1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
module TrieMap(
CoreMap, emptyCoreMap, extendCoreMap, lookupCoreMap, foldCoreMap,
TypeMap, emptyTypeMap, extendTypeMap, lookupTypeMap, foldTypeMap,
CoercionMap,
MaybeMap,
ListMap,
TrieMap(..), insertTM, deleteTM,
lookupTypeMapTyCon
) where
import CoreSyn
import Coercion
import Literal
import Name
import Type
import TypeRep
import TyCon(TyCon)
import Var
import UniqFM
import Unique( Unique )
import FastString(FastString)
import CoAxiom(CoAxiomRule(coaxrName))
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import VarEnv
import NameEnv
import Outputable
import Control.Monad( (>=>) )
{-
This module implements TrieMaps, which are finite mappings
whose key is a structured value like a CoreExpr or Type.
The code is very regular and boilerplate-like, but there is
some neat handling of *binders*. In effect they are deBruijn
numbered on the fly.
************************************************************************
* *
The TrieMap class
* *
************************************************************************
-}
type XT a = Maybe a -> Maybe a -- How to alter a non-existent elt (Nothing)
-- or an existing elt (Just)
class TrieMap m where
type Key m :: *
emptyTM :: m a
lookupTM :: forall b. Key m -> m b -> Maybe b
alterTM :: forall b. Key m -> XT b -> m b -> m b
mapTM :: (a->b) -> m a -> m b
foldTM :: (a -> b -> b) -> m a -> b -> b
-- The unusual argument order here makes
-- it easy to compose calls to foldTM;
-- see for example fdE below
insertTM :: TrieMap m => Key m -> a -> m a -> m a
insertTM k v m = alterTM k (\_ -> Just v) m
deleteTM :: TrieMap m => Key m -> m a -> m a
deleteTM k m = alterTM k (\_ -> Nothing) m
----------------------
-- Recall that
-- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c
(>.>) :: (a -> b) -> (b -> c) -> a -> c
-- Reverse function composition (do f first, then g)
infixr 1 >.>
(f >.> g) x = g (f x)
infixr 1 |>, |>>
(|>) :: a -> (a->b) -> b -- Reverse application
x |> f = f x
----------------------
(|>>) :: TrieMap m2
=> (XT (m2 a) -> m1 (m2 a) -> m1 (m2 a))
-> (m2 a -> m2 a)
-> m1 (m2 a) -> m1 (m2 a)
(|>>) f g = f (Just . g . deMaybe)
deMaybe :: TrieMap m => Maybe (m a) -> m a
deMaybe Nothing = emptyTM
deMaybe (Just m) = m
{-
************************************************************************
* *
IntMaps
* *
************************************************************************
-}
instance TrieMap IntMap.IntMap where
type Key IntMap.IntMap = Int
emptyTM = IntMap.empty
lookupTM k m = IntMap.lookup k m
alterTM = xtInt
foldTM k m z = IntMap.fold k z m
mapTM f m = IntMap.map f m
xtInt :: Int -> XT a -> IntMap.IntMap a -> IntMap.IntMap a
xtInt k f m = IntMap.alter f k m
instance Ord k => TrieMap (Map.Map k) where
type Key (Map.Map k) = k
emptyTM = Map.empty
lookupTM = Map.lookup
alterTM k f m = Map.alter f k m
foldTM k m z = Map.fold k z m
mapTM f m = Map.map f m
instance TrieMap UniqFM where
type Key UniqFM = Unique
emptyTM = emptyUFM
lookupTM k m = lookupUFM m k
alterTM k f m = alterUFM f m k
foldTM k m z = foldUFM k z m
mapTM f m = mapUFM f m
{-
************************************************************************
* *
Lists
* *
************************************************************************
If m is a map from k -> val
then (MaybeMap m) is a map from (Maybe k) -> val
-}
data MaybeMap m a = MM { mm_nothing :: Maybe a, mm_just :: m a }
instance TrieMap m => TrieMap (MaybeMap m) where
type Key (MaybeMap m) = Maybe (Key m)
emptyTM = MM { mm_nothing = Nothing, mm_just = emptyTM }
lookupTM = lkMaybe lookupTM
alterTM = xtMaybe alterTM
foldTM = fdMaybe
mapTM = mapMb
mapMb :: TrieMap m => (a->b) -> MaybeMap m a -> MaybeMap m b
mapMb f (MM { mm_nothing = mn, mm_just = mj })
= MM { mm_nothing = fmap f mn, mm_just = mapTM f mj }
lkMaybe :: (forall b. k -> m b -> Maybe b)
-> Maybe k -> MaybeMap m a -> Maybe a
lkMaybe _ Nothing = mm_nothing
lkMaybe lk (Just x) = mm_just >.> lk x
xtMaybe :: (forall b. k -> XT b -> m b -> m b)
-> Maybe k -> XT a -> MaybeMap m a -> MaybeMap m a
xtMaybe _ Nothing f m = m { mm_nothing = f (mm_nothing m) }
xtMaybe tr (Just x) f m = m { mm_just = mm_just m |> tr x f }
fdMaybe :: TrieMap m => (a -> b -> b) -> MaybeMap m a -> b -> b
fdMaybe k m = foldMaybe k (mm_nothing m)
. foldTM k (mm_just m)
--------------------
data ListMap m a
= LM { lm_nil :: Maybe a
, lm_cons :: m (ListMap m a) }
instance TrieMap m => TrieMap (ListMap m) where
type Key (ListMap m) = [Key m]
