1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[FloatOut]{Float bindings outwards (towards the top level)}
``Long-distance'' floating of bindings towards the top level.
\begin{code}
module FloatOut ( floatOutwards ) where
import CoreSyn
import CoreUtils
import CoreArity ( etaExpand )
import CoreMonad ( FloatOutSwitches(..) )
import DynFlags ( DynFlags, DynFlag(..) )
import ErrUtils ( dumpIfSet_dyn )
import CostCentre ( dupifyCC, CostCentre )
import Id ( Id, idType, idArity, isBottomingId )
import Type ( isUnLiftedType )
import SetLevels ( Level(..), LevelledExpr, LevelledBind,
setLevels, isTopLvl )
import UniqSupply ( UniqSupply )
import Bag
import Util
import Maybes
import Outputable
import FastString
import qualified Data.IntMap as M
#include "HsVersions.h"
\end{code}
-----------------
Overall game plan
-----------------
The Big Main Idea is:
To float out sub-expressions that can thereby get outside
a non-one-shot value lambda, and hence may be shared.
To achieve this we may need to do two thing:
a) Let-bind the sub-expression:
f (g x) ==> let lvl = f (g x) in lvl
Now we can float the binding for 'lvl'.
b) More than that, we may need to abstract wrt a type variable
\x -> ... /\a -> let v = ...a... in ....
Here the binding for v mentions 'a' but not 'x'. So we
abstract wrt 'a', to give this binding for 'v':
vp = /\a -> ...a...
v = vp a
Now the binding for vp can float out unimpeded.
I can't remember why this case seemed important enough to
deal with, but I certainly found cases where important floats
didn't happen if we did not abstract wrt tyvars.
With this in mind we can also achieve another goal: lambda lifting.
We can make an arbitrary (function) binding float to top level by
abstracting wrt *all* local variables, not just type variables, leaving
a binding that can be floated right to top level. Whether or not this
happens is controlled by a flag.
Random comments
~~~~~~~~~~~~~~~
At the moment we never float a binding out to between two adjacent
lambdas. For example:
@
\x y -> let t = x+x in ...
===>
\x -> let t = x+x in \y -> ...
@
Reason: this is less efficient in the case where the original lambda
is never partially applied.
But there's a case I've seen where this might not be true. Consider:
@
elEm2 x ys
= elem' x ys
where
elem' _ [] = False
elem' x (y:ys) = x==y || elem' x ys
@
It turns out that this generates a subexpression of the form
@
\deq x ys -> let eq = eqFromEqDict deq in ...
@
vwhich might usefully be separated to
@
\deq -> let eq = eqFromEqDict deq in \xy -> ...
@
Well, maybe. We don't do this at the moment.
%************************************************************************
%* *
\subsection[floatOutwards]{@floatOutwards@: let-floating interface function}
%* *
%************************************************************************
\begin{code}
floatOutwards :: FloatOutSwitches
-> DynFlags
-> UniqSupply
-> [CoreBind] -> IO [CoreBind]
floatOutwards float_sws dflags us pgm
= do {
let { annotated_w_levels = setLevels float_sws pgm us ;
(fss, binds_s') = unzip (map floatTopBind annotated_w_levels)
} ;
dumpIfSet_dyn dflags Opt_D_verbose_core2core "Levels added:"
(vcat (map ppr annotated_w_levels));
let { (tlets, ntlets, lams) = get_stats (sum_stats fss) };
dumpIfSet_dyn dflags Opt_D_dump_simpl_stats "FloatOut stats:"
(hcat [ int tlets, ptext (sLit " Lets floated to top level; "),
int ntlets, ptext (sLit " Lets floated elsewhere; from "),
int lams, ptext (sLit " Lambda groups")]);
return (concat binds_s')
}
floatTopBind :: LevelledBind -> (FloatStats, [CoreBind])
floatTopBind bind
= case (floatBind bind) of { (fs, floats) ->
(fs, bagToList (flattenFloats floats)) }
\end{code}
%************************************************************************
%* *
\subsection[FloatOut-Bind]{Floating in a binding (the business end)}
%* *
%************************************************************************
\begin{code}
floatBind :: LevelledBind -> (FloatStats, FloatBinds)
floatBind (NonRec (TB var level) rhs)
= case (floatRhs level rhs) of { (fs, rhs_floats, rhs') ->
-- A tiresome hack:
-- see Note [Bottoming floats: eta expansion] in SetLevels
let rhs'' | isBottomingId var = etaExpand (idArity var) rhs'
| otherwise = rhs'
in (fs, rhs_floats `plusFloats` unitFloat level (NonRec var rhs'')) }
floatBind (Rec pairs)
= case floatList do_pair pairs of { (fs, rhs_floats, new_pairs) ->
-- NB: the rhs floats may contain references to the
-- bound things. For example
-- f = ...(let v = ...f... in b) ...
if not (isTopLvl dest_lvl) then
-- Find which bindings float out at least one lambda beyond this one
-- These ones can't mention the binders, because they couldn't
-- be escaping a major level if so.
