summaryrefslogtreecommitdiff
path: root/compiler/simplCore/CoreMonad.lhs
blob: 6ddcff2b26559611eef29d1bad5ec46ae609cffc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\section[CoreMonad]{The core pipeline monad}

\begin{code}
{-# LANGUAGE UndecidableInstances #-}

module CoreMonad (
    -- * Configuration of the core-to-core passes
    CoreToDo(..),
    SimplifierMode(..),
    FloatOutSwitches(..),
    getCoreToDo, dumpSimplPhase,

    -- * Counting
    SimplCount, doSimplTick, doFreeSimplTick, simplCountN,
    pprSimplCount, plusSimplCount, zeroSimplCount, isZeroSimplCount, Tick(..),

    -- * The monad
    CoreM, runCoreM,
    
    -- ** Reading from the monad
    getHscEnv, getRuleBase, getModule,
    getDynFlags, getOrigNameCache,
    
    -- ** Writing to the monad
    addSimplCount,
    
    -- ** Lifting into the monad
    liftIO, liftIOWithCount,
    liftIO1, liftIO2, liftIO3, liftIO4,
    
    -- ** Dealing with annotations
    getAnnotations, getFirstAnnotations,
    
    -- ** Debug output
    showPass, endPass, endIteration, dumpIfSet,

    -- ** Screen output
    putMsg, putMsgS, errorMsg, errorMsgS, 
    fatalErrorMsg, fatalErrorMsgS, 
    debugTraceMsg, debugTraceMsgS,
    dumpIfSet_dyn, 

#ifdef GHCI
    -- * Getting 'Name's
    thNameToGhcName
#endif
  ) where

#ifdef GHCI
import Name( Name )
#endif
import CoreSyn
import PprCore
import CoreUtils
import CoreLint		( lintCoreBindings )
import PrelNames        ( iNTERACTIVE )
import HscTypes
import Module           ( Module )
import DynFlags
import StaticFlags	
import Rules            ( RuleBase )
import BasicTypes       ( CompilerPhase(..) )
import Annotations
import Id		( Id )

import IOEnv hiding     ( liftIO, failM, failWithM )
import qualified IOEnv  ( liftIO )
import TcEnv            ( tcLookupGlobal )
import TcRnMonad        ( TcM, initTc )

import Outputable
import FastString
import qualified ErrUtils as Err
import Bag
import Maybes
import UniqSupply
import UniqFM       ( UniqFM, mapUFM, filterUFM )
import MonadUtils

import Util		( split )
import Data.List	( intersperse )
import Data.Dynamic
import Data.IORef
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Word
import Control.Monad

import Prelude hiding   ( read )

#ifdef GHCI
import {-# SOURCE #-} TcSplice ( lookupThName_maybe )
import qualified Language.Haskell.TH as TH
#endif
\end{code}

%************************************************************************
%*									*
                       Debug output
%*									*
%************************************************************************

These functions are not CoreM monad stuff, but they probably ought to
be, and it makes a conveneint place.  place for them.  They print out
stuff before and after core passes, and do Core Lint when necessary.

\begin{code}
showPass :: DynFlags -> CoreToDo -> IO ()
showPass dflags pass = Err.showPass dflags (showSDoc (ppr pass))

endPass :: DynFlags -> CoreToDo -> [CoreBind] -> [CoreRule] -> IO ()
endPass dflags pass = dumpAndLint dflags True pass empty (coreDumpFlag pass)

-- Same as endPass but doesn't dump Core even with -dverbose-core2core
endIteration :: DynFlags -> CoreToDo -> Int -> [CoreBind] -> [CoreRule] -> IO ()
endIteration dflags pass n
  = dumpAndLint dflags False pass (ptext (sLit "iteration=") <> int n)
                (Just Opt_D_dump_simpl_iterations)

dumpIfSet :: Bool -> CoreToDo -> SDoc -> SDoc -> IO ()
dumpIfSet dump_me pass extra_info doc
  = Err.dumpIfSet dump_me (showSDoc (ppr pass <+> extra_info)) doc

dumpAndLint :: DynFlags -> Bool -> CoreToDo -> SDoc -> Maybe DynFlag
            -> [CoreBind] -> [CoreRule] -> IO ()
-- The "show_all" parameter says to print dump if -dverbose-core2core is on
dumpAndLint dflags show_all pass extra_info mb_dump_flag binds rules
  = do {  -- Report result size if required
	  -- This has the side effect of forcing the intermediate to be evaluated
       ; Err.debugTraceMsg dflags 2 $
		(text "    Result size =" <+> int (coreBindsSize binds))

	-- Report verbosely, if required
       ; let pass_name = showSDoc (ppr pass <+> extra_info)
             dump_doc  = pprCoreBindings binds 
                         $$ ppUnless (null rules) pp_rules

       ; case mb_dump_flag of
            Nothing        -> return ()
            Just dump_flag -> Err.dumpIfSet_dyn_or dflags dump_flags pass_name dump_doc
               where
                 dump_flags | show_all  = [dump_flag, Opt_D_verbose_core2core]
		 	    | otherwise = [dump_flag] 