emptyTM = LM { lm_nil = Nothing, lm_cons = emptyTM }
lookupTM = lkList lookupTM
alterTM = xtList alterTM
foldTM = fdList
mapTM = mapList
mapList :: TrieMap m => (a->b) -> ListMap m a -> ListMap m b
mapList f (LM { lm_nil = mnil, lm_cons = mcons })
= LM { lm_nil = fmap f mnil, lm_cons = mapTM (mapTM f) mcons }
lkList :: TrieMap m => (forall b. k -> m b -> Maybe b)
-> [k] -> ListMap m a -> Maybe a
lkList _ [] = lm_nil
lkList lk (x:xs) = lm_cons >.> lk x >=> lkList lk xs
xtList :: TrieMap m => (forall b. k -> XT b -> m b -> m b)
-> [k] -> XT a -> ListMap m a -> ListMap m a
xtList _ [] f m = m { lm_nil = f (lm_nil m) }
xtList tr (x:xs) f m = m { lm_cons = lm_cons m |> tr x |>> xtList tr xs f }
fdList :: forall m a b. TrieMap m
=> (a -> b -> b) -> ListMap m a -> b -> b
fdList k m = foldMaybe k (lm_nil m)
. foldTM (fdList k) (lm_cons m)
foldMaybe :: (a -> b -> b) -> Maybe a -> b -> b
foldMaybe _ Nothing b = b
foldMaybe k (Just a) b = k a b
{-
************************************************************************
* *
Basic maps
* *
************************************************************************
-}
lkNamed :: NamedThing n => n -> NameEnv a -> Maybe a
lkNamed n env = lookupNameEnv env (getName n)
xtNamed :: NamedThing n => n -> XT a -> NameEnv a -> NameEnv a
xtNamed tc f m = alterNameEnv f m (getName tc)
------------------------
type LiteralMap a = Map.Map Literal a
emptyLiteralMap :: LiteralMap a
emptyLiteralMap = emptyTM
lkLit :: Literal -> LiteralMap a -> Maybe a
lkLit = lookupTM
xtLit :: Literal -> XT a -> LiteralMap a -> LiteralMap a
xtLit = alterTM
{-
************************************************************************
* *
GenMap
* *
************************************************************************
Note [Compressed TrieMap]
~~~~~~~~~~~~~~~~~~~~~~~~~
The GenMap constructor augments TrieMaps with leaf compression. This helps
solve the performance problem detailed in #9960: suppose we have a handful
H of entries in a TrieMap, each with a very large key, size K. If you fold over
such a TrieMap you'd expect time O(H). That would certainly be true of an
association list! But with TrieMap we actually have to navigate down a long
singleton structure to get to the elements, so it takes time O(K*H). This
can really hurt on many type-level computation benchmarks:
see for example T9872d.
The point of a TrieMap is that you need to navigate to the point where only one
key remains, and then things should be fast. So the point of a SingletonMap
is that, once we are down to a single (key,value) pair, we stop and
just use SingletonMap.
There are some complications. Because the TrieMaps we're primarily interested
in, e.g. CoreMap, CoercionMap and TypeMap, are deBruijn numbered on the fly,
we need to store the renumbering 'CmEnv' so that we can do a module de-Bruijn
equality check against the key (straight up equality doesn't work!) It's
currently hard-coded in because we're not really using TrieMap for any other
structures at this point.
'EmptyMap' provides an even more basic (but essential) optimization: if there is
nothing in the map, don't bother building out the (possibly infinite) recursive
TrieMap structure!
-}
data GenMap m a
= EmptyMap
| SingletonMap (CmEnv, Key m) a
| MultiMap (m a)
class CmEnvEq a where
equalDeBruijn :: (CmEnv, a) -> (CmEnv, a) -> Bool
lkG :: CmEnvEq (Key m)
=> (CmEnv -> Key m -> m a -> Maybe a)
-> CmEnv -> Key m -> GenMap m a -> Maybe a
lkG _ _ _ EmptyMap = Nothing
lkG _ env k (SingletonMap env_k' v')
| equalDeBruijn (env, k) env_k' = Just v'
| otherwise = Nothing
lkG lk env k (MultiMap m) = lk env k m
xtG :: (CmEnvEq (Key m), TrieMap m)
=> (CmEnv -> Key m -> XT a -> m a -> m a)
-> CmEnv -> Key m -> XT a -> GenMap m a -> GenMap m a
xtG _ env k f EmptyMap
= case f Nothing of
Just v -> SingletonMap (env, k) v
Nothing -> EmptyMap
xtG xt env k f m@(SingletonMap env_k'@(env', k') v')
| equalDeBruijn env_k' (env, k)
-- The new key matches the (single) key already in the tree. Hence,
-- apply @f@ to @Just v'@ and build a singleton or empty map depending
-- on the 'Just'/'Nothing' response respectively.
= case f (Just v') of
Just v'' -> SingletonMap env_k' v''
Nothing -> EmptyMap
| otherwise
-- We've hit a singleton tree for a different key than the one we are
-- searching for. Hence apply @f@ to @Nothing@. If result is @Nothing@ then
-- we can just return the old map. If not, we need a map with *two*
-- entries. The easiest way to do that is to insert two items into an empty
-- map of type @m a@.