-- The ones that are not going further can join the letrec;
-- they may not be mutually recursive but the occurrence analyser will
-- find that out. In our example we make a Rec thus:
-- v = ...f...
-- f = ... b ...
case (partitionByMajorLevel dest_lvl rhs_floats) of { (floats', heres) ->
(fs, floats' `plusFloats` unitFloat dest_lvl
(Rec (floatsToBindPairs heres new_pairs))) }
else
-- For top level, no need to partition; just make them all recursive
-- (And the partition wouldn't work because they'd all end up in floats')
(fs, unitFloat dest_lvl
(Rec (floatsToBindPairs (flattenFloats rhs_floats) new_pairs))) }
where
(((TB _ dest_lvl), _) : _) = pairs
do_pair (TB name level, rhs)
= case (floatRhs level rhs) of { (fs, rhs_floats, rhs') ->
(fs, rhs_floats, (name, rhs')) }
---------------
floatList :: (a -> (FloatStats, FloatBinds, b)) -> [a] -> (FloatStats, FloatBinds, [b])
floatList _ [] = (zeroStats, emptyFloats, [])
floatList f (a:as) = case f a of { (fs_a, binds_a, b) ->
case floatList f as of { (fs_as, binds_as, bs) ->
(fs_a `add_stats` fs_as, binds_a `plusFloats` binds_as, b:bs) }}
\end{code}
%************************************************************************
\subsection[FloatOut-Expr]{Floating in expressions}
%* *
%************************************************************************
\begin{code}
floatExpr, floatRhs, floatCaseAlt
:: Level
-> LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatCaseAlt lvl arg -- Used rec rhss, and case-alternative rhss
= case (floatExpr lvl arg) of { (fsa, floats, arg') ->
case (partitionByMajorLevel lvl floats) of { (floats', heres) ->
-- Dump bindings that aren't going to escape from a lambda;
-- in particular, we must dump the ones that are bound by
-- the rec or case alternative
(fsa, floats', install heres arg') }}
-----------------
floatRhs lvl arg -- Used for nested non-rec rhss, and fn args
-- See Note [Floating out of RHS]
= floatExpr lvl arg
-----------------
floatExpr _ (Var v) = (zeroStats, emptyFloats, Var v)
floatExpr _ (Type ty) = (zeroStats, emptyFloats, Type ty)
floatExpr _ (Coercion co) = (zeroStats, emptyFloats, Coercion co)
floatExpr _ (Lit lit) = (zeroStats, emptyFloats, Lit lit)
floatExpr lvl (App e a)
= case (floatExpr lvl e) of { (fse, floats_e, e') ->
case (floatRhs lvl a) of { (fsa, floats_a, a') ->
(fse `add_stats` fsa, floats_e `plusFloats` floats_a, App e' a') }}
floatExpr _ lam@(Lam (TB _ lam_lvl) _)
= let (bndrs_w_lvls, body) = collectBinders lam
bndrs = [b | TB b _ <- bndrs_w_lvls]
-- All the binders have the same level
-- See SetLevels.lvlLamBndrs
in
case (floatExpr lam_lvl body) of { (fs, floats, body1) ->
-- Dump anything that is captured by this lambda
-- Eg \x -> ...(\y -> let v = <blah> in ...)...
-- We'll have the binding (v = <blah>) in the floats,
-- but must dump it at the lambda-x
case (partitionByLevel lam_lvl floats) of { (floats1, heres) ->
(add_to_stats fs floats1, floats1, mkLams bndrs (install heres body1))
}}
floatExpr lvl (Note note@(SCC cc) expr)
= case (floatExpr lvl expr) of { (fs, floating_defns, expr') ->
let
-- Annotate bindings floated outwards past an scc expression
-- with the cc. We mark that cc as "duplicated", though.