	-- Type check
       ; when (dopt Opt_DoCoreLinting dflags) $
         do { let (warns, errs) = lintCoreBindings binds
            ; Err.showPass dflags ("Core Linted result of " ++ pass_name)
            ; displayLintResults dflags pass warns errs binds  } }
  where
    pp_rules = vcat [ blankLine
                    , ptext (sLit "------ Local rules for imported ids --------")
                    , pprRules rules ]

displayLintResults :: DynFlags -> CoreToDo
                   -> Bag Err.Message -> Bag Err.Message -> [CoreBind]
                   -> IO ()
displayLintResults dflags pass warns errs binds
  | not (isEmptyBag errs)
  = do { printDump (vcat [ banner "errors", Err.pprMessageBag errs
			 , ptext (sLit "*** Offending Program ***")
			 , pprCoreBindings binds
			 , ptext (sLit "*** End of Offense ***") ])
       ; Err.ghcExit dflags 1 }

  | not (isEmptyBag warns)
  , not (case pass of { CoreDesugar -> True; _ -> False })
    	-- Suppress warnings after desugaring pass because some
	-- are legitimate. Notably, the desugarer generates instance
	-- methods with INLINE pragmas that form a mutually recursive
	-- group.  Only afer a round of simplification are they unravelled.
  , not opt_NoDebugOutput
  , showLintWarnings pass
  = printDump (banner "warnings" $$ Err.pprMessageBag warns)

  | otherwise = return ()
  where
    banner string = ptext (sLit "*** Core Lint")      <+> text string 
                    <+> ptext (sLit ": in result of") <+> ppr pass
                    <+> ptext (sLit "***")

showLintWarnings :: CoreToDo -> Bool
-- Disable Lint warnings on the first simplifier pass, because
-- there may be some INLINE knots still tied, which is tiresomely noisy
showLintWarnings (CoreDoSimplify _ (SimplMode { sm_phase = InitialPhase })) = False
showLintWarnings _ = True
\end{code}


%************************************************************************
%*									*
              The CoreToDo type and related types
	  Abstraction of core-to-core passes to run.
%*									*
%************************************************************************

\begin{code}
data CoreToDo           -- These are diff core-to-core passes,
                        -- which may be invoked in any order,
                        -- as many times as you like.

  = CoreDoSimplify      -- The core-to-core simplifier.
        Int                    -- Max iterations
        SimplifierMode

  | CoreDoFloatInwards
  | CoreDoFloatOutwards FloatOutSwitches
  | CoreLiberateCase
  | CoreDoPrintCore
  | CoreDoStaticArgs
  | CoreDoStrictness
  | CoreDoWorkerWrapper
  | CoreDoSpecialising
  | CoreDoSpecConstr
  | CoreDoGlomBinds
  | CoreCSE
  | CoreDoRuleCheck CompilerPhase String   -- Check for non-application of rules
                                           -- matching this string
  | CoreDoVectorisation
  | CoreDoNothing                -- Useful when building up
  | CoreDoPasses [CoreToDo]      -- lists of these things

  | CoreDesugar	 -- Not strictly a core-to-core pass, but produces
                 -- Core output, and hence useful to pass to endPass

  | CoreTidy
  | CorePrep

coreDumpFlag :: CoreToDo -> Maybe DynFlag
coreDumpFlag (CoreDoSimplify {})      = Just Opt_D_dump_simpl_phases
coreDumpFlag CoreDoFloatInwards       = Just Opt_D_verbose_core2core
coreDumpFlag (CoreDoFloatOutwards {}) = Just Opt_D_verbose_core2core
coreDumpFlag CoreLiberateCase         = Just Opt_D_verbose_core2core
coreDumpFlag CoreDoStaticArgs 	      = Just Opt_D_verbose_core2core
coreDumpFlag CoreDoStrictness 	      = Just Opt_D_dump_stranal
coreDumpFlag CoreDoWorkerWrapper      = Just Opt_D_dump_worker_wrapper
coreDumpFlag CoreDoSpecialising       = Just Opt_D_dump_spec
coreDumpFlag CoreDoSpecConstr         = Just Opt_D_dump_spec
coreDumpFlag CoreCSE                  = Just Opt_D_dump_cse 
coreDumpFlag CoreDoVectorisation      = Just Opt_D_dump_vect
coreDumpFlag CoreDesugar              = Just Opt_D_dump_ds 
coreDumpFlag CoreTidy                 = Just Opt_D_dump_simpl
coreDumpFlag CorePrep                 = Just Opt_D_dump_prep

coreDumpFlag CoreDoPrintCore         = Nothing
coreDumpFlag (CoreDoRuleCheck {})    = Nothing
coreDumpFlag CoreDoNothing           = Nothing
coreDumpFlag CoreDoGlomBinds         = Nothing
coreDumpFlag (CoreDoPasses {})       = Nothing

instance Outputable CoreToDo where
  ppr (CoreDoSimplify n md)  = ptext (sLit "Simplifier")
                               <+> ppr md
                                 <+> ptext (sLit "max-iterations=") <> int n
  ppr CoreDoFloatInwards       = ptext (sLit "Float inwards")
  ppr (CoreDoFloatOutwards f)  = ptext (sLit "Float out") <> parens (ppr f)
  ppr CoreLiberateCase         = ptext (sLit "Liberate case")
  ppr CoreDoStaticArgs 	       = ptext (sLit "Static argument")
  ppr CoreDoStrictness 	       = ptext (sLit "Demand analysis")
  ppr CoreDoWorkerWrapper      = ptext (sLit "Worker Wrapper binds")
  ppr CoreDoSpecialising       = ptext (sLit "Specialise")
  ppr CoreDoSpecConstr         = ptext (sLit "SpecConstr")
  ppr CoreCSE                  = ptext (sLit "Common sub-expression")
  ppr CoreDoVectorisation      = ptext (sLit "Vectorisation")
  ppr CoreDesugar              = ptext (sLit "Desugar")
  ppr CoreTidy                 = ptext (sLit "Tidy Core")
  ppr CorePrep 		       = ptext (sLit "CorePrep")
  ppr CoreDoPrintCore          = ptext (sLit "Print core")
  ppr (CoreDoRuleCheck {})     = ptext (sLit "Rule check")
  ppr CoreDoGlomBinds          = ptext (sLit "Glom binds")
  ppr CoreDoNothing            = ptext (sLit "CoreDoNothing")
  ppr (CoreDoPasses {})        = ptext (sLit "CoreDoPasses")
\end{code}