= case f Nothing of
Nothing -> m
Just v -> emptyTM |> xt env' k' (const (Just v'))
>.> xt env k (const (Just v))
>.> MultiMap
xtG xt env k f (MultiMap m) = MultiMap (xt env k f m)
-- Note: These two could have been done with a TrieMap m => constraint as well.
mapG :: ((a -> b) -> m a -> m b)
-> (a -> b) -> GenMap m a -> GenMap m b
mapG _ _ EmptyMap = EmptyMap
mapG _ f (SingletonMap k v) = SingletonMap k (f v)
mapG mp f (MultiMap m) = MultiMap (mp f m)
fdG :: ((a -> b -> b) -> m a -> b -> b)
-> (a -> b -> b) -> GenMap m a -> b -> b
fdG _ _ EmptyMap = \z -> z
fdG _ k (SingletonMap _ v) = \z -> k v z
fdG fd k (MultiMap m) = fd k m
{-
************************************************************************
* *
CoreMap
* *
************************************************************************
Note [Binders]
~~~~~~~~~~~~~~
* In general we check binders as late as possible because types are
less likely to differ than expression structure. That's why
cm_lam :: CoreMap (TypeMap a)
rather than
cm_lam :: TypeMap (CoreMap a)
* We don't need to look at the type of some binders, notalby
- the case binder in (Case _ b _ _)
- the binders in an alternative
because they are totally fixed by the context
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For a key (Case e b ty (alt:alts)) we don't need to look the return type
'ty', because every alternative has that type.
* For a key (Case e b ty []) we MUST look at the return type 'ty', because
otherwise (Case (error () "urk") _ Int []) would compare equal to
(Case (error () "urk") _ Bool [])
which is utterly wrong (Trac #6097)
We could compare the return type regardless, but the wildly common case
is that it's unnecesary, so we have two fields (cm_case and cm_ecase)
for the two possibilities. Only cm_ecase looks at the type.
See also Note [Empty case alternatives] in CoreSyn.
-}
data CoreMap a
= EmptyCM
| CM { cm_var :: VarMap a
, cm_lit :: LiteralMap a
, cm_co :: CoercionMap a
, cm_type :: TypeMap a
, cm_cast :: CoreMap (CoercionMap a)
, cm_tick :: CoreMap (TickishMap a)
, cm_app :: CoreMap (CoreMap a)
, cm_lam :: CoreMap (TypeMap a) -- Note [Binders]
, cm_letn :: CoreMap (CoreMap (BndrMap a))
, cm_letr :: ListMap CoreMap (CoreMap (ListMap BndrMap a))
, cm_case :: CoreMap (ListMap AltMap a)
, cm_ecase :: CoreMap (TypeMap a) -- Note [Empty case alternatives]
}
wrapEmptyCM :: CoreMap a
wrapEmptyCM = CM { cm_var = emptyTM, cm_lit = emptyLiteralMap
, cm_co = emptyTM, cm_type = emptyTM
, cm_cast = emptyTM, cm_app = emptyTM
, cm_lam = emptyTM, cm_letn = emptyTM
, cm_letr = emptyTM, cm_case = emptyTM
, cm_ecase = emptyTM, cm_tick = emptyTM }
instance TrieMap CoreMap where
type Key CoreMap = CoreExpr
emptyTM = EmptyCM
lookupTM = lkE emptyCME
alterTM = xtE emptyCME
foldTM = fdE
mapTM = mapE
--------------------------
mapE :: (a->b) -> CoreMap a -> CoreMap b
mapE _ EmptyCM = EmptyCM
mapE f (CM { cm_var = cvar, cm_lit = clit
, cm_co = cco, cm_type = ctype
, cm_cast = ccast , cm_app = capp
, cm_lam = clam, cm_letn = cletn
, cm_letr = cletr, cm_case = ccase
, cm_ecase = cecase, cm_tick = ctick })
= CM { cm_var = mapTM f cvar, cm_lit = mapTM f clit
, cm_co = mapTM f cco, cm_type = mapTM f ctype
, cm_cast = mapTM (mapTM f) ccast, cm_app = mapTM (mapTM f) capp
, cm_lam = mapTM (mapTM f) clam, cm_letn = mapTM (mapTM (mapTM f)) cletn
, cm_letr = mapTM (mapTM (mapTM f)) cletr, cm_case = mapTM (mapTM f) ccase
, cm_ecase = mapTM (mapTM f) cecase, cm_tick = mapTM (mapTM f) ctick }
--------------------------
lookupCoreMap :: CoreMap a -> CoreExpr -> Maybe a
lookupCoreMap cm e = lkE emptyCME e cm
extendCoreMap :: CoreMap a -> CoreExpr -> a -> CoreMap a
extendCoreMap m e v = xtE emptyCME e (\_ -> Just v) m