annotated_defns = wrapCostCentre (dupifyCC cc) floating_defns
in
(fs, annotated_defns, Note note expr') }
floatExpr lvl (Note note expr) -- Other than SCCs
= case (floatExpr lvl expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Note note expr') }
floatExpr lvl (Cast expr co)
= case (floatExpr lvl expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Cast expr' co) }
floatExpr lvl (Let (NonRec (TB bndr bndr_lvl) rhs) body)
| isUnLiftedType (idType bndr) -- Treat unlifted lets just like a case
-- I.e. floatExpr for rhs, floatCaseAlt for body
= case floatExpr lvl rhs of { (_, rhs_floats, rhs') ->
case floatCaseAlt bndr_lvl body of { (fs, body_floats, body') ->
(fs, rhs_floats `plusFloats` body_floats, Let (NonRec bndr rhs') body') }}
floatExpr lvl (Let bind body)
= case (floatBind bind) of { (fsb, bind_floats) ->
case (floatExpr lvl body) of { (fse, body_floats, body') ->
case partitionByMajorLevel lvl (bind_floats `plusFloats` body_floats)
of { (floats, heres) ->
-- See Note [Avoiding unnecessary floating]
(add_stats fsb fse, floats, install heres body') } } }
floatExpr lvl (Case scrut (TB case_bndr case_lvl) ty alts)
= case floatExpr lvl scrut of { (fse, fde, scrut') ->
case floatList float_alt alts of { (fsa, fda, alts') ->
(add_stats fse fsa, fda `plusFloats` fde, Case scrut' case_bndr ty alts')
}}
where
-- Use floatCaseAlt for the alternatives, so that we
-- don't gratuitiously float bindings out of the RHSs
float_alt (con, bs, rhs)
= case (floatCaseAlt case_lvl rhs) of { (fs, rhs_floats, rhs') ->
(fs, rhs_floats, (con, [b | TB b _ <- bs], rhs')) }
\end{code}
Note [Avoiding unnecessary floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we want to avoid floating a let unnecessarily, because
it might worsen strictness:
let
x = ...(let y = e in y+y)....
Here y is demanded. If we float it outside the lazy 'x=..' then
we'd have to zap its demand info, and it may never be restored.
So at a 'let' we leave the binding right where the are unless
the binding will escape a value lambda. That's what the
partitionByMajorLevel does in the floatExpr (Let ...) case.
Notice, though, that we must take care to drop any bindings
from the body of the let that depend on the staying-put bindings.
We used instead to do the partitionByMajorLevel on the RHS of an '=',
in floatRhs. But that was quite tiresome. We needed to test for
values or trival rhss, because (in particular) we don't want to insert
new bindings between the "=" and the "\". E.g.
f = \x -> let <bind> in <body>
We do not want
f = let <bind> in \x -> <body>
(a) The simplifier will immediately float it further out, so we may
as well do so right now; in general, keeping rhss as manifest
values is good
(b) If a float-in pass follows immediately, it might add yet more
bindings just after the '='. And some of them might (correctly)
be strict even though the 'let f' is lazy, because f, being a value,
gets its demand-info zapped by the simplifier.
And even all that turned out to be very fragile, and broke
altogether when profiling got in the way.
So now we do the partition right at the (Let..) itself.
%************************************************************************
%* *
\subsection{Utility bits for floating stats}
%* *
%************************************************************************
I didn't implement this with unboxed numbers. I don't want to be too
strict in this stuff, as it is rarely turned on. (WDP 95/09)
\begin{code}
data FloatStats
= FlS Int -- Number of top-floats * lambda groups they've been past
Int -- Number of non-top-floats * lambda groups they've been past
Int -- Number of lambda (groups) seen
get_stats :: FloatStats -> (Int, Int, Int)
get_stats (FlS a b c) = (a, b, c)
zeroStats :: FloatStats
zeroStats = FlS 0 0 0
sum_stats :: [FloatStats] -> FloatStats
sum_stats xs = foldr add_stats zeroStats xs
add_stats :: FloatStats -> FloatStats -> FloatStats
add_stats (FlS a1 b1 c1) (FlS a2 b2 c2)
= FlS (a1 + a2) (b1 + b2) (c1 + c2)
add_to_stats :: FloatStats -> FloatBinds -> FloatStats
add_to_stats (FlS a b c) (FB tops others)
= FlS (a + lengthBag tops) (b + lengthBag (flattenMajor others)) (c + 1)
\end{code}
%************************************************************************
%* *
\subsection{Utility bits for floating}
%* *
%************************************************************************
Note [Representation of FloatBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FloatBinds types is somewhat important. We can get very large numbers
of floating bindings, often all destined for the top level. A typical example
is x = [4,2,5,2,5, .... ]
Then we get lots of small expressions like (fromInteger 4), which all get
lifted to top level.
