixed point", iteration_no
                       , totalise (counts1 : counts_so_far)  -- Include "free" ticks	
		       , guts { mg_binds = binds1, mg_rules = rules1 } )
	   else do {
		-- Short out indirections
		-- We do this *after* at least one run of the simplifier 
		-- because indirection-shorting uses the export flag on *occurrences*
		-- and that isn't guaranteed to be ok until after the first run propagates
		-- stuff from the binding site to its occurrences
		--
		-- ToDo: alas, this means that indirection-shorting does not happen at all
		--	 if the simplifier does nothing (not common, I know, but unsavoury)
	   let { binds2 = {-# SCC "ZapInd" #-} shortOutIndirections binds1 } ;

		-- Dump the result of this iteration
	   end_iteration dflags pass iteration_no counts1 binds2 rules1 ;

		-- Loop
  	   do_iteration us2 (iteration_no + 1) (counts1:counts_so_far) binds2 rules1
           } } } }
      | otherwise = panic "do_iteration"
      where
  	(us1, us2) = splitUniqSupply us

	-- Remember the counts_so_far are reversed
        totalise :: [SimplCount] -> SimplCount
        totalise = foldr (\c acc -> acc `plusSimplCount` c) 
                         (zeroSimplCount dflags) 

simplifyPgmIO _ _ _ _ _ = panic "simplifyPgmIO"

-------------------
end_iteration :: DynFlags -> CoreToDo -> Int 
             -> SimplCount -> [CoreBind] -> [CoreRule] -> IO ()
-- Same as endIteration but with simplifier counts
end_iteration dflags pass iteration_no counts binds rules
  = do { dumpIfSet (dopt Opt_D_dump_simpl_iterations dflags)
                   pass (ptext (sLit "Simplifier counts"))
		   (pprSimplCount counts)

       ; endIteration dflags pass iteration_no binds rules }
\end{code}


%************************************************************************
%*									*
		Shorting out indirections
%*									*
%************************************************************************

If we have this:

	x_local = <expression>
	...bindings...
	x_exported = x_local

where x_exported is exported, and x_local is not, then we replace it with this:

	x_exported = <expression>
	x_local = x_exported
	...bindings...

Without this we never get rid of the x_exported = x_local thing.  This
save a gratuitous jump (from \tr{x_exported} to \tr{x_local}), and
makes strictness information propagate better.  This used to happen in
the final phase, but it's tidier to do it here.

Note [Transferring IdInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to propagage any useful IdInfo on x_local to x_exported.

STRICTNESS: if we have done strictness analysis, we want the strictness info on
x_local to transfer to x_exported.  Hence the copyIdInfo call.

RULES: we want to *add* any RULES for x_local to x_exported.


Note [Messing up the exported Id's RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must be careful about discarding (obviously) or even merging the
RULES on the exported Id. The example that went bad on me at one stage
was this one:
	
    iterate :: (a -> a) -> a -> [a]
	[Exported]
    iterate = iterateList	
    
    iterateFB c f x = x `c` iterateFB c f (f x)
    iterateList f x =  x : iterateList f (f x)
    	[Not exported]
    
    {-# RULES
    "iterate"	forall f x.	iterate f x = build (\c _n -> iterateFB c f x)
    "iterateFB" 		iterateFB (:) = iterateList
     #-}

This got shorted out to:

    iterateList :: (a -> a) -> a -> [a]
    iterateList = iterate
    
    iterateFB c f x = x `c` iterateFB c f (f x)
    iterate f x =  x : iterate f (f x)
    
    {-# RULES
    "iterate"	forall f x.	iterate f x = build (\c _n -> iterateFB c f x)
    "iterateFB" 		iterateFB (:) = iterate
     #-}

And now we get an infinite loop in the rule system 
	iterate f x -> build (\cn -> iterateFB c f x)
		    -> iterateFB (:) f x
		    -> iterate f x

Old "solution": 
	use rule switching-off pragmas to get rid 
	of iterateList in the first place

But in principle the user *might* want rules that only apply to the Id
he says.  And inline pragmas are similar
   {-# NOINLINE f #-}
   f = local
   local = <stuff>
Then we do not want to get rid of the NOINLINE.

Hence hasShortableIdinfo.