foldCoreMap :: (a -> b -> b) -> b -> CoreMap a -> b
foldCoreMap k z m = fdE k m z
emptyCoreMap :: CoreMap a
emptyCoreMap = EmptyCM
instance Outputable a => Outputable (CoreMap a) where
ppr m = text "CoreMap elts" <+> ppr (foldCoreMap (:) [] m)
-------------------------
fdE :: (a -> b -> b) -> CoreMap a -> b -> b
fdE _ EmptyCM = \z -> z
fdE k m
= foldTM k (cm_var m)
. foldTM k (cm_lit m)
. foldTM k (cm_co m)
. foldTM k (cm_type m)
. foldTM (foldTM k) (cm_cast m)
. foldTM (foldTM k) (cm_tick m)
. foldTM (foldTM k) (cm_app m)
. foldTM (foldTM k) (cm_lam m)
. foldTM (foldTM (foldTM k)) (cm_letn m)
. foldTM (foldTM (foldTM k)) (cm_letr m)
. foldTM (foldTM k) (cm_case m)
. foldTM (foldTM k) (cm_ecase m)
lkE :: CmEnv -> CoreExpr -> CoreMap a -> Maybe a
-- lkE: lookup in trie for expressions
lkE env expr cm
| EmptyCM <- cm = Nothing
| otherwise = go expr cm
where
go (Var v) = cm_var >.> lkVar env v
go (Lit l) = cm_lit >.> lkLit l
go (Type t) = cm_type >.> lkT env t
go (Coercion c) = cm_co >.> lkC env c
go (Cast e c) = cm_cast >.> lkE env e >=> lkC env c
go (Tick tickish e) = cm_tick >.> lkE env e >=> lkTickish tickish
go (App e1 e2) = cm_app >.> lkE env e2 >=> lkE env e1
go (Lam v e) = cm_lam >.> lkE (extendCME env v) e >=> lkBndr env v
go (Let (NonRec b r) e) = cm_letn >.> lkE env r
>=> lkE (extendCME env b) e >=> lkBndr env b
go (Let (Rec prs) e) = let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr
>.> lkList (lkE env1) rhss >=> lkE env1 e
>=> lkList (lkBndr env1) bndrs
go (Case e b ty as) -- See Note [Empty case alternatives]
| null as = cm_ecase >.> lkE env e >=> lkT env ty
| otherwise = cm_case >.> lkE env e
>=> lkList (lkA (extendCME env b)) as
xtE :: CmEnv -> CoreExpr -> XT a -> CoreMap a -> CoreMap a
xtE env e f EmptyCM = xtE env e f wrapEmptyCM
xtE env (Var v) f m = m { cm_var = cm_var m |> xtVar env v f }
xtE env (Type t) f m = m { cm_type = cm_type m |> xtT env t f }
xtE env (Coercion c) f m = m { cm_co = cm_co m |> xtC env c f }
xtE _ (Lit l) f m = m { cm_lit = cm_lit m |> xtLit l f }
xtE env (Cast e c) f m = m { cm_cast = cm_cast m |> xtE env e |>>
xtC env c f }
xtE env (Tick t e) f m = m { cm_tick = cm_tick m |> xtE env e |>> xtTickish t f }
xtE env (App e1 e2) f m = m { cm_app = cm_app m |> xtE env e2 |>> xtE env e1 f }
xtE env (Lam v e) f m = m { cm_lam = cm_lam m |> xtE (extendCME env v) e
|>> xtBndr env v f }
xtE env (Let (NonRec b r) e) f m = m { cm_letn = cm_letn m
|> xtE (extendCME env b) e
|>> xtE env r |>> xtBndr env b f }
xtE env (Let (Rec prs) e) f m = m { cm_letr = let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr m
|> xtList (xtE env1) rhss
|>> xtE env1 e
|>> xtList (xtBndr env1) bndrs f }
xtE env (Case e b ty as) f m
| null as = m { cm_ecase = cm_ecase m |> xtE env e |>> xtT env ty f }
| otherwise = m { cm_case = cm_case m |> xtE env e
|>> let env1 = extendCME env b
in xtList (xtA env1) as f }
type TickishMap a = Map.Map (Tickish Id) a
lkTickish :: Tickish Id -> TickishMap a -> Maybe a
lkTickish = lookupTM
xtTickish :: Tickish Id -> XT a -> TickishMap a -> TickishMap a
xtTickish = alterTM
------------------------
data AltMap a -- A single alternative
= AM { am_deflt :: CoreMap a
, am_data :: NameEnv (CoreMap a)
, am_lit :: LiteralMap (CoreMap a) }
instance TrieMap AltMap where
type Key AltMap = CoreAlt
emptyTM = AM { am_deflt = emptyTM
, am_data = emptyNameEnv
, am_lit = emptyLiteralMap }
lookupTM = lkA emptyCME
alterTM = xtA emptyCME
foldTM = fdA
mapTM = mapA
mapA :: (a->b) -> AltMap a -> AltMap b
mapA f (AM { am_deflt = adeflt, am_data = adata, am_lit = alit })
= AM { am_deflt = mapTM f adeflt
, am_data = mapNameEnv (mapTM f) adata
, am_lit = mapTM (mapTM f) alit }
lkA :: CmEnv -> CoreAlt -> AltMap a -> Maybe a
