summaryrefslogtreecommitdiff
path: root/testsuite/tests/polykinds/T14846.stderr
Commit message (Collapse)AuthorAgeFilesLines
* Use the eager unifier in the constraint solverSimon Peyton Jones2023-05-121-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch continues the refactoring of the constraint solver described in #23070. The Big Deal in this patch is to call the regular, eager unifier from the constraint solver, when we want to create new equalities. This replaces the existing, unifyWanted which amounted to yet-another-unifier, so it reduces duplication of a rather subtle piece of technology. See * Note [The eager unifier] in GHC.Tc.Utils.Unify * GHC.Tc.Solver.Monad.wrapUnifierTcS I did lots of other refactoring along the way * I simplified the treatment of right hand sides that contain CoercionHoles. Now, a constraint that contains a hetero-kind CoercionHole is non-canonical, and cannot be used for rewriting or unification alike. This required me to add the ch_hertero_kind flag to CoercionHole, with consequent knock-on effects. See wrinkle (2) of `Note [Equalities with incompatible kinds]` in GHC.Tc.Solver.Equality. * I refactored the StopOrContinue type to add StartAgain, so that after a fundep improvement (for example) we can simply start the pipeline again. * I got rid of the unpleasant (and inefficient) rewriterSetFromType/Co functions. With Richard I concluded that they are never needed. * I discovered Wrinkle (W1) in Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint, and therefore now prioritise non-rewritten equalities. Quite a few error messages change, I think always for the better. Compiler runtime stays about the same, with one outlier: a 17% improvement in T17836 Metric Decrease: T17836 T18223
* Diagnostic codes: acccept test changessheaf2022-09-131-2/+2
| | | | | | | | The testsuite output now contains diagnostic codes, so many tests need to be updated at once. We decided it was best to keep the diagnostic codes in the testsuite output, so that contributors don't inadvertently make changes to the diagnostic codes.
* Improve kind generalisation, error messagesSimon Peyton Jones2020-09-241-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch does two things: * It refactors GHC.Tc.Errors a bit. In debugging Quick Look I was forced to look in detail at error messages, and ended up doing a bit of refactoring, esp in mkTyVarEqErr'. It's still quite a mess, but a bit better, I think. * It makes a significant improvement to the kind checking of type and class declarations. Specifically, we now ensure that if kind checking fails with an unsolved constraint, all the skolems are in scope. That wasn't the case before, which led to some obscure error messages; and occasional failures with "no skolem info" (eg #16245). Both of these, and the main Quick Look patch itself, affect a /lot/ of error messages, as you can see from the number of files changed. I've checked them all; I think they are as good or better than before. Smaller things * I documented the various instances of VarBndr better. See Note [The VarBndr tyep and its uses] in GHC.Types.Var * Renamed GHC.Tc.Solver.simpl_top to simplifyTopWanteds * A bit of refactoring in bindExplicitTKTele, to avoid the footwork with Either. Simpler now. * Move promoteTyVar from GHC.Tc.Solver to GHC.Tc.Utils.TcMType Fixes #16245 (comment 211369), memorialised as typecheck/polykinds/T16245a Also fixes the three bugs in #18640
* Simple subsumptionwip/T17775Simon Peyton Jones2020-06-051-29/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
* Simplify treatment of heterogeneous equalityRichard Eisenberg2020-03-201-23/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | Previously, if we had a [W] (a :: k1) ~ (rhs :: k2), we would spit out a [D] k1 ~ k2 and part the W as irreducible, hoping for a unification. But we needn't do this. Instead, we now spit out a [W] co :: k2 ~ k1 and then use co to cast the rhs of the original Wanted. This means that we retain the connection between the spat-out constraint and the original. The problem with this new approach is that we cannot use the casted equality for substitution; it's too like wanteds-rewriting- wanteds. So, we forbid CTyEqCans that mention coercion holes. All the details are in Note [Equalities with incompatible kinds] in TcCanonical. There are a few knock-on effects, documented where they occur. While debugging an error in this patch, Simon and I ran into infelicities in how patterns and matches are printed; we made small improvements. This patch includes mitigations for #17828, which causes spurious pattern-match warnings. When #17828 is fixed, these lines should be removed.
