summaryrefslogtreecommitdiff
path: root/compiler/parser/ParserCore.y
blob: 6d302fb03acf1d1cb54f5ff14cbadece99d8a91f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
{
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module ParserCore ( parseCore ) where

import IfaceSyn
import ForeignCall
import RdrHsSyn
import HsSyn
import RdrName
import OccName
import Type ( Kind,
              liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
              argTypeKindTyCon, ubxTupleKindTyCon, mkArrowKind, mkTyConApp
            )
import Name( Name, nameOccName, nameModule, mkExternalName )
import Module
import ParserCoreUtils
import LexCore
import Literal
import SrcLoc
import TysPrim( wordPrimTyCon, intPrimTyCon, charPrimTyCon, 
		floatPrimTyCon, doublePrimTyCon, addrPrimTyCon )
import TyCon ( TyCon, tyConName )
import FastString
import Outputable
import Char
import Unique

#include "../HsVersions.h"

}

%name parseCore
%tokentype { Token }

%token
 '%module'	{ TKmodule }
 '%data'	{ TKdata }
 '%newtype'	{ TKnewtype }
 '%forall'	{ TKforall }
 '%rec'		{ TKrec }
 '%let'		{ TKlet }
 '%in'		{ TKin }
 '%case'	{ TKcase }
 '%of'		{ TKof }
 '%cast'	{ TKcast }
 '%note'	{ TKnote }
 '%external'	{ TKexternal }
 '%local'	{ TKlocal }
 '%_'		{ TKwild }
 '('		{ TKoparen }
 ')'		{ TKcparen }
 '{'		{ TKobrace }
 '}'		{ TKcbrace }
 '#' 		{ TKhash}
 '='		{ TKeq }
 ':'		{ TKcolon }
 '::'		{ TKcoloncolon }
 ':=:'		{ TKcoloneqcolon }
 '*'		{ TKstar }
 '->'		{ TKrarrow }
 '\\'		{ TKlambda}
 '@'		{ TKat }
 '.'		{ TKdot }
 '?'		{ TKquestion}
 ';'            { TKsemicolon }
 NAME		{ TKname $$ }
 CNAME 		{ TKcname $$ }
 INTEGER	{ TKinteger $$ }
 RATIONAL	{ TKrational $$ }
 STRING		{ TKstring $$ }
 CHAR		{ TKchar $$ }

%monad { P } { thenP } { returnP }
%lexer { lexer } { TKEOF }

%%

module	:: { HsExtCore RdrName }
	-- : '%module' modid tdefs vdefgs	{ HsExtCore $2 $3 $4 }
	: '%module' modid tdefs vdefgs	{ HsExtCore $2 [] [] }


-------------------------------------------------------------
--     Names: the trickiest bit in here

-- A name of the form A.B.C could be:
--   module A.B.C
--   dcon C in module A.B
--   tcon C in module A.B
modid	:: { Module }
	: NAME ':' mparts		{ undefined }

q_dc_name :: { Name }
	  : NAME ':' mparts		{ undefined }

q_tc_name :: { Name }
 	  : NAME ':' mparts		{ undefined }

q_var_occ :: { Name }
          : NAME ':' vparts             { undefined }

mparts	:: { [String] }
	: CNAME				{ [$1] }
	| CNAME '.' mparts		{ $1:$3 }

vparts  :: { [String] }
        : var_occ                       { [$1] }
        | CNAME '.' vparts              { $1:$3 }

-------------------------------------------------------------
--     Type and newtype declarations are in HsSyn syntax

tdefs	:: { [TyClDecl RdrName] }
	: {- empty -}	{[]}
	| tdef tdefs	{$1:$2}

tdef	:: { TyClDecl RdrName }
	: '%data' q_tc_name tv_bndrs '=' '{' cons '}' ';'
                { mkTyData DataType ( noLoc []
				    , noLoc (ifaceExtRdrName $2)
				    , map toHsTvBndr $3
				    , Nothing
				    ) Nothing $6 Nothing }
	| '%newtype' q_tc_name tv_bndrs trep ';'
		{ let tc_rdr = ifaceExtRdrName $2 in
                  mkTyData NewType ( noLoc []
				   , noLoc tc_rdr
				   , map toHsTvBndr $3
				   , Nothing
				   ) Nothing ($4 (rdrNameOcc tc_rdr)) Nothing }