lkA env (DEFAULT, _, rhs) = am_deflt >.> lkE env rhs
lkA env (LitAlt lit, _, rhs) = am_lit >.> lkLit lit >=> lkE env rhs
lkA env (DataAlt dc, bs, rhs) = am_data >.> lkNamed dc >=> lkE (extendCMEs env bs) rhs
xtA :: CmEnv -> CoreAlt -> XT a -> AltMap a -> AltMap a
xtA env (DEFAULT, _, rhs) f m = m { am_deflt = am_deflt m |> xtE env rhs f }
xtA env (LitAlt l, _, rhs) f m = m { am_lit = am_lit m |> xtLit l |>> xtE env rhs f }
xtA env (DataAlt d, bs, rhs) f m = m { am_data = am_data m |> xtNamed d
|>> xtE (extendCMEs env bs) rhs f }
fdA :: (a -> b -> b) -> AltMap a -> b -> b
fdA k m = foldTM k (am_deflt m)
. foldTM (foldTM k) (am_data m)
. foldTM (foldTM k) (am_lit m)
{-
************************************************************************
* *
Coercions
* *
************************************************************************
-}
data CoercionMap a
= EmptyKM
| KM { km_refl :: RoleMap (TypeMap a)
, km_tc_app :: RoleMap (NameEnv (ListMap CoercionMap a))
, km_app :: CoercionMap (CoercionMap a)
, km_forall :: CoercionMap (TypeMap a)
, km_var :: VarMap a
, km_axiom :: NameEnv (IntMap.IntMap (ListMap CoercionMap a))
, km_univ :: RoleMap (TypeMap (TypeMap a))
, km_sym :: CoercionMap a
, km_trans :: CoercionMap (CoercionMap a)
, km_nth :: IntMap.IntMap (CoercionMap a)
, km_left :: CoercionMap a
, km_right :: CoercionMap a
, km_inst :: CoercionMap (TypeMap a)
, km_sub :: CoercionMap a
, km_axiom_rule :: Map.Map FastString
(ListMap TypeMap (ListMap CoercionMap a))
}
wrapEmptyKM :: CoercionMap a
wrapEmptyKM = KM { km_refl = emptyTM, km_tc_app = emptyTM
, km_app = emptyTM, km_forall = emptyTM
, km_var = emptyTM, km_axiom = emptyNameEnv
, km_univ = emptyTM, km_sym = emptyTM, km_trans = emptyTM
, km_nth = emptyTM, km_left = emptyTM, km_right = emptyTM
, km_inst = emptyTM, km_sub = emptyTM
, km_axiom_rule = emptyTM }
instance TrieMap CoercionMap where
type Key CoercionMap = Coercion
emptyTM = EmptyKM
lookupTM = lkC emptyCME
alterTM = xtC emptyCME
foldTM = fdC
mapTM = mapC
mapC :: (a->b) -> CoercionMap a -> CoercionMap b
mapC _ EmptyKM = EmptyKM
mapC f (KM { km_refl = krefl, km_tc_app = ktc
, km_app = kapp, km_forall = kforall
, km_var = kvar, km_axiom = kax
, km_univ = kuniv , km_sym = ksym, km_trans = ktrans
, km_nth = knth, km_left = kml, km_right = kmr
, km_inst = kinst, km_sub = ksub
, km_axiom_rule = kaxr })
= KM { km_refl = mapTM (mapTM f) krefl
, km_tc_app = mapTM (mapNameEnv (mapTM f)) ktc
, km_app = mapTM (mapTM f) kapp
, km_forall = mapTM (mapTM f) kforall
, km_var = mapTM f kvar
, km_axiom = mapNameEnv (IntMap.map (mapTM f)) kax
, km_univ = mapTM (mapTM (mapTM f)) kuniv
, km_sym = mapTM f ksym
, km_trans = mapTM (mapTM f) ktrans
, km_nth = IntMap.map (mapTM f) knth
, km_left = mapTM f kml
, km_right = mapTM f kmr
, km_inst = mapTM (mapTM f) kinst
, km_sub = mapTM f ksub
, km_axiom_rule = mapTM (mapTM (mapTM f)) kaxr
}
lkC :: CmEnv -> Coercion -> CoercionMap a -> Maybe a
lkC env co m
| EmptyKM <- m = Nothing
| otherwise = go co m
where
go (Refl r ty) = km_refl >.> lookupTM r >=> lkT env ty
go (TyConAppCo r tc cs) = km_tc_app >.> lookupTM r >=> lkNamed tc >=> lkList (lkC env) cs
go (AxiomInstCo ax ind cs) = km_axiom >.> lkNamed ax >=> lookupTM ind >=> lkList (lkC env) cs
go (AppCo c1 c2) = km_app >.> lkC env c1 >=> lkC env c2
go (TransCo c1 c2) = km_trans >.> lkC env c1 >=> lkC env c2
-- the provenance is not used in the map
go (UnivCo _ r t1 t2) = km_univ >.> lookupTM r >=> lkT env t1 >=> lkT env t2
go (InstCo c t) = km_inst >.> lkC env c >=> lkT env t
go (ForAllCo v c) = km_forall >.> lkC (extendCME env v) c >=> lkBndr env v
go (CoVarCo v) = km_var >.> lkVar env v
go (SymCo c) = km_sym >.> lkC env c
go (NthCo n c) = km_nth >.> lookupTM n >=> lkC env c