* Always display inferred variables using bracesKrzysztof Gogolewski2020-02-121-3/+3
| | | | | | | | | | | | | We now always show "forall {a}. T" for inferred variables, previously this was controlled by -fprint-explicit-foralls. This implements part 1 of https://github.com/ghc-proposals/ghc-proposals/pull/179. Part of GHC ticket #16320. Furthermore, when printing a levity restriction error, we now display the HsWrap of the expression. This lets users see the full elaboration with -fprint-typechecker-elaboration (see also #17670)
* Treat kind/type variables identically, demolish FKTVVladislav Zavialov2019-02-271-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implements GHC Proposal #24: .../ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst Fixes Trac #16334, Trac #16315 With this patch, scoping rules for type and kind variables have been unified: kind variables no longer receieve special treatment. This simplifies both the language and the implementation. User-facing changes ------------------- * Kind variables are no longer implicitly quantified when an explicit forall is used: p :: Proxy (a :: k) -- still accepted p :: forall k a. Proxy (a :: k) -- still accepted p :: forall a. Proxy (a :: k) -- no longer accepted In other words, now we adhere to the "forall-or-nothing" rule more strictly. Related function: RnTypes.rnImplicitBndrs * The -Wimplicit-kind-vars warning has been deprecated. * Kind variables are no longer implicitly quantified in constructor declarations: data T a = T1 (S (a :: k) | forall (b::k). T2 (S b) -- no longer accepted data T (a :: k) = T1 (S (a :: k) | forall (b::k). T2 (S b) -- still accepted Related function: RnTypes.extractRdrKindSigVars * Implicitly quantified kind variables are no longer put in front of other variables: f :: Proxy (a :: k) -> Proxy (b :: j) f :: forall k j (a :: k) (b :: j). Proxy a -> Proxy b -- old order f :: forall k (a :: k) j (b :: j). Proxy a -> Proxy b -- new order This is a breaking change for users of TypeApplications. Note that we still respect the dpendency order: 'k' before 'a', 'j' before 'b'. See "Ordering of specified variables" in the User's Guide. Related function: RnTypes.rnImplicitBndrs * In type synonyms and type family equations, free variables on the RHS are no longer implicitly quantified unless used in an outermost kind annotation: type T = Just (Nothing :: Maybe a) -- no longer accepted type T = Just Nothing :: Maybe (Maybe a) -- still accepted The latter form is a workaround due to temporary lack of an explicit quantification method. Ideally, we would write something along these lines: type T @a = Just (Nothing :: Maybe a) Related function: RnTypes.extractHsTyRdrTyVarsKindVars * Named wildcards in kinds are fixed (Trac #16334): x :: (Int :: _t) -- this compiles, infers (_t ~ Type) Related function: RnTypes.partition_nwcs Implementation notes -------------------- * One of the key changes is the removal of FKTV in RnTypes: - data FreeKiTyVars = FKTV { fktv_kis :: [Located RdrName] - , fktv_tys :: [Located RdrName] } + type FreeKiTyVars = [Located RdrName] We used to keep track of type and kind variables separately, but now that they are on equal footing when it comes to scoping, we can put them in the same list. * extract_lty and family are no longer parametrized by TypeOrKind, as we now do not distinguish kind variables from type variables. * PatSynExPE and the related Note [Pattern synonym existentials do not scope] have been removed (Trac #16315). With no implicit kind quantification, we can no longer trigger the error. * reportFloatingKvs and the related Note [Free-floating kind vars] have been removed. With no implicit kind quantification, we can no longer trigger the error.