-- For a newtype we have to invent a fake data constructor name
-- It doesn't matter what it is, because it won't be used
trep    :: { OccName -> [LConDecl RdrName] }
        : {- empty -}   { (\ tc_occ -> []) }
        | '=' ty        { (\ tc_occ -> let { dc_name  = mkRdrUnqual (setOccNameSpace dataName tc_occ) ;
			                     con_info = PrefixCon [toHsType $2] }
			                in [noLoc $ ConDecl (noLoc dc_name) Explicit []
					   (noLoc []) con_info ResTyH98 Nothing]) }

cons	:: { [LConDecl RdrName] }
	: {- empty -}	{ [] } -- 20060420 Empty data types allowed. jds
        | con           { [$1] }
	| con ';' cons	{ $1:$3 }

con	:: { LConDecl RdrName }
	: d_pat_occ attv_bndrs hs_atys 
		{ noLoc $ ConDecl (noLoc (mkRdrUnqual $1)) Explicit $2 (noLoc []) (PrefixCon $3) ResTyH98 Nothing }
        | d_pat_occ '::' ty
                -- XXX - audreyt - $3 needs to be split into argument and return types!
                -- also not sure whether the [] below (quantified vars) appears.
                -- also the "PrefixCon []" is wrong.
                -- also we want to munge $3 somehow.
                -- extractWhatEver to unpack ty into the parts to ConDecl
                -- XXX - define it somewhere in RdrHsSyn
		{ noLoc $ ConDecl (noLoc (mkRdrUnqual $1)) Explicit [] (noLoc []) (PrefixCon []) (undefined $3) Nothing }

attv_bndrs :: { [LHsTyVarBndr RdrName] }
	: {- empty -} 	         { [] }
	| '@' tv_bndr attv_bndrs {  toHsTvBndr $2 : $3 }

hs_atys :: { [LHsType RdrName] }
         : atys               { map toHsType $1 }


---------------------------------------
--                 Types
---------------------------------------

atys	:: { [IfaceType] }
	: {- empty -}   { [] }
	| aty atys      { $1:$2 }

aty	:: { IfaceType }
	: fs_var_occ { IfaceTyVar $1 }
	| q_tc_name  { IfaceTyConApp (IfaceTc $1) [] }
	| '(' ty ')' { $2 }

bty	:: { IfaceType }
	: fs_var_occ atys { foldl IfaceAppTy (IfaceTyVar $1) $2 }
        | q_var_occ atys  { undefined }
        | q_tc_name atys  { IfaceTyConApp (IfaceTc $1) $2 }
        | '(' ty ')' { $2 }

ty	:: { IfaceType }
	: bty	                     { $1 }
	| bty '->' ty                { IfaceFunTy $1 $3 }
	| '%forall' tv_bndrs '.' ty  { foldr IfaceForAllTy $4 $2 }

----------------------------------------------
--        Bindings are in Iface syntax

vdefgs	:: { [IfaceBinding] }
	: {- empty -}	        { [] }
	| let_bind ';' vdefgs	{ $1 : $3 }

let_bind :: { IfaceBinding }
	: '%rec' '{' vdefs1 '}' { IfaceRec $3 } -- Can be empty. Do we care?
	|  vdef                 { let (b,r) = $1
				  in IfaceNonRec b r }

vdefs1	:: { [(IfaceLetBndr, IfaceExpr)] }
	: vdef  	        { [$1] }
	| vdef ';' vdefs1       { $1:$3 }

vdef	:: { (IfaceLetBndr, IfaceExpr) }
	: fs_var_occ '::' ty '=' exp { (IfLetBndr $1 $3 NoInfo, $5) }
        | '%local' vdef              { $2 }

  -- NB: qd_occ includes data constructors, because
  --     we allow data-constructor wrappers at top level
  -- But we discard the module name, because it must be the
  -- same as the module being compiled, and Iface syntax only
  -- has OccNames in binding positions. Ah, but it has Names now!