go (LRCo CLeft c) = km_left >.> lkC env c
go (LRCo CRight c) = km_right >.> lkC env c
go (SubCo c) = km_sub >.> lkC env c
go (AxiomRuleCo co ts cs) = km_axiom_rule >.>
lookupTM (coaxrName co) >=>
lkList (lkT env) ts >=>
lkList (lkC env) cs
xtC :: CmEnv -> Coercion -> XT a -> CoercionMap a -> CoercionMap a
xtC env co f EmptyKM = xtC env co f wrapEmptyKM
xtC env (Refl r ty) f m = m { km_refl = km_refl m |> xtR r |>> xtT env ty f }
xtC env (TyConAppCo r tc cs) f m = m { km_tc_app = km_tc_app m |> xtR r |>> xtNamed tc |>> xtList (xtC env) cs f }
xtC env (AxiomInstCo ax ind cs) f m = m { km_axiom = km_axiom m |> xtNamed ax |>> xtInt ind |>> xtList (xtC env) cs f }
xtC env (AppCo c1 c2) f m = m { km_app = km_app m |> xtC env c1 |>> xtC env c2 f }
xtC env (TransCo c1 c2) f m = m { km_trans = km_trans m |> xtC env c1 |>> xtC env c2 f }
-- the provenance is not used in the map
xtC env (UnivCo _ r t1 t2) f m = m { km_univ = km_univ m |> xtR r |>> xtT env t1 |>> xtT env t2 f }
xtC env (InstCo c t) f m = m { km_inst = km_inst m |> xtC env c |>> xtT env t f }
xtC env (ForAllCo v c) f m = m { km_forall = km_forall m |> xtC (extendCME env v) c
|>> xtBndr env v f }
xtC env (CoVarCo v) f m = m { km_var = km_var m |> xtVar env v f }
xtC env (SymCo c) f m = m { km_sym = km_sym m |> xtC env c f }
xtC env (NthCo n c) f m = m { km_nth = km_nth m |> xtInt n |>> xtC env c f }
xtC env (LRCo CLeft c) f m = m { km_left = km_left m |> xtC env c f }
xtC env (LRCo CRight c) f m = m { km_right = km_right m |> xtC env c f }
xtC env (SubCo c) f m = m { km_sub = km_sub m |> xtC env c f }
xtC env (AxiomRuleCo co ts cs) f m = m { km_axiom_rule = km_axiom_rule m
|> alterTM (coaxrName co)
|>> xtList (xtT env) ts
|>> xtList (xtC env) cs f}
fdC :: (a -> b -> b) -> CoercionMap a -> b -> b
fdC _ EmptyKM = \z -> z
fdC k m = foldTM (foldTM k) (km_refl m)
. foldTM (foldTM (foldTM k)) (km_tc_app m)
. foldTM (foldTM k) (km_app m)
. foldTM (foldTM k) (km_forall m)
. foldTM k (km_var m)
. foldTM (foldTM (foldTM k)) (km_axiom m)
. foldTM (foldTM (foldTM k)) (km_univ m)
. foldTM k (km_sym m)
. foldTM (foldTM k) (km_trans m)
. foldTM (foldTM k) (km_nth m)
. foldTM k (km_left m)
. foldTM k (km_right m)
. foldTM (foldTM k) (km_inst m)
. foldTM k (km_sub m)
. foldTM (foldTM (foldTM k)) (km_axiom_rule m)
newtype RoleMap a = RM { unRM :: (IntMap.IntMap a) }
instance TrieMap RoleMap where
type Key RoleMap = Role
emptyTM = RM emptyTM
lookupTM = lkR
alterTM = xtR
foldTM = fdR
mapTM = mapR
lkR :: Role -> RoleMap a -> Maybe a
lkR Nominal = lookupTM 1 . unRM
lkR Representational = lookupTM 2 . unRM
lkR Phantom = lookupTM 3 . unRM
xtR :: Role -> XT a -> RoleMap a -> RoleMap a
xtR Nominal f = RM . alterTM 1 f . unRM
xtR Representational f = RM . alterTM 2 f . unRM
xtR Phantom f = RM . alterTM 3 f . unRM
fdR :: (a -> b -> b) -> RoleMap a -> b -> b
fdR f (RM m) = foldTM f m
mapR :: (a -> b) -> RoleMap a -> RoleMap b
mapR f = RM . mapTM f . unRM
{-
************************************************************************
* *
Types
* *
************************************************************************
-}
type TypeMap = GenMap TypeMapX
data TypeMapX a
= TM { tm_var :: VarMap a
, tm_app :: TypeMap (TypeMap a)
, tm_fun :: TypeMap (TypeMap a)
, tm_tc_app :: NameEnv (ListMap TypeMap a)
, tm_forall :: TypeMap (BndrMap a)
, tm_tylit :: TyLitMap a
}
eqTypesModuloDeBruijn :: (CmEnv, [Type]) -> (CmEnv, [Type]) -> Bool
eqTypesModuloDeBruijn (_, []) (_, []) = True
eqTypesModuloDeBruijn (env, ty:tys) (env', ty':tys') =
eqTypeModuloDeBruijn (env, ty) (env', ty') &&
eqTypesModuloDeBruijn (env, tys) (env', tys')
eqTypesModuloDeBruijn _ _ = False
instance CmEnvEq Type where
equalDeBruijn = eqTypeModuloDeBruijn
-- NB: need to coreView!