\begin{code}
data SimplifierMode             -- See comments in SimplMonad
  = SimplMode
        { sm_names      :: [String] -- Name(s) of the phase
        , sm_phase      :: CompilerPhase
        , sm_rules      :: Bool     -- Whether RULES are enabled
        , sm_inline     :: Bool     -- Whether inlining is enabled
        , sm_case_case  :: Bool     -- Whether case-of-case is enabled
        , sm_eta_expand :: Bool     -- Whether eta-expansion is enabled
        }

instance Outputable SimplifierMode where
    ppr (SimplMode { sm_phase = p, sm_names = ss
                   , sm_rules = r, sm_inline = i
                   , sm_eta_expand = eta, sm_case_case = cc })
       = ptext (sLit "SimplMode") <+> braces (
         sep [ ptext (sLit "Phase =") <+> ppr p <+>
               brackets (text (concat $ intersperse "," ss)) <> comma
             , pp_flag i   (sLit "inline") <> comma
             , pp_flag r   (sLit "rules") <> comma
             , pp_flag eta (sLit "eta-expand") <> comma
             , pp_flag cc  (sLit "case-of-case") ])
	 where
           pp_flag f s = ppUnless f (ptext (sLit "no")) <+> ptext s
\end{code}


\begin{code}
data FloatOutSwitches = FloatOutSwitches {
  floatOutLambdas   :: Maybe Int,  -- ^ Just n <=> float lambdas to top level, if
                                   -- doing so will abstract over n or fewer 
                                   -- value variables
				   -- Nothing <=> float all lambdas to top level,
                                   --             regardless of how many free variables
                                   -- Just 0 is the vanilla case: float a lambda
                                   --    iff it has no free vars

  floatOutConstants :: Bool,       -- ^ True <=> float constants to top level,
                                   --            even if they do not escape a lambda
  floatOutPartialApplications :: Bool -- ^ True <=> float out partial applications
                                            --            based on arity information.
  }
instance Outputable FloatOutSwitches where
    ppr = pprFloatOutSwitches

pprFloatOutSwitches :: FloatOutSwitches -> SDoc
pprFloatOutSwitches sw 
  = ptext (sLit "FOS") <+> (braces $
     sep $ punctuate comma $ 
     [ ptext (sLit "Lam =")    <+> ppr (floatOutLambdas sw)
     , ptext (sLit "Consts =") <+> ppr (floatOutConstants sw)
     , ptext (sLit "PAPs =")   <+> ppr (floatOutPartialApplications sw) ])
\end{code}


%************************************************************************
%*									*
           Generating the main optimisation pipeline
%*									*
%************************************************************************

\begin{code}
getCoreToDo :: DynFlags -> [CoreToDo]
getCoreToDo dflags
  = core_todo
  where
    opt_level     = optLevel           dflags
    phases        = simplPhases        dflags
    max_iter      = maxSimplIterations dflags
    rule_check    = ruleCheck          dflags
    strictness    = dopt Opt_Strictness   		  dflags
    full_laziness = dopt Opt_FullLaziness 		  dflags
    do_specialise = dopt Opt_Specialise   		  dflags
    do_float_in   = dopt Opt_FloatIn      		  dflags          
    cse           = dopt Opt_CSE                          dflags
    spec_constr   = dopt Opt_SpecConstr                   dflags
    liberate_case = dopt Opt_LiberateCase                 dflags
    static_args   = dopt Opt_StaticArgumentTransformation dflags
    rules_on      = dopt Opt_EnableRewriteRules           dflags
    eta_expand_on = dopt Opt_DoLambdaEtaExpansion         dflags

    maybe_rule_check phase = runMaybe rule_check (CoreDoRuleCheck phase)

    maybe_strictness_before phase
      = runWhen (phase `elem` strictnessBefore dflags) CoreDoStrictness

    base_mode = SimplMode { sm_phase      = panic "base_mode"
                          , sm_names      = []
                          , sm_rules      = rules_on
                          , sm_eta_expand = eta_expand_on
                          , sm_inline     = True
                          , sm_case_case  = True }

    simpl_phase phase names iter
      = CoreDoPasses
      $   [ maybe_strictness_before phase
          , CoreDoSimplify iter
                (base_mode { sm_phase = Phase phase
                           , sm_names = names })

          , maybe_rule_check (Phase phase) ]

          -- Vectorisation can introduce a fair few common sub expressions involving 
          --  DPH primitives. For example, see the Reverse test from dph-examples.
          --  We need to eliminate these common sub expressions before their definitions
          --  are inlined in phase 2. The CSE introduces lots of  v1 = v2 bindings, 
          --  so we also run simpl_gently to inline them.
      ++  (if dopt Opt_Vectorise dflags && phase == 3
	    then [CoreCSE, simpl_gently]
	    else [])

    vectorisation
      = runWhen (dopt Opt_Vectorise dflags) $
          CoreDoPasses [ simpl_gently, CoreDoVectorisation ]

                -- By default, we have 2 phases before phase 0.