---------------------------------------
--  Binders
bndr	:: { IfaceBndr }
        : '@' tv_bndr 	{ IfaceTvBndr $2 }
	| id_bndr	{ IfaceIdBndr $1 }

bndrs 	:: { [IfaceBndr] }
	: bndr		{ [$1] }
	| bndr bndrs	{ $1:$2 }

id_bndr	:: { IfaceIdBndr }
	: '(' fs_var_occ '::' ty ')'	{ ($2,$4) }

tv_bndr	:: { IfaceTvBndr }
	:  fs_var_occ                    { ($1, ifaceLiftedTypeKind) }
	|  '(' fs_var_occ '::' akind ')' { ($2, $4) }

tv_bndrs 	:: { [IfaceTvBndr] }
	: {- empty -}	{ [] }
	| tv_bndr tv_bndrs	{ $1:$2 }

akind	:: { IfaceKind }
	: '*' 		   { ifaceLiftedTypeKind }	
	| '#'		   { ifaceUnliftedTypeKind }
	| '?'		   { ifaceOpenTypeKind }
        | '(' kind ')'	   { $2 }

kind 	:: { IfaceKind }
	: akind 	   { $1 }
	| akind '->' kind  { ifaceArrow $1 $3 }
        | ty ':=:' ty      { ifaceEq $1 $3 }

-----------------------------------------
--             Expressions

aexp    :: { IfaceExpr }
	: fs_var_occ    { IfaceLcl $1 }
        | q_var_occ    	{ IfaceExt $1 }
	| q_dc_name	{ IfaceExt $1 }
	| lit		{ IfaceLit $1 }
	| '(' exp ')' 	{ $2 }

fexp	:: { IfaceExpr }
	: fexp aexp	{ IfaceApp $1 $2 }
	| fexp '@' aty	{ IfaceApp $1 (IfaceType $3) }
	| aexp		{ $1 }

exp	:: { IfaceExpr }
	: fexp		              { $1 }
	| '\\' bndrs '->' exp 	      { foldr IfaceLam $4 $2 }
	| '%let' let_bind '%in' exp   { IfaceLet $2 $4 }
-- gaw 2004
	| '%case' '(' ty ')' aexp '%of' id_bndr
	  '{' alts1 '}'		      { IfaceCase $5 (fst $7) $3 $9 }
        | '%cast' aexp aty { IfaceCast $2 $3 }
	| '%note' STRING exp 	   
	    { case $2 of
	       --"SCC"      -> IfaceNote (IfaceSCC "scc") $3
	       "InlineMe"   -> IfaceNote IfaceInlineMe $3
            }
        | '%external' STRING aty   { IfaceFCall (ForeignCall.CCall 
                                                    (CCallSpec (StaticTarget (mkFastString $2)) 
                                                               CCallConv (PlaySafe False))) 
                                                 $3 }

alts1	:: { [IfaceAlt] }
	: alt		{ [$1] }
	| alt ';' alts1	{ $1:$3 }

alt	:: { IfaceAlt }
	: q_dc_name bndrs '->' exp 
		{ (IfaceDataAlt $1, map ifaceBndrName $2, $4) } 
                       -- The external syntax currently includes the types of the
		       -- the args, but they aren't needed internally
                       -- Nor is the module qualifier
	| q_dc_name '->' exp 
		{ (IfaceDataAlt $1, [], $3) } 
	| lit '->' exp
		{ (IfaceLitAlt $1, [], $3) }
	| '%_' '->' exp
		{ (IfaceDefault, [], $3) }

lit	:: { Literal }
	: '(' INTEGER '::' aty ')'	{ convIntLit $2 $4 }
	| '(' RATIONAL '::' aty ')'	{ convRatLit $2 $4 }
	| '(' CHAR '::' aty ')'		{ MachChar $2 }
	| '(' STRING '::' aty ')'	{ MachStr (mkFastString $2) }

fs_var_occ	:: { FastString }
		: NAME	{ mkFastString $1 }

var_occ	:: { String }
	: NAME	{ $1 }


-- Data constructor in a pattern or data type declaration; use the dataName, 
-- because that's what we expect in Core case patterns
d_pat_occ :: { OccName }
        : CNAME      { mkOccName dataName $1 }