Note [Rules and indirection-zapping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Problem: what if x_exported has a RULE that mentions something in ...bindings...?
Then the things mentioned can be out of scope!  Solution
 a) Make sure that in this pass the usage-info from x_exported is 
	available for ...bindings...
 b) If there are any such RULES, rec-ify the entire top-level. 
    It'll get sorted out next time round

Other remarks
~~~~~~~~~~~~~
If more than one exported thing is equal to a local thing (i.e., the
local thing really is shared), then we do one only:
\begin{verbatim}
	x_local = ....
	x_exported1 = x_local
	x_exported2 = x_local
==>
	x_exported1 = ....

	x_exported2 = x_exported1
\end{verbatim}

We rely on prior eta reduction to simplify things like
\begin{verbatim}
	x_exported = /\ tyvars -> x_local tyvars
==>
	x_exported = x_local
\end{verbatim}
Hence,there's a possibility of leaving unchanged something like this:
\begin{verbatim}
	x_local = ....
	x_exported1 = x_local Int
\end{verbatim}
By the time we've thrown away the types in STG land this 
could be eliminated.  But I don't think it's very common
and it's dangerous to do this fiddling in STG land 
because we might elminate a binding that's mentioned in the
unfolding for something.

\begin{code}
type IndEnv = IdEnv Id		-- Maps local_id -> exported_id

shortOutIndirections :: [CoreBind] -> [CoreBind]
shortOutIndirections binds
  | isEmptyVarEnv ind_env = binds
  | no_need_to_flatten	  = binds'			-- See Note [Rules and indirect-zapping]
  | otherwise 		  = [Rec (flattenBinds binds')]	-- for this no_need_to_flatten stuff
  where
    ind_env 	       = makeIndEnv binds
    exp_ids 	       = varSetElems ind_env	-- These exported Ids are the subjects
    exp_id_set	       = mkVarSet exp_ids	-- of the indirection-elimination
    no_need_to_flatten = all (null . specInfoRules . idSpecialisation) exp_ids
    binds' 	       = concatMap zap binds

    zap (NonRec bndr rhs) = [NonRec b r | (b,r) <- zapPair (bndr,rhs)]
    zap (Rec pairs)	  = [Rec (concatMap zapPair pairs)]

    zapPair (bndr, rhs)
	| bndr `elemVarSet` exp_id_set 		   = []
	| Just exp_id <- lookupVarEnv ind_env bndr = [(transferIdInfo exp_id bndr, rhs),
						      (bndr, Var exp_id)]
	| otherwise				   = [(bndr,rhs)]
			     
makeIndEnv :: [CoreBind] -> IndEnv
makeIndEnv binds
  = foldr add_bind emptyVarEnv binds
  where
    add_bind :: CoreBind -> IndEnv -> IndEnv
    add_bind (NonRec exported_id rhs) env = add_pair (exported_id, rhs) env
    add_bind (Rec pairs)	      env = foldr add_pair env pairs

    add_pair :: (Id,CoreExpr) -> IndEnv -> IndEnv
    add_pair (exported_id, Var local_id) env
	| shortMeOut env exported_id local_id = extendVarEnv env local_id exported_id
    add_pair _ env = env
			
-----------------
shortMeOut :: IndEnv -> Id -> Id -> Bool
shortMeOut ind_env exported_id local_id
-- The if-then-else stuff is just so I can get a pprTrace to see
-- how often I don't get shorting out becuase of IdInfo stuff
  = if isExportedId exported_id &&		-- Only if this is exported

       isLocalId local_id &&			-- Only if this one is defined in this
						-- 	module, so that we *can* change its
				 	 	-- 	binding to be the exported thing!

       not (isExportedId local_id) &&		-- Only if this one is not itself exported,
					   	--	since the transformation will nuke it
   
       not (local_id `elemVarEnv` ind_env)	-- Only if not already substituted for
    then
	if hasShortableIdInfo exported_id
	then True	-- See Note [Messing up the exported Id's IdInfo]
	else WARN( True, ptext (sLit "Not shorting out:") <+> ppr exported_id )
             False
    else
        False

-----------------
hasShortableIdInfo :: Id -> Bool
-- True if there is no user-attached IdInfo on exported_id,
-- so we can safely discard it
-- See Note [Messing up the exported Id's IdInfo]
hasShortableIdInfo id
  =  isEmptySpecInfo (specInfo info)
  && isDefaultInlinePragma (inlinePragInfo info)
  where
     info = idInfo id

-----------------
transferIdInfo :: Id -> Id -> Id
-- See Note [Transferring IdInfo]
-- If we have
--	lcl_id = e; exp_id = lcl_id
-- and lcl_id has useful IdInfo, we don't want to discard it by going
--	gbl_id = e; lcl_id = gbl_id
-- Instead, transfer IdInfo from lcl_id to exp_id
-- Overwriting, rather than merging, seems to work ok.
transferIdInfo exported_id local_id
  = modifyIdInfo transfer exported_id
  where
    local_info = idInfo local_id
    transfer exp_info = exp_info `setStrictnessInfo` strictnessInfo local_info
				 `setUnfoldingInfo`     unfoldingInfo local_info
				 `setInlinePragInfo`	inlinePragInfo local_info
				 `setSpecInfo`	        addSpecInfo (specInfo exp_info) new_info
    new_info = setSpecInfoHead (idName exported_id) 
			       (specInfo local_info)
	-- Remember to set the function-name field of the
	-- rules as we transfer them from one function to another
\end{code}