                -- Want to run with inline phase 2 after the specialiser to give
                -- maximum chance for fusion to work before we inline build/augment
                -- in phase 1.  This made a difference in 'ansi' where an
                -- overloaded function wasn't inlined till too late.

                -- Need phase 1 so that build/augment get
                -- inlined.  I found that spectral/hartel/genfft lost some useful
                -- strictness in the function sumcode' if augment is not inlined
                -- before strictness analysis runs
    simpl_phases = CoreDoPasses [ simpl_phase phase ["main"] max_iter
                                | phase <- [phases, phases-1 .. 1] ]


        -- initial simplify: mk specialiser happy: minimum effort please
    simpl_gently = CoreDoSimplify max_iter
                       (base_mode { sm_phase = InitialPhase
                                  , sm_names = ["Gentle"]
                                  , sm_rules = rules_on   -- Note [RULEs enabled in SimplGently]
                                  , sm_inline = False
                                  , sm_case_case = False })
                          -- Don't do case-of-case transformations.
                          -- This makes full laziness work better

    core_todo =
     if opt_level == 0 then
       [vectorisation,
        simpl_phase 0 ["final"] max_iter]
     else {- opt_level >= 1 -} [

    -- We want to do the static argument transform before full laziness as it
    -- may expose extra opportunities to float things outwards. However, to fix
    -- up the output of the transformation we need at do at least one simplify
    -- after this before anything else
        runWhen static_args (CoreDoPasses [ simpl_gently, CoreDoStaticArgs ]),

        -- We run vectorisation here for now, but we might also try to run
        -- it later
        vectorisation,

        -- initial simplify: mk specialiser happy: minimum effort please
        simpl_gently,

        -- Specialisation is best done before full laziness
        -- so that overloaded functions have all their dictionary lambdas manifest
        runWhen do_specialise CoreDoSpecialising,

        runWhen full_laziness $
           CoreDoFloatOutwards FloatOutSwitches {
                                 floatOutLambdas   = Just 0,
                                 floatOutConstants = True,
                                 floatOutPartialApplications = False },
      		-- Was: gentleFloatOutSwitches	
                --
		-- I have no idea why, but not floating constants to
		-- top level is very bad in some cases.
                --
		-- Notably: p_ident in spectral/rewrite
		-- 	    Changing from "gentle" to "constantsOnly"
		-- 	    improved rewrite's allocation by 19%, and
		-- 	    made 0.0% difference to any other nofib
		-- 	    benchmark
                --
                -- Not doing floatOutPartialApplications yet, we'll do
                -- that later on when we've had a chance to get more
                -- accurate arity information.  In fact it makes no
                -- difference at all to performance if we do it here,
                -- but maybe we save some unnecessary to-and-fro in
                -- the simplifier.

        runWhen do_float_in CoreDoFloatInwards,

        simpl_phases,

                -- Phase 0: allow all Ids to be inlined now
                -- This gets foldr inlined before strictness analysis

                -- At least 3 iterations because otherwise we land up with
                -- huge dead expressions because of an infelicity in the
                -- simpifier.
                --      let k = BIG in foldr k z xs
                -- ==>  let k = BIG in letrec go = \xs -> ...(k x).... in go xs
                -- ==>  let k = BIG in letrec go = \xs -> ...(BIG x).... in go xs
                -- Don't stop now!
        simpl_phase 0 ["main"] (max max_iter 3),

        runWhen strictness (CoreDoPasses [
                CoreDoStrictness,
                CoreDoWorkerWrapper,
                CoreDoGlomBinds,
                simpl_phase 0 ["post-worker-wrapper"] max_iter
                ]),

        runWhen full_laziness $
           CoreDoFloatOutwards FloatOutSwitches {
                                 floatOutLambdas   = floatLamArgs dflags,
                                 floatOutConstants = True,
                                 floatOutPartialApplications = True },
                -- nofib/spectral/hartel/wang doubles in speed if you
                -- do full laziness late in the day.  It only happens
                -- after fusion and other stuff, so the early pass doesn't
                -- catch it.  For the record, the redex is
                --        f_el22 (f_el21 r_midblock)


        runWhen cse CoreCSE,
                -- We want CSE to follow the final full-laziness pass, because it may
                -- succeed in commoning up things floated out by full laziness.
                -- CSE used to rely on the no-shadowing invariant, but it doesn't any more

        runWhen do_float_in CoreDoFloatInwards,

        maybe_rule_check (Phase 0),

                -- Case-liberation for -O2.  This should be after
                -- strictness analysis and the simplification which follows it.
        runWhen liberate_case (CoreDoPasses [
            CoreLiberateCase,
            simpl_phase 0 ["post-liberate-case"] max_iter
            ]),         -- Run the simplifier after LiberateCase to vastly
                        -- reduce the possiblility of shadowing
                        -- Reason: see Note [Shadowing] in SpecConstr.lhs

        runWhen spec_constr CoreDoSpecConstr,

        maybe_rule_check (Phase 0),

        -- Final clean-up simplification:
        simpl_phase 0 ["final"] max_iter
     ]