* Taming the Kind Inference MonsterSimon Peyton Jones2018-11-291-15/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | My original goal was (Trac #15809) to move towards using level numbers as the basis for deciding which type variables to generalise, rather than searching for the free varaibles of the environment. However it has turned into a truly major refactoring of the kind inference engine. Let's deal with the level-numbers part first: * Augment quantifyTyVars to calculate the type variables to quantify using level numbers, and compare the result with the existing approach. That is; no change in behaviour, just a WARNing if the two approaches give different answers. * To do this I had to get the level number right when calling quantifyTyVars, and this entailed a bit of care, especially in the code for kind-checking type declarations. * However, on the way I was able to eliminate or simplify a number of calls to solveEqualities. This work is incomplete: I'm not /using/ level numbers yet. When I subsequently get rid of any remaining WARNings in quantifyTyVars, that the level-number answers differ from the current answers, then I can rip out the current "free vars of the environment" stuff. Anyway, this led me into deep dive into kind inference for type and class declarations, which is an increasingly soggy part of GHC. Richard already did some good work recently in commit 5e45ad10ffca1ad175b10f6ef3327e1ed8ba25f3 Date: Thu Sep 13 09:56:02 2018 +0200 Finish fix for #14880. The real change that fixes the ticket is described in Note [Naughty quantification candidates] in TcMType. but I kept turning over stones. So this patch has ended up with a pretty significant refactoring of that code too. Kind inference for types and classes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Major refactoring in the way we generalise the inferred kind of a TyCon, in kcTyClGroup. Indeed, I made it into a new top-level function, generaliseTcTyCon. Plus a new Note to explain it Note [Inferring kinds for type declarations]. * We decided (Trac #15592) not to treat class type variables specially when dealing with Inferred/Specified/Required for associated types. That simplifies things quite a bit. I also rewrote Note [Required, Specified, and Inferred for types] * Major refactoring of the crucial function kcLHsQTyVars: I split it into kcLHsQTyVars_Cusk and kcLHsQTyVars_NonCusk because the two are really quite different. The CUSK case is almost entirely rewritten, and is much easier because of our new decision not to treat the class variables specially * I moved all the error checks from tcTyClTyVars (which was a bizarre place for it) into generaliseTcTyCon and/or the CUSK case of kcLHsQTyVars. Now tcTyClTyVars is extremely simple. * I got rid of all the all the subtleties in tcImplicitTKBndrs. Indeed now there is no difference between tcImplicitTKBndrs and kcImplicitTKBndrs; there is now a single bindImplicitTKBndrs. Same for kc/tcExplicitTKBndrs. None of them monkey with level numbers, nor build implication constraints. scopeTyVars is gone entirely, as is kcLHsQTyVarBndrs. It's vastly simpler. I found I could get rid of kcLHsQTyVarBndrs entirely, in favour of the bnew bindExplicitTKBndrs. Quantification ~~~~~~~~~~~~~~ * I now deal with the "naughty quantification candidates" of the previous patch in candidateQTyVars, rather than in quantifyTyVars; see Note [Naughty quantification candidates] in TcMType. I also killed off closeOverKindsCQTvs in favour of the same strategy that we use for tyCoVarsOfType: namely, close over kinds at the occurrences. And candidateQTyVars no longer needs a gbl_tvs argument. * Passing the ContextKind, rather than the expected kind itself, to tc_hs_sig_type_and_gen makes it easy to allocate the expected result kind (when we are in inference mode) at the right level. Type families ~~~~~~~~~~~~~~ * I did a major rewrite of the impenetrable tcFamTyPats. The result is vastly more comprehensible. * I got rid of kcDataDefn entirely, quite a big function. * I re-did the way that checkConsistentFamInst works, so that it allows alpha-renaming of invisible arguments. * The interaction of kind signatures and family instances is tricky. Type families: see Note [Apparently-nullary families] Data families: see Note [Result kind signature for a data family instance] and Note [Eta-reduction for data families] * The consistent instantation of an associated type family is tricky. See Note [Checking consistent instantiation] and Note [Matching in the consistent-instantation check] in TcTyClsDecls. It's now checked in TcTyClsDecls because that is when we have the relevant info to hand. * I got tired of the compromises in etaExpandFamInst, so I did the job properly by adding a field cab_eta_tvs to CoAxBranch. See Coercion.etaExpandCoAxBranch. tcInferApps and friends ~~~~~~~~~~~~~~~~~~~~~~~ * I got rid of the mysterious and horrible ClsInstInfo argument to tcInferApps, checkExpectedKindX, and various checkValid functions. It was horrible! * I got rid of [Type] result of tcInferApps. This list was