1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{-# LANGUAGE GADTs #-}
module CmmCommonBlockElim
( elimCommonBlocks
)
where
import BlockId
import Cmm
import CmmUtils
import CmmContFlowOpt
import Prelude hiding (iterate, succ, unzip, zip)
import Hoopl hiding (ChangeFlag)
import Data.Bits
import Data.Maybe (mapMaybe)
import qualified Data.List as List
import Data.Word
import qualified Data.Map as M
import Outputable
import UniqFM
my_trace :: String -> SDoc -> a -> a
my_trace = if False then pprTrace else \_ _ a -> a
-- -----------------------------------------------------------------------------
-- Eliminate common blocks
-- If two blocks are identical except for the label on the first node,
-- then we can eliminate one of the blocks. To ensure that the semantics
-- of the program are preserved, we have to rewrite each predecessor of the
-- eliminated block to proceed with the block we keep.
-- The algorithm iterates over the blocks in the graph,
-- checking whether it has seen another block that is equal modulo labels.
-- If so, then it adds an entry in a map indicating that the new block
-- is made redundant by the old block.
-- Otherwise, it is added to the useful blocks.
-- TODO: Use optimization fuel
elimCommonBlocks :: CmmGraph -> CmmGraph
elimCommonBlocks g = replaceLabels env $ copyTicks env g
where
env = iterate hashed_blocks mapEmpty
hashed_blocks = map (\b -> (hash_block b, b)) $ postorderDfs g
-- Iterate over the blocks until convergence
iterate :: [(HashCode,CmmBlock)] -> BlockEnv BlockId -> BlockEnv BlockId
iterate blocks subst =
case foldl common_block (False, emptyUFM, subst) blocks of
(changed, _, subst)
| changed -> iterate blocks subst
| otherwise -> subst
type State = (ChangeFlag, UniqFM [CmmBlock], BlockEnv BlockId)
type ChangeFlag = Bool
type HashCode = Int
-- Try to find a block that is equal (or ``common'') to b.
common_block :: State -> (HashCode, CmmBlock) -> State
common_block (old_change, bmap, subst) (hash, b) =
case lookupUFM bmap hash of
Just bs -> case (List.find (eqBlockBodyWith (eqBid subst) b) bs,
mapLookup bid subst) of
(Just b', Nothing) -> addSubst b'
(Just b', Just b'') | entryLabel b' /= b'' -> addSubst b'
| otherwise -> (old_change, bmap, subst)
_ -> (old_change, addToUFM bmap hash (b : bs), subst)
Nothing -> (old_change, addToUFM bmap hash [b], subst)
where bid = entryLabel b
addSubst b' = my_trace "found new common block" (ppr bid <> char '=' <> ppr (entryLabel b')) $
(True, bmap, mapInsert bid (entryLabel b') subst)
-- -----------------------------------------------------------------------------
-- Hashing and equality on blocks
-- Below here is mostly boilerplate: hashing blocks ignoring labels,
-- and comparing blocks modulo a label mapping.
-- To speed up comparisons, we hash each basic block modulo labels.
-- The hashing is a bit arbitrary (the numbers are completely arbitrary),
-- but it should be fast and good enough.
hash_block :: CmmBlock -> HashCode
hash_block block =
fromIntegral (foldBlockNodesB3 (hash_fst, hash_mid, hash_lst) block (0 :: Word32) .&. (0x7fffffff :: Word32))
-- UniqFM doesn't like negative Ints
where hash_fst _ h = h
hash_mid m h = hash_node m + h `shiftL` 1
hash_lst m h = hash_node m + h `shiftL` 1
hash_node :: CmmNode O x -> Word32
hash_node n | dont_care n = 0 -- don't care
hash_node (CmmUnwind _ e) = hash_e e
hash_node (CmmAssign r e) = hash_reg r + hash_e e
hash_node (CmmStore e e') = hash_e e + hash_e e'
hash_node (CmmUnsafeForeignCall t _ as) = hash_tgt t + hash_list hash_e as
hash_node (CmmBranch _) = 23 -- NB. ignore the label
hash_node (CmmCondBranch p _ _) = hash_e p
hash_node (CmmCall e _ _ _ _ _) = hash_e e
hash_node (CmmForeignCall t _ _ _ _ _ _) = hash_tgt t
hash_node (CmmSwitch e _) = hash_e e
hash_node _ = error "hash_node: unknown Cmm node!"
hash_reg :: CmmReg -> Word32
hash_reg (CmmLocal _) = 117
hash_reg (CmmGlobal _) = 19
hash_e :: CmmExpr -> Word32
hash_e (CmmLit l) = hash_lit l
hash_e (CmmLoad e _) = 67 + hash_e e
hash_e (CmmReg r) = hash_reg r
hash_e (CmmMachOp _ es) = hash_list hash_e es -- pessimal - no operator check
hash_e (CmmRegOff r i) = hash_reg r + cvt i
hash_e (CmmStackSlot _ _) = 13
hash_lit :: CmmLit -> Word32
hash_lit (CmmInt i _) = fromInteger i
hash_lit (CmmFloat r _) = truncate r
hash_lit (CmmVec ls) = hash_list hash_lit ls
hash_lit (CmmLabel _) = 119 -- ugh
hash_lit (CmmLabelOff _ i) = cvt $ 199 + i
hash_lit (CmmLabelDiffOff _ _ i) = cvt $ 299 + i
hash_lit (CmmBlock _) = 191 -- ugh
hash_lit (CmmHighStackMark) = cvt 313
hash_tgt (ForeignTarget e _) = hash_e e
hash_tgt (PrimTarget _) = 31 -- lots of these
hash_list f = foldl (\z x -> f x + z) (0::Word32)
cvt = fromInteger . toInteger
-- | Ignore these node types for equality
dont_care :: CmmNode O x -> Bool
dont_care CmmComment {} = True
dont_care CmmTick {} = True
dont_care _other = False
-- Utilities: equality and substitution on the graph.