eqTypeModuloDeBruijn :: (CmEnv, Type) -> (CmEnv, Type) -> Bool
eqTypeModuloDeBruijn env_t@(env, t) env_t'@(env', t')
-- ToDo: I guess we can make this a little more efficient
| Just new_t <- coreView t = eqTypeModuloDeBruijn (env, new_t) env_t'
| Just new_t' <- coreView t' = eqTypeModuloDeBruijn env_t (env', new_t')
eqTypeModuloDeBruijn (env, t) (env', t') =
case (t, t') of
(TyVarTy v, TyVarTy v')
-> case (lookupCME env v, lookupCME env' v') of
(Just bv, Just bv') -> bv == bv'
(Nothing, Nothing) -> v == v'
_ -> False
(AppTy t1 t2, AppTy t1' t2')
-> eqTypeModuloDeBruijn (env, t1) (env', t1') &&
eqTypeModuloDeBruijn (env, t2) (env', t2')
(FunTy t1 t2, FunTy t1' t2')
-> eqTypeModuloDeBruijn (env, t1) (env', t1') &&
eqTypeModuloDeBruijn (env, t2) (env', t2')
(TyConApp tc tys, TyConApp tc' tys')
-> tc == tc' && eqTypesModuloDeBruijn (env, tys) (env', tys')
(LitTy l, LitTy l')
-> l == l'
(ForAllTy tv ty, ForAllTy tv' ty')
-> eqTypeModuloDeBruijn (env, tyVarKind tv) (env', tyVarKind tv') &&
eqTypeModuloDeBruijn (extendCME env tv, ty)
(extendCME env' tv', ty')
_ -> False
instance Outputable a => Outputable (TypeMap a) where
ppr m = text "TypeMap elts" <+> ppr (foldTypeMap (:) [] m)
foldTypeMap :: (a -> b -> b) -> b -> TypeMap a -> b
foldTypeMap k z m = fdT k m z
emptyTypeMap :: TypeMap a
emptyTypeMap = EmptyMap
lookupTypeMap :: TypeMap a -> Type -> Maybe a
lookupTypeMap cm t = lkT emptyCME t cm
-- Returns the type map entries that have keys starting with the given tycon.
-- This only considers saturated applications (i.e. TyConApp ones).
lookupTypeMapTyCon :: TypeMap a -> TyCon -> [a]
lookupTypeMapTyCon EmptyMap _ = []
lookupTypeMapTyCon (SingletonMap (_, TyConApp tc' _) v) tc
| tc' == tc = [v]
| otherwise = []
lookupTypeMapTyCon SingletonMap{} _ = []
lookupTypeMapTyCon (MultiMap TM { tm_tc_app = cs }) tc =
case lookupUFM cs tc of
Nothing -> []
Just xs -> foldTM (:) xs []
extendTypeMap :: TypeMap a -> Type -> a -> TypeMap a
extendTypeMap m t v = xtT emptyCME t (\_ -> Just v) m
wrapEmptyTypeMap :: TypeMapX a
wrapEmptyTypeMap = TM { tm_var = emptyTM
, tm_app = EmptyMap
, tm_fun = EmptyMap
, tm_tc_app = emptyNameEnv
, tm_forall = EmptyMap
, tm_tylit = emptyTyLitMap }
instance TrieMap TypeMap where
type Key TypeMap = Type
emptyTM = EmptyMap
lookupTM = lkT emptyCME
alterTM = xtT emptyCME
foldTM = fdT
mapTM = mapT
-- I guess you shouldn't ever really use this instance, but it's a bit
-- convenient for getting 'emptyTM' and 'Key', e.g. look at the types
-- for 'fdG' and 'xtG'.
instance TrieMap TypeMapX where
type Key TypeMapX = Type
emptyTM = wrapEmptyTypeMap
lookupTM = lkTX emptyCME
alterTM = xtTX emptyCME
foldTM = fdTX
mapTM = mapTX
mapT :: (a->b) -> TypeMap a -> TypeMap b
mapT = mapG mapTX
mapTX :: (a->b) -> TypeMapX a -> TypeMapX b
mapTX f (TM { tm_var = tvar, tm_app = tapp, tm_fun = tfun
, tm_tc_app = ttcapp, tm_forall = tforall, tm_tylit = tlit })
= TM { tm_var = mapTM f tvar
, tm_app = mapTM (mapTM f) tapp
, tm_fun = mapTM (mapTM f) tfun
, tm_tc_app = mapNameEnv (mapTM f) ttcapp
, tm_forall = mapTM (mapTM f) tforall
, tm_tylit = mapTM f tlit }
-----------------
lkT :: CmEnv -> Type -> TypeMap a -> Maybe a
lkT = lkG lkTX
lkTX :: CmEnv -> Type -> TypeMapX a -> Maybe a
lkTX env ty m = go ty m
where
go ty | Just ty' <- coreView ty = go ty'
go (TyVarTy v) = tm_var >.> lkVar env v
go (AppTy t1 t2) = tm_app >.> lkT env t1 >=> lkT env t2
go (FunTy t1 t2) = tm_fun >.> lkT env t1 >=> lkT env t2
go (TyConApp tc tys) = tm_tc_app >.> lkNamed tc >=> lkList (lkT env) tys
go (LitTy l) = tm_tylit >.> lkTyLit l
go (ForAllTy tv ty) = tm_forall >.> lkT (extendCME env tv) ty >=> lkBndr env tv
-----------------
xtT :: CmEnv -> Type -> XT a -> TypeMap a -> TypeMap a
xtT = xtG xtTX
xtTX :: CmEnv -> Type -> XT a -> TypeMapX a -> TypeMapX a
xtTX env ty f m
| Just ty' <- coreView ty = xtTX env ty' f m
xtTX env (TyVarTy v) f m = m { tm_var = tm_var m |> xtVar env v f }
xtTX env (AppTy t1 t2) f m = m { tm_app = tm_app m |> xtT env t1
|>> xtT env t2 f }
xtTX env (FunTy t1 t2) f m = m { tm_fun = tm_fun m |> xtT env t1
|>> xtT env t2 f }