used only in tcFamTyPats, when checking the LHS of a type instance; and if there is a cast in the middle, the list is meaningless. So I made tcInferApps simpler, and moved the complexity (not much) to tcInferApps. Result: tcInferApps is now pretty comprehensible again. * I refactored the many function in TcMType that instantiate skolems. Smaller things * I rejigged the error message in checkValidTelescope; I think it's quite a bit better now. * checkValidType was not rejecting constraints in a kind signature forall (a :: Eq b => blah). blah2 That led to further errors when we then do an ambiguity check. So I make checkValidType reject it more aggressively. * I killed off quantifyConDecl, instead calling kindGeneralize directly. * I fixed an outright bug in tyCoVarsOfImplic, where we were not colleting the tyvar of the kind of the skolems * Renamed ClsInstInfo to AssocInstInfo, and made it into its own data type * Some fiddling around with pretty-printing of family instances which was trickier than I thought. I wanted wildcards to print as plain "_" in user messages, although they each need a unique identity in the CoAxBranch. Some other oddments * Refactoring around the trace messages from reportUnsolved. * A bit of extra tc-tracing in TcHsSyn.commitFlexi This patch fixes a raft of bugs, and includes tests for them. * #14887 * #15740 * #15764 * #15789 * #15804 * #15817 * #15870 * #15874 * #15881
* Finish fix for #14880.Tobias Dammers2018-10-281-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The real change that fixes the ticket is described in Note [Naughty quantification candidates] in TcMType. Fixing this required reworking candidateQTyVarsOfType, the function that extracts free variables as candidates for quantification. One consequence is that we now must be more careful when quantifying: any skolems around must be quantified manually, and quantifyTyVars will now only quantify over metavariables. This makes good sense, as skolems are generally user-written and are listed in the AST. As a bonus, we now have more control over the ordering of such skolems. Along the way, this commit fixes #15711 and refines the fix to #14552 (by accepted a program that was previously rejected, as we can now accept that program by zapping variables to Any). This commit also does a fair amount of rejiggering kind inference of datatypes. Notably, we now can skip the generalization step in kcTyClGroup for types with CUSKs, because we get the kind right the first time. This commit also thus fixes #15743 and #15592, which both concern datatype kind generalisation. (#15591 is also very relevant.) For this aspect of the commit, see Note [Required, Specified, and Inferred in types] in TcTyClsDecls. Test cases: dependent/should_fail/T14880{,-2}, dependent/should_fail/T15743[cd] dependent/should_compile/T15743{,e} ghci/scripts/T15743b polykinds/T15592 dependent/should_fail/T15591[bc] ghci/scripts/T15591
* Remove decideKindGeneralisationPlanRichard Eisenberg2018-08-021-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TypeInType came with a new function: decideKindGeneralisationPlan. This type-level counterpart to the term-level decideGeneralisationPlan chose whether or not a kind should be generalized. The thinking was that if `let` should not be generalized, then kinds shouldn't either (under the same circumstances around -XMonoLocalBinds). However, this is too conservative -- the situation described in the motivation for "let should be be generalized" does not occur in types. This commit thus removes decideKindGeneralisationPlan, always generalizing. One consequence is that tc_hs_sig_type_and_gen no longer calls solveEqualities, which reports all unsolved constraints, instead relying on the solveLocalEqualities in tcImplicitTKBndrs. An effect of this is that reporing kind errors gets delayed more frequently. This seems to be a net benefit in error reporting; often, alongside a kind error, the type error is now reported (and users might find type errors easier to understand). Some of these errors ended up at the top level, where it was discovered that the GlobalRdrEnv containing the definitions in the local module was not in the TcGblEnv, and thus errors were reported with qualified names unnecessarily. This commit rejiggers some of the logic around captureTopConstraints accordingly. One error message (typecheck/should_fail/T1633) is a regression, mentioning the name of a default method. However, that problem is already reported as #10087, its solution is far from clear, and so I'm not addressing it here. This commit fixes #15141. As it's an internal refactor, there is no concrete test case for it. Along the way, we no longer need the hsib_closed field of HsImplicitBndrs (it was used only in decideKindGeneralisationPlan) and so it's been removed, simplifying the datatype structure. Along the way, I removed code in the validity checker that looks at coercions. This isn't related to this patch, really (though it was, at one point), but it's an improvement, so I kept it. This updates the haddock submodule.