-- Given a map ``subst'' from BlockID -> BlockID, we define equality.
eqBid :: BlockEnv BlockId -> BlockId -> BlockId -> Bool
eqBid subst bid bid' = lookupBid subst bid == lookupBid subst bid'
lookupBid :: BlockEnv BlockId -> BlockId -> BlockId
lookupBid subst bid = case mapLookup bid subst of
Just bid -> lookupBid subst bid
Nothing -> bid
-- Middle nodes and expressions can contain BlockIds, in particular in
-- CmmStackSlot and CmmBlock, so we have to use a special equality for
-- these.
--
eqMiddleWith :: (BlockId -> BlockId -> Bool)
-> CmmNode O O -> CmmNode O O -> Bool
eqMiddleWith eqBid (CmmAssign r1 e1) (CmmAssign r2 e2)
= r1 == r2 && eqExprWith eqBid e1 e2
eqMiddleWith eqBid (CmmStore l1 r1) (CmmStore l2 r2)
= eqExprWith eqBid l1 l2 && eqExprWith eqBid r1 r2
eqMiddleWith eqBid (CmmUnsafeForeignCall t1 r1 a1)
(CmmUnsafeForeignCall t2 r2 a2)
= t1 == t2 && r1 == r2 && and (zipWith (eqExprWith eqBid) a1 a2)
eqMiddleWith _ _ _ = False
eqExprWith :: (BlockId -> BlockId -> Bool)
-> CmmExpr -> CmmExpr -> Bool
eqExprWith eqBid = eq
where
CmmLit l1 `eq` CmmLit l2 = eqLit l1 l2
CmmLoad e1 _ `eq` CmmLoad e2 _ = e1 `eq` e2
CmmReg r1 `eq` CmmReg r2 = r1==r2
CmmRegOff r1 i1 `eq` CmmRegOff r2 i2 = r1==r2 && i1==i2
CmmMachOp op1 es1 `eq` CmmMachOp op2 es2 = op1==op2 && es1 `eqs` es2
CmmStackSlot a1 i1 `eq` CmmStackSlot a2 i2 = eqArea a1 a2 && i1==i2
_e1 `eq` _e2 = False
xs `eqs` ys = and (zipWith eq xs ys)
eqLit (CmmBlock id1) (CmmBlock id2) = eqBid id1 id2
eqLit l1 l2 = l1 == l2
eqArea Old Old = True
eqArea (Young id1) (Young id2) = eqBid id1 id2
eqArea _ _ = False
-- Equality on the body of a block, modulo a function mapping block
-- IDs to block IDs.
eqBlockBodyWith :: (BlockId -> BlockId -> Bool) -> CmmBlock -> CmmBlock -> Bool
eqBlockBodyWith eqBid block block'
= and (zipWith (eqMiddleWith eqBid) nodes nodes') &&
eqLastWith eqBid l l'
where (_,m,l) = blockSplit block
nodes = filter (not . dont_care) (blockToList m)
(_,m',l') = blockSplit block'
nodes' = filter (not . dont_care) (blockToList m')
eqLastWith :: (BlockId -> BlockId -> Bool) -> CmmNode O C -> CmmNode O C -> Bool
eqLastWith eqBid (CmmBranch bid1) (CmmBranch bid2) = eqBid bid1 bid2
eqLastWith eqBid (CmmCondBranch c1 t1 f1) (CmmCondBranch c2 t2 f2) =
c1 == c2 && eqBid t1 t2 && eqBid f1 f2
eqLastWith eqBid (CmmCall t1 c1 g1 a1 r1 u1) (CmmCall t2 c2 g2 a2 r2 u2) =
t1 == t2 && eqMaybeWith eqBid c1 c2 && a1 == a2 && r1 == r2 && u1 == u2 && g1 == g2
eqLastWith eqBid (CmmSwitch e1 bs1) (CmmSwitch e2 bs2) =
e1 == e2 && eqListWith (eqMaybeWith eqBid) bs1 bs2
eqLastWith _ _ _ = False
eqListWith :: (a -> b -> Bool) -> [a] -> [b] -> Bool
eqListWith eltEq es es' = all (uncurry eltEq) (List.zip es es')
eqMaybeWith :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool
eqMaybeWith eltEq (Just e) (Just e') = eltEq e e'
eqMaybeWith _ Nothing Nothing = True
eqMaybeWith _ _ _ = False
-- | Given a block map, ensure that all "target" blocks are covered by
-- the same ticks as the respective "source" blocks. This not only
-- means copying ticks, but also adjusting tick scopes where
-- necessary.
copyTicks :: BlockEnv BlockId -> CmmGraph -> CmmGraph
copyTicks env g
| mapNull env = g
| otherwise = ofBlockMap (g_entry g) $ mapMap copyTo blockMap
where -- Reverse block merge map
blockMap = toBlockMap g
revEnv = mapFoldWithKey insertRev M.empty env
insertRev k x = M.insertWith (const (k:)) x [k]
-- Copy ticks and scopes into the given block
copyTo block = case M.lookup (entryLabel block) revEnv of
Nothing -> block
Just ls -> foldr copy block $ mapMaybe (flip mapLookup blockMap) ls
copy from to =
let ticks = blockTicks from
CmmEntry _ scp0 = firstNode from
(CmmEntry lbl scp1, code) = blockSplitHead to
in CmmEntry lbl (combineTickScopes scp0 scp1) `blockJoinHead`
foldr blockCons code (map CmmTick ticks)
|