-- The core-to-core pass ordering is derived from the DynFlags:
runWhen :: Bool -> CoreToDo -> CoreToDo
runWhen True  do_this = do_this
runWhen False _       = CoreDoNothing

runMaybe :: Maybe a -> (a -> CoreToDo) -> CoreToDo
runMaybe (Just x) f = f x
runMaybe Nothing  _ = CoreDoNothing

dumpSimplPhase :: DynFlags -> SimplifierMode -> Bool
dumpSimplPhase dflags mode
   | Just spec_string <- shouldDumpSimplPhase dflags
   = match_spec spec_string
   | otherwise
   = dopt Opt_D_verbose_core2core dflags

  where
    match_spec :: String -> Bool
    match_spec spec_string 
      = or $ map (and . map match . split ':') 
           $ split ',' spec_string

    match :: String -> Bool
    match "" = True
    match s  = case reads s of
                [(n,"")] -> phase_num  n
                _        -> phase_name s

    phase_num :: Int -> Bool
    phase_num n = case sm_phase mode of
                    Phase k -> n == k
                    _       -> False

    phase_name :: String -> Bool
    phase_name s = s `elem` sm_names mode
\end{code}


Note [RULEs enabled in SimplGently]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RULES are enabled when doing "gentle" simplification.  Two reasons:

  * We really want the class-op cancellation to happen:
        op (df d1 d2) --> $cop3 d1 d2
    because this breaks the mutual recursion between 'op' and 'df'

  * I wanted the RULE
        lift String ===> ...
    to work in Template Haskell when simplifying
    splices, so we get simpler code for literal strings

But watch out: list fusion can prevent floating.  So use phase control
to switch off those rules until after floating.


%************************************************************************
%*									*
             Counting and logging
%*									*
%************************************************************************

\begin{code}
verboseSimplStats :: Bool
verboseSimplStats = opt_PprStyle_Debug		-- For now, anyway

zeroSimplCount	   :: DynFlags -> SimplCount
isZeroSimplCount   :: SimplCount -> Bool
pprSimplCount	   :: SimplCount -> SDoc
doSimplTick, doFreeSimplTick :: Tick -> SimplCount -> SimplCount
plusSimplCount     :: SimplCount -> SimplCount -> SimplCount
\end{code}

\begin{code}
data SimplCount 
   = VerySimplCount !Int	-- Used when don't want detailed stats

   | SimplCount	{
	ticks   :: !Int,	-- Total ticks
	details :: !TickCounts,	-- How many of each type

	n_log	:: !Int,	-- N
	log1	:: [Tick],	-- Last N events; <= opt_HistorySize, 
		   		--   most recent first
	log2	:: [Tick]	-- Last opt_HistorySize events before that
		   		-- Having log1, log2 lets us accumulate the
				-- recent history reasonably efficiently
     }

type TickCounts = Map Tick Int

simplCountN :: SimplCount -> Int
simplCountN (VerySimplCount n)         = n
simplCountN (SimplCount { ticks = n }) = n

zeroSimplCount dflags
		-- This is where we decide whether to do
		-- the VerySimpl version or the full-stats version
  | dopt Opt_D_dump_simpl_stats dflags
  = SimplCount {ticks = 0, details = Map.empty,
                n_log = 0, log1 = [], log2 = []}
  | otherwise
  = VerySimplCount 0

isZeroSimplCount (VerySimplCount n)    	    = n==0
isZeroSimplCount (SimplCount { ticks = n }) = n==0

doFreeSimplTick tick sc@SimplCount { details = dts } 
  = sc { details = dts `addTick` tick }
doFreeSimplTick _ sc = sc 

doSimplTick tick sc@SimplCount { ticks = tks, details = dts, n_log = nl, log1 = l1 }
  | nl >= opt_HistorySize = sc1 { n_log = 1, log1 = [tick], log2 = l1 }
  | otherwise		  = sc1 { n_log = nl+1, log1 = tick : l1 }
  where
    sc1 = sc { ticks = tks+1, details = dts `addTick` tick }

doSimplTick _ (VerySimplCount n) = VerySimplCount (n+1)


-- Don't use Map.unionWith because that's lazy, and we want to 
-- be pretty strict here!
addTick :: TickCounts -> Tick -> TickCounts
addTick fm tick = case Map.lookup tick fm of
			Nothing -> Map.insert tick 1 fm
			Just n  -> n1 `seq` Map.insert tick n1 fm
				where
				   n1 = n+1


plusSimplCount sc1@(SimplCount { ticks = tks1, details = dts1 })
	       sc2@(SimplCount { ticks = tks2, details = dts2 })
  = log_base { ticks = tks1 + tks2, details = Map.unionWith (+) dts1 dts2 }
  where
	-- A hackish way of getting recent log info
    log_base | null (log1 sc2) = sc1	-- Nothing at all in sc2
	     | null (log2 sc2) = sc2 { log2 = log1 sc1 }
	     | otherwise       = sc2

plusSimplCount (VerySimplCount n) (VerySimplCount m) = VerySimplCount (n+m)
plusSimplCount _                  _                  = panic "plusSimplCount"
       -- We use one or the other consistently

pprSimplCount (VerySimplCount n) = ptext (sLit "Total ticks:") <+> int n
pprSimplCount (SimplCount { ticks = tks, details = dts, log1 = l1, log2 = l2 })
  = vcat [ptext (sLit "Total ticks:    ") <+> int tks,
	  blankLine,
	  pprTickCounts (Map.toList dts),
	  if verboseSimplStats then
		vcat [blankLine,
		      ptext (sLit "Log (most recent first)"),
		      nest 4 (vcat (map ppr l1) $$ vcat (map ppr l2))]
	  else empty
    ]