{

ifaceKind kc = IfaceTyConApp kc []

ifaceBndrName (IfaceIdBndr (n,_)) = n
ifaceBndrName (IfaceTvBndr (n,_)) = n

convIntLit :: Integer -> IfaceType -> Literal
convIntLit i (IfaceTyConApp tc [])
  | tc `eqTc` intPrimTyCon  = MachInt  i  
  | tc `eqTc` wordPrimTyCon = MachWord i
  | tc `eqTc` charPrimTyCon = MachChar (chr (fromInteger i))
  | tc `eqTc` addrPrimTyCon && i == 0 = MachNullAddr
convIntLit i aty
  = pprPanic "Unknown integer literal type" (ppr aty)

convRatLit :: Rational -> IfaceType -> Literal
convRatLit r (IfaceTyConApp tc [])
  | tc `eqTc` floatPrimTyCon  = MachFloat  r
  | tc `eqTc` doublePrimTyCon = MachDouble r
convRatLit i aty
  = pprPanic "Unknown rational literal type" (ppr aty)

eqTc :: IfaceTyCon -> TyCon -> Bool   -- Ugh!
eqTc (IfaceTc name) tycon = name == tyConName tycon

-- Tiresomely, we have to generate both HsTypes (in type/class decls) 
-- and IfaceTypes (in Core expressions).  So we parse them as IfaceTypes,
-- and convert to HsTypes here.  But the IfaceTypes we can see here
-- are very limited (see the productions for 'ty', so the translation
-- isn't hard
toHsType :: IfaceType -> LHsType RdrName
toHsType (IfaceTyVar v)        		 = noLoc $ HsTyVar (mkRdrUnqual (mkTyVarOccFS v))
toHsType (IfaceAppTy t1 t2)    		 = noLoc $ HsAppTy (toHsType t1) (toHsType t2)
toHsType (IfaceFunTy t1 t2)    		 = noLoc $ HsFunTy (toHsType t1) (toHsType t2)
toHsType (IfaceTyConApp (IfaceTc tc) ts) = foldl mkHsAppTy (noLoc $ HsTyVar (ifaceExtRdrName tc)) (map toHsType ts) 
toHsType (IfaceForAllTy tv t)            = add_forall (toHsTvBndr tv) (toHsType t)

-- We also need to convert IfaceKinds to Kinds (now that they are different).
-- Only a limited form of kind will be encountered... hopefully
toKind :: IfaceKind -> Kind
toKind (IfaceFunTy ifK1 ifK2)  = mkArrowKind (toKind ifK1) (toKind ifK2)
toKind (IfaceTyConApp ifKc []) = mkTyConApp (toKindTc ifKc) []
toKind other                   = pprPanic "toKind" (ppr other)

toKindTc :: IfaceTyCon -> TyCon
toKindTc IfaceLiftedTypeKindTc   = liftedTypeKindTyCon
toKindTc IfaceOpenTypeKindTc     = openTypeKindTyCon
toKindTc IfaceUnliftedTypeKindTc = unliftedTypeKindTyCon
toKindTc IfaceUbxTupleKindTc     = ubxTupleKindTyCon
toKindTc IfaceArgTypeKindTc      = argTypeKindTyCon
toKindTc other                   = pprPanic "toKindTc" (ppr other)

ifaceTcType ifTc = IfaceTyConApp ifTc []

ifaceLiftedTypeKind   = ifaceTcType IfaceLiftedTypeKindTc
ifaceOpenTypeKind     = ifaceTcType IfaceOpenTypeKindTc
ifaceUnliftedTypeKind = ifaceTcType IfaceUnliftedTypeKindTc

ifaceArrow ifT1 ifT2 = IfaceFunTy ifT1 ifT2

ifaceEq ifT1 ifT2 = IfacePredTy (IfaceEqPred ifT1 ifT2)

toHsTvBndr :: IfaceTvBndr -> LHsTyVarBndr RdrName
toHsTvBndr (tv,k) = noLoc $ KindedTyVar (mkRdrUnqual (mkTyVarOccFS tv)) (toKind k)

ifaceExtRdrName :: Name -> RdrName
ifaceExtRdrName name = mkOrig (nameModule name) (nameOccName name)
ifaceExtRdrName other = pprPanic "ParserCore.ifaceExtRdrName" (ppr other)

add_forall tv (L _ (HsForAllTy exp tvs cxt t))
  = noLoc $ HsForAllTy exp (tv:tvs) cxt t
add_forall tv t
  = noLoc $ HsForAllTy Explicit [tv] (noLoc []) t
  
happyError :: P a 
happyError s l = failP (show l ++ ": Parse error\n") (take 100 s) l
}