xtTX env (ForAllTy tv ty) f m = m { tm_forall = tm_forall m
|> xtT (extendCME env tv) ty
|>> xtBndr env tv f }
xtTX env (TyConApp tc tys) f m = m { tm_tc_app = tm_tc_app m |> xtNamed tc
|>> xtList (xtT env) tys f }
xtTX _ (LitTy l) f m = m { tm_tylit = tm_tylit m |> xtTyLit l f }
fdT :: (a -> b -> b) -> TypeMap a -> b -> b
fdT = fdG fdTX
fdTX :: (a -> b -> b) -> TypeMapX a -> b -> b
fdTX k m = foldTM k (tm_var m)
. foldTM (foldTM k) (tm_app m)
. foldTM (foldTM k) (tm_fun m)
. foldTM (foldTM k) (tm_tc_app m)
. foldTM (foldTM k) (tm_forall m)
. foldTyLit k (tm_tylit m)
------------------------
data TyLitMap a = TLM { tlm_number :: Map.Map Integer a
, tlm_string :: Map.Map FastString a
}
instance TrieMap TyLitMap where
type Key TyLitMap = TyLit
emptyTM = emptyTyLitMap
lookupTM = lkTyLit
alterTM = xtTyLit
foldTM = foldTyLit
mapTM = mapTyLit
emptyTyLitMap :: TyLitMap a
emptyTyLitMap = TLM { tlm_number = Map.empty, tlm_string = Map.empty }
mapTyLit :: (a->b) -> TyLitMap a -> TyLitMap b
mapTyLit f (TLM { tlm_number = tn, tlm_string = ts })
= TLM { tlm_number = Map.map f tn, tlm_string = Map.map f ts }
lkTyLit :: TyLit -> TyLitMap a -> Maybe a
lkTyLit l =
case l of
NumTyLit n -> tlm_number >.> Map.lookup n
StrTyLit n -> tlm_string >.> Map.lookup n
xtTyLit :: TyLit -> XT a -> TyLitMap a -> TyLitMap a
xtTyLit l f m =
case l of
NumTyLit n -> m { tlm_number = tlm_number m |> Map.alter f n }
StrTyLit n -> m { tlm_string = tlm_string m |> Map.alter f n }
foldTyLit :: (a -> b -> b) -> TyLitMap a -> b -> b
foldTyLit l m = flip (Map.fold l) (tlm_string m)
. flip (Map.fold l) (tlm_number m)
{-
************************************************************************
* *
Variables
* *
************************************************************************
-}
type BoundVar = Int -- Bound variables are deBruijn numbered
type BoundVarMap a = IntMap.IntMap a
data CmEnv = CME { cme_next :: BoundVar
, cme_env :: VarEnv BoundVar }
emptyCME :: CmEnv
emptyCME = CME { cme_next = 0, cme_env = emptyVarEnv }
extendCME :: CmEnv -> Var -> CmEnv
extendCME (CME { cme_next = bv, cme_env = env }) v
= CME { cme_next = bv+1, cme_env = extendVarEnv env v bv }
extendCMEs :: CmEnv -> [Var] -> CmEnv
extendCMEs env vs = foldl extendCME env vs
lookupCME :: CmEnv -> Var -> Maybe BoundVar
lookupCME (CME { cme_env = env }) v = lookupVarEnv env v
--------- Variable binders -------------
-- | A 'BndrMap' is a 'TypeMap' which allows us to distinguish between
-- binding forms whose binders have different types. For example,
-- if we are doing a 'TrieMap' lookup on @\(x :: Int) -> ()@, we should
-- not pick up an entry in the 'TrieMap' for @\(x :: Bool) -> ()@:
-- we can disambiguate this by matching on the type (or kind, if this
-- a binder in a type) of the binder.
type BndrMap = TypeMap
lkBndr :: CmEnv -> Var -> BndrMap a -> Maybe a
lkBndr env v m = lkT env (varType v) m
xtBndr :: CmEnv -> Var -> XT a -> BndrMap a -> BndrMap a
xtBndr env v f = xtT env (varType v) f
--------- Variable occurrence -------------
data VarMap a = VM { vm_bvar :: BoundVarMap a -- Bound variable
, vm_fvar :: VarEnv a } -- Free variable
instance TrieMap VarMap where
type Key VarMap = Var
emptyTM = VM { vm_bvar = IntMap.empty, vm_fvar = emptyVarEnv }
lookupTM = lkVar emptyCME
alterTM = xtVar emptyCME
foldTM = fdVar
mapTM = mapVar
mapVar :: (a->b) -> VarMap a -> VarMap b
mapVar f (VM { vm_bvar = bv, vm_fvar = fv })
= VM { vm_bvar = mapTM f bv, vm_fvar = mapVarEnv f fv }
lkVar :: CmEnv -> Var -> VarMap a -> Maybe a
lkVar env v
| Just bv <- lookupCME env v = vm_bvar >.> lookupTM bv
| otherwise = vm_fvar >.> lkFreeVar v
xtVar :: CmEnv -> Var -> XT a -> VarMap a -> VarMap a
xtVar env v f m
| Just bv <- lookupCME env v = m { vm_bvar = vm_bvar m |> xtInt bv f }
| otherwise = m { vm_fvar = vm_fvar m |> xtFreeVar v f }
fdVar :: (a -> b -> b) -> VarMap a -> b -> b
fdVar k m = foldTM k (vm_bvar m)
. foldTM k (vm_fvar m)
lkFreeVar :: Var -> VarEnv a -> Maybe a
lkFreeVar var env = lookupVarEnv env var
xtFreeVar :: Var -> XT a -> VarEnv a -> VarEnv a
xtFreeVar v f m = alterVarEnv f m v
|