pprTickCounts :: [(Tick,Int)] -> SDoc
pprTickCounts [] = empty
pprTickCounts ((tick1,n1):ticks)
  = vcat [int tot_n <+> text (tickString tick1),
	  pprTCDetails real_these,
	  pprTickCounts others
    ]
  where
    tick1_tag		= tickToTag tick1
    (these, others)	= span same_tick ticks
    real_these		= (tick1,n1):these
    same_tick (tick2,_) = tickToTag tick2 == tick1_tag
    tot_n		= sum [n | (_,n) <- real_these]

pprTCDetails :: [(Tick, Int)] -> SDoc
pprTCDetails ticks
  = nest 4 (vcat [int n <+> pprTickCts tick | (tick,n) <- ticks])
\end{code}


\begin{code}
data Tick
  = PreInlineUnconditionally	Id
  | PostInlineUnconditionally	Id

  | UnfoldingDone    		Id
  | RuleFired			FastString	-- Rule name

  | LetFloatFromLet
  | EtaExpansion		Id	-- LHS binder
  | EtaReduction		Id	-- Binder on outer lambda
  | BetaReduction		Id	-- Lambda binder


  | CaseOfCase			Id	-- Bndr on *inner* case
  | KnownBranch			Id	-- Case binder
  | CaseMerge			Id	-- Binder on outer case
  | AltMerge			Id	-- Case binder
  | CaseElim			Id	-- Case binder
  | CaseIdentity		Id	-- Case binder
  | FillInCaseDefault		Id	-- Case binder

  | BottomFound		
  | SimplifierDone		-- Ticked at each iteration of the simplifier

instance Outputable Tick where
  ppr tick = text (tickString tick) <+> pprTickCts tick

instance Eq Tick where
  a == b = case a `cmpTick` b of
           EQ -> True
           _ -> False

instance Ord Tick where
  compare = cmpTick

tickToTag :: Tick -> Int
tickToTag (PreInlineUnconditionally _)	= 0
tickToTag (PostInlineUnconditionally _)	= 1
tickToTag (UnfoldingDone _)		= 2
tickToTag (RuleFired _)			= 3
tickToTag LetFloatFromLet		= 4
tickToTag (EtaExpansion _)		= 5
tickToTag (EtaReduction _)		= 6
tickToTag (BetaReduction _)		= 7
tickToTag (CaseOfCase _)		= 8
tickToTag (KnownBranch _)		= 9
tickToTag (CaseMerge _)			= 10
tickToTag (CaseElim _)			= 11
tickToTag (CaseIdentity _)		= 12
tickToTag (FillInCaseDefault _)		= 13
tickToTag BottomFound			= 14
tickToTag SimplifierDone		= 16
tickToTag (AltMerge _)			= 17

tickString :: Tick -> String
tickString (PreInlineUnconditionally _)	= "PreInlineUnconditionally"
tickString (PostInlineUnconditionally _)= "PostInlineUnconditionally"
tickString (UnfoldingDone _)		= "UnfoldingDone"
tickString (RuleFired _)		= "RuleFired"
tickString LetFloatFromLet		= "LetFloatFromLet"
tickString (EtaExpansion _)		= "EtaExpansion"
tickString (EtaReduction _)		= "EtaReduction"
tickString (BetaReduction _)		= "BetaReduction"
tickString (CaseOfCase _)		= "CaseOfCase"
tickString (KnownBranch _)		= "KnownBranch"
tickString (CaseMerge _)		= "CaseMerge"
tickString (AltMerge _)			= "AltMerge"
tickString (CaseElim _)			= "CaseElim"
tickString (CaseIdentity _)		= "CaseIdentity"
tickString (FillInCaseDefault _)	= "FillInCaseDefault"
tickString BottomFound			= "BottomFound"
tickString SimplifierDone		= "SimplifierDone"

pprTickCts :: Tick -> SDoc
pprTickCts (PreInlineUnconditionally v)	= ppr v
pprTickCts (PostInlineUnconditionally v)= ppr v
pprTickCts (UnfoldingDone v)		= ppr v
pprTickCts (RuleFired v)		= ppr v
pprTickCts LetFloatFromLet		= empty
pprTickCts (EtaExpansion v)		= ppr v
pprTickCts (EtaReduction v)		= ppr v
pprTickCts (BetaReduction v)		= ppr v
pprTickCts (CaseOfCase v)		= ppr v
pprTickCts (KnownBranch v)		= ppr v
pprTickCts (CaseMerge v)		= ppr v
pprTickCts (AltMerge v)			= ppr v
pprTickCts (CaseElim v)			= ppr v
pprTickCts (CaseIdentity v)		= ppr v
pprTickCts (FillInCaseDefault v)	= ppr v
pprTickCts _    			= empty

cmpTick :: Tick -> Tick -> Ordering
cmpTick a b = case (tickToTag a `compare` tickToTag b) of
		GT -> GT
		EQ -> cmpEqTick a b
		LT -> LT