The trouble is that
(a) we partition these floating bindings *at every binding site*
(b) SetLevels introduces a new bindings site for every float
So we had better not look at each binding at each binding site!
That is why MajorEnv is represented as a finite map.
We keep the bindings destined for the *top* level separate, because
we float them out even if they don't escape a *value* lambda; see
partitionByMajorLevel.
\begin{code}
type FloatBind = CoreBind -- INVARIANT: a FloatBind is always lifted
data FloatBinds = FB !(Bag FloatBind) -- Destined for top level
!MajorEnv -- Levels other than top
-- See Note [Representation of FloatBinds]
instance Outputable FloatBinds where
ppr (FB fbs env) = ptext (sLit "FB") <+> (braces $ vcat
[ ptext (sLit "binds =") <+> ppr fbs
, ptext (sLit "env =") <+> ppr env ])
type MajorEnv = M.IntMap MinorEnv -- Keyed by major level
type MinorEnv = M.IntMap (Bag FloatBind) -- Keyed by minor level
flattenFloats :: FloatBinds -> Bag FloatBind
flattenFloats (FB tops others) = tops `unionBags` flattenMajor others
flattenMajor :: MajorEnv -> Bag FloatBind
flattenMajor = M.fold (unionBags . flattenMinor) emptyBag
flattenMinor :: MinorEnv -> Bag FloatBind
flattenMinor = M.fold unionBags emptyBag
emptyFloats :: FloatBinds
emptyFloats = FB emptyBag M.empty
unitFloat :: Level -> FloatBind -> FloatBinds
unitFloat lvl@(Level major minor) b
| isTopLvl lvl = FB (unitBag b) M.empty
| otherwise = FB emptyBag (M.singleton major (M.singleton minor (unitBag b)))
plusFloats :: FloatBinds -> FloatBinds -> FloatBinds
plusFloats (FB t1 b1) (FB t2 b2) = FB (t1 `unionBags` t2) (b1 `plusMajor` b2)
plusMajor :: MajorEnv -> MajorEnv -> MajorEnv
plusMajor = M.unionWith plusMinor
plusMinor :: MinorEnv -> MinorEnv -> MinorEnv
plusMinor = M.unionWith unionBags
floatsToBindPairs :: Bag FloatBind -> [(Id,CoreExpr)] -> [(Id,CoreExpr)]
floatsToBindPairs floats binds = foldrBag add binds floats
where
add (Rec pairs) binds = pairs ++ binds
add (NonRec binder rhs) binds = (binder,rhs) : binds
install :: Bag FloatBind -> CoreExpr -> CoreExpr
install defn_groups expr
= foldrBag install_group expr defn_groups
where
install_group defns body = Let defns body
partitionByMajorLevel, partitionByLevel
:: Level -- Partitioning level
-> FloatBinds -- Defns to be divided into 2 piles...
-> (FloatBinds, -- Defns with level strictly < partition level,
Bag FloatBind) -- The rest
-- ---- partitionByMajorLevel ----
-- Float it if we escape a value lambda, *or* if we get to the top level
-- If we can get to the top level, say "yes" anyway. This means that
-- x = f e
-- transforms to
-- lvl = e
-- x = f lvl
-- which is as it should be
partitionByMajorLevel (Level major _) (FB tops defns)
= (FB tops outer, heres `unionBags` flattenMajor inner)
where
(outer, mb_heres, inner) = M.splitLookup major defns
heres = case mb_heres of
Nothing -> emptyBag
Just h -> flattenMinor h
partitionByLevel (Level major minor) (FB tops defns)
= (FB tops (outer_maj `plusMajor` M.singleton major outer_min),
here_min `unionBags` flattenMinor inner_min
`unionBags` flattenMajor inner_maj)
where
(outer_maj, mb_here_maj, inner_maj) = M.splitLookup major defns
(outer_min, mb_here_min, inner_min) = case mb_here_maj of
Nothing -> (M.empty, Nothing, M.empty)
Just min_defns -> M.splitLookup minor min_defns
here_min = mb_here_min `orElse` emptyBag
wrapCostCentre :: CostCentre -> FloatBinds -> FloatBinds
wrapCostCentre cc (FB tops defns)
= FB (wrap_defns tops) (M.map (M.map wrap_defns) defns)
where
wrap_defns = mapBag wrap_one
wrap_one (NonRec binder rhs) = NonRec binder (mkSCC cc rhs)
wrap_one (Rec pairs) = Rec (mapSnd (mkSCC cc) pairs)
\end{code}
|