cmpEqTick :: Tick -> Tick -> Ordering
cmpEqTick (PreInlineUnconditionally a)	(PreInlineUnconditionally b)	= a `compare` b
cmpEqTick (PostInlineUnconditionally a)	(PostInlineUnconditionally b)	= a `compare` b
cmpEqTick (UnfoldingDone a)		(UnfoldingDone b)		= a `compare` b
cmpEqTick (RuleFired a)			(RuleFired b)			= a `compare` b
cmpEqTick (EtaExpansion a)		(EtaExpansion b)		= a `compare` b
cmpEqTick (EtaReduction a)		(EtaReduction b)		= a `compare` b
cmpEqTick (BetaReduction a)		(BetaReduction b)		= a `compare` b
cmpEqTick (CaseOfCase a)		(CaseOfCase b)			= a `compare` b
cmpEqTick (KnownBranch a)		(KnownBranch b)			= a `compare` b
cmpEqTick (CaseMerge a)			(CaseMerge b)			= a `compare` b
cmpEqTick (AltMerge a)			(AltMerge b)			= a `compare` b
cmpEqTick (CaseElim a)			(CaseElim b)			= a `compare` b
cmpEqTick (CaseIdentity a)		(CaseIdentity b)		= a `compare` b
cmpEqTick (FillInCaseDefault a)		(FillInCaseDefault b)		= a `compare` b
cmpEqTick _     			_     				= EQ
\end{code}


%************************************************************************
%*									*
             Monad and carried data structure definitions
%*									*
%************************************************************************

\begin{code}
newtype CoreState = CoreState {
        cs_uniq_supply :: UniqSupply
}

data CoreReader = CoreReader {
        cr_hsc_env :: HscEnv,
        cr_rule_base :: RuleBase,
        cr_module :: Module
}

data CoreWriter = CoreWriter {
        cw_simpl_count :: SimplCount
}

emptyWriter :: DynFlags -> CoreWriter
emptyWriter dflags = CoreWriter {
        cw_simpl_count = zeroSimplCount dflags
    }

plusWriter :: CoreWriter -> CoreWriter -> CoreWriter
plusWriter w1 w2 = CoreWriter {
        cw_simpl_count = (cw_simpl_count w1) `plusSimplCount` (cw_simpl_count w2)
    }

type CoreIOEnv = IOEnv CoreReader

-- | The monad used by Core-to-Core passes to access common state, register simplification
-- statistics and so on
newtype CoreM a = CoreM { unCoreM :: CoreState -> CoreIOEnv (a, CoreState, CoreWriter) }

instance Functor CoreM where
    fmap f ma = do
        a <- ma
        return (f a)

instance Monad CoreM where
    return x = CoreM (\s -> nop s x)
    mx >>= f = CoreM $ \s -> do
            (x, s', w1) <- unCoreM mx s
            (y, s'', w2) <- unCoreM (f x) s'
            return (y, s'', w1 `plusWriter` w2)

instance Applicative CoreM where
    pure = return
    (<*>) = ap

-- For use if the user has imported Control.Monad.Error from MTL
-- Requires UndecidableInstances
instance MonadPlus IO => MonadPlus CoreM where
    mzero = CoreM (const mzero)
    m `mplus` n = CoreM (\rs -> unCoreM m rs `mplus` unCoreM n rs)

instance MonadUnique CoreM where
    getUniqueSupplyM = do
        us <- getS cs_uniq_supply
        let (us1, us2) = splitUniqSupply us
        modifyS (\s -> s { cs_uniq_supply = us2 })
        return us1

runCoreM :: HscEnv
         -> RuleBase
         -> UniqSupply
         -> Module
         -> CoreM a
         -> IO (a, SimplCount)
runCoreM hsc_env rule_base us mod m =
        liftM extract $ runIOEnv reader $ unCoreM m state
  where
    reader = CoreReader {
            cr_hsc_env = hsc_env,
            cr_rule_base = rule_base,
            cr_module = mod
        }
    state = CoreState { 
            cs_uniq_supply = us
        }

    extract :: (a, CoreState, CoreWriter) -> (a, SimplCount)
    extract (value, _, writer) = (value, cw_simpl_count writer)

\end{code}


%************************************************************************
%*									*
             Core combinators, not exported
%*									*
%************************************************************************

\begin{code}

nop :: CoreState -> a -> CoreIOEnv (a, CoreState, CoreWriter)
nop s x = do
    r <- getEnv
    return (x, s, emptyWriter $ (hsc_dflags . cr_hsc_env) r)

read :: (CoreReader -> a) -> CoreM a
read f = CoreM (\s -> getEnv >>= (\r -> nop s (f r)))

getS :: (CoreState -> a) -> CoreM a
getS f = CoreM (\s -> nop s (f s))

modifyS :: (CoreState -> CoreState) -> CoreM ()
modifyS f = CoreM (\s -> nop (f s) ())

write :: CoreWriter -> CoreM ()
write w = CoreM (\s -> return ((), s, w))

\end{code}

\subsection{Lifting IO into the monad}

\begin{code}

-- | Lift an 'IOEnv' operation into 'CoreM'
liftIOEnv :: CoreIOEnv a -> CoreM a
liftIOEnv mx = CoreM (\s -> mx >>= (\x -> nop s x))

instance MonadIO CoreM where
    liftIO = liftIOEnv . IOEnv.liftIO

-- | Lift an 'IO' operation into 'CoreM' while consuming its 'SimplCount'
liftIOWithCount :: IO (SimplCount, a) -> CoreM a
liftIOWithCount what = liftIO what >>= (\(count, x) -> addSimplCount count >> return x)

\end{code}


%************************************************************************
%*									*
             Reader, writer and state accessors
%*									*
%************************************************************************

\begin{code}

getHscEnv :: CoreM HscEnv
getHscEnv = read cr_hsc_env

getRuleBase :: CoreM RuleBase
getRuleBase = read cr_rule_base

getModule :: CoreM Module
getModule = read cr_module

addSimplCount :: SimplCount -> CoreM ()
addSimplCount count = write (CoreWriter { cw_simpl_count = count })

-- Convenience accessors for useful fields of HscEnv

getDynFlags :: CoreM DynFlags
getDynFlags = fmap hsc_dflags getHscEnv

-- | The original name cache is the current mapping from 'Module' and
-- 'OccName' to a compiler-wide unique 'Name'
getOrigNameCache :: CoreM OrigNameCache
getOrigNameCache = do
    nameCacheRef <- fmap hsc_NC getHscEnv
    liftIO $ fmap nsNames $ readIORef nameCacheRef

\end{code}


%************************************************************************
%*									*
             Dealing with annotations
%*									*
%************************************************************************

\begin{code}
-- | Get all annotations of a given type. This happens lazily, that is
-- no deserialization will take place until the [a] is actually demanded and
-- the [a] can also be empty (the UniqFM is not filtered).
--
-- This should be done once at the start of a Core-to-Core pass that uses
-- annotations.
--
-- See Note [Annotations]
getAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM [a])
getAnnotations deserialize guts = do
     hsc_env <- getHscEnv
     ann_env <- liftIO $ prepareAnnotations hsc_env (Just guts)
     return (deserializeAnns deserialize ann_env)

-- | Get at most one annotation of a given type per Unique.
getFirstAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM a)
getFirstAnnotations deserialize guts
  = liftM (mapUFM head . filterUFM (not . null))
  $ getAnnotations deserialize guts
  
\end{code}

Note [Annotations]
~~~~~~~~~~~~~~~~~~
A Core-to-Core pass that wants to make use of annotations calls
getAnnotations or getFirstAnnotations at the beginning to obtain a UniqFM with
annotations of a specific type. This produces all annotations from interface
files read so far. However, annotations from interface files read during the
pass will not be visible until getAnnotations is called again. This is similar
to how rules work and probably isn't too bad.

The current implementation could be optimised a bit: when looking up
annotations for a thing from the HomePackageTable, we could search directly in
the module where the thing is defined rather than building one UniqFM which
contains all annotations we know of. This would work because annotations can
only be given to things defined in the same module. However, since we would
only want to deserialise every annotation once, we would have to build a cache
for every module in the HTP. In the end, it's probably not worth it as long as
we aren't using annotations heavily.

%************************************************************************
%*									*
                Direct screen output
%*									*
%************************************************************************

\begin{code}

msg :: (DynFlags -> SDoc -> IO ()) -> SDoc -> CoreM ()
msg how doc = do
        dflags <- getDynFlags
        liftIO $ how dflags doc

-- | Output a String message to the screen
putMsgS :: String -> CoreM ()
putMsgS = putMsg . text

-- | Output a message to the screen
putMsg :: SDoc -> CoreM ()
putMsg = msg Err.putMsg

-- | Output a string error to the screen
errorMsgS :: String -> CoreM ()
errorMsgS = errorMsg . text

-- | Output an error to the screen
errorMsg :: SDoc -> CoreM ()
errorMsg = msg Err.errorMsg

-- | Output a fatal string error to the screen. Note this does not by itself cause the compiler to die
fatalErrorMsgS :: String -> CoreM ()
fatalErrorMsgS = fatalErrorMsg . text

-- | Output a fatal error to the screen. Note this does not by itself cause the compiler to die
fatalErrorMsg :: SDoc -> CoreM ()
fatalErrorMsg = msg Err.fatalErrorMsg

-- | Output a string debugging message at verbosity level of @-v@ or higher
debugTraceMsgS :: String -> CoreM ()
debugTraceMsgS = debugTraceMsg . text

-- | Outputs a debugging message at verbosity level of @-v@ or higher
debugTraceMsg :: SDoc -> CoreM ()
debugTraceMsg = msg (flip Err.debugTraceMsg 3)

-- | Show some labelled 'SDoc' if a particular flag is set or at a verbosity level of @-v -ddump-most@ or higher
dumpIfSet_dyn :: DynFlag -> String -> SDoc -> CoreM ()
dumpIfSet_dyn flag str = msg (\dflags -> Err.dumpIfSet_dyn dflags flag str)
\end{code}

\begin{code}

initTcForLookup :: HscEnv -> TcM a -> IO a
initTcForLookup hsc_env = liftM (expectJust "initTcInteractive" . snd) . initTc hsc_env HsSrcFile False iNTERACTIVE

\end{code}


%************************************************************************
%*									*
               Finding TyThings
%*									*
%************************************************************************

\begin{code}
instance MonadThings CoreM where
    lookupThing name = do
        hsc_env <- getHscEnv
        liftIO $ initTcForLookup hsc_env (tcLookupGlobal name)
\end{code}

%************************************************************************
%*									*
               Template Haskell interoperability
%*									*
%************************************************************************

\begin{code}
#ifdef GHCI
-- | Attempt to convert a Template Haskell name to one that GHC can
-- understand. Original TH names such as those you get when you use
-- the @'foo@ syntax will be translated to their equivalent GHC name
-- exactly. Qualified or unqualifed TH names will be dynamically bound
-- to names in the module being compiled, if possible. Exact TH names
-- will be bound to the name they represent, exactly.
thNameToGhcName :: TH.Name -> CoreM (Maybe Name)
thNameToGhcName th_name = do
    hsc_env <- getHscEnv
    liftIO $ initTcForLookup hsc_env (lookupThName_maybe th_name)
#endif
\end{code}