* Unwrap casts before checking vars in eager unifierRichard Eisenberg2018-07-101-9/+16
| | | | | | | | | | | Previously, checking whether (tv |> co) ~ (tv |> co) got deferred, because we looked for vars before stripping casts. (The left type would get stripped, and then tv ~ (tv |> co) would scare the occurs- checker.) This opportunity for improvement presented itself in other work. This is just an optimization. Some programs can now report more errors simultaneously.
* Orient TyVar/TyVar equalities with deepest on the leftSimon Peyton Jones2018-05-181-38/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trac #15009 showed that, for Given TyVar/TyVar equalities, we really want to orient them with the deepest-bound skolem on the left. As it happens, we also want to do the same for Wanteds, but for a different reason (more likely to be touchable). Either way, deepest wins: see TcUnify Note [Deeper level on the left]. This observation led me to some significant changes: * A SkolemTv already had a TcLevel, but the level wasn't really being used. Now it is! * I updated added invariant (SkolInf) to TcType Note [TcLevel and untouchable type variables], documenting that the level number of all the ic_skols should be the same as the ic_tclvl of the implication * FlatSkolTvs and FlatMetaTvs previously had a dummy level-number of zero, which messed the scheme up. Now they get a level number the same way as all other TcTyVars, instead of being a special case. * To make sure that FlatSkolTvs and FlatMetaTvs are untouchable (which was previously done via their magic zero level) isTouchableMetaTyVar just tests for those two cases. * TcUnify.swapOverTyVars is the crucial orientation function; see the new Note [TyVar/TyVar orientation]. I completely rewrote this function, and it's now much much easier to understand. I ended up doing some related refactoring, of course * I noticed that tcImplicitTKBndrsX and tcExplicitTKBndrsX were doing a lot of useless work in the case where there are no skolems; I added a fast-patch * Elminate the un-used tcExplicitTKBndrsSig; and thereby get rid of the higher-order parameter to tcExpliciTKBndrsX. * Replace TcHsType.emitTvImplication with TcUnify.checkTvConstraints, by analogy with TcUnify.checkConstraints. * Inline TcUnify.buildImplication into its only call-site in TcUnify.checkConstraints * TcS.buildImplication becomes TcS.CheckConstraintsTcS, with a simpler API * Now that we have NoEvBindsVar we have no need of termEvidenceAllowed; nuke the latter, adding Note [No evidence bindings] to TcEvidence.
* Track type variable scope more carefully.Richard Eisenberg2018-03-311-0/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main job of this commit is to track more accurately the scope of tyvars introduced by user-written foralls. For example, it would be to have something like this: forall a. Int -> (forall k (b :: k). Proxy '[a, b]) -> Bool In that type, a's kind must be k, but k isn't in scope. We had a terrible way of doing this before (not worth repeating or describing here, but see the old tcImplicitTKBndrs and friends), but now we have a principled approach: make an Implication when kind-checking a forall. Doing so then hooks into the existing machinery for preventing skolem-escape, performing floating, etc. This also means that we bump the TcLevel whenever going into a forall. The new behavior is done in TcHsType.scopeTyVars, but see also TcHsType.tc{Im,Ex}plicitTKBndrs, which have undergone significant rewriting. There are several Notes near there to guide you. Of particular interest there is that Implication constraints can now have skolems that are out of order; this situation is reported in TcErrors. A major consequence of this is a slightly tweaked process for type- checking type declarations. The new Note [Use SigTvs in kind-checking pass] in TcTyClsDecls lays it out. The error message for dependent/should_fail/TypeSkolEscape has become noticeably worse. However, this is because the code in TcErrors goes to some length to preserve pre-8.0 error messages for kind errors. It's time to rip off that plaster and get rid of much of the kind-error-specific error messages. I tried this, and doing so led to a lovely error message for TypeSkolEscape. So: I'm accepting the error message quality regression for now, but will open up a new ticket to fix it, along with a larger error-message improvement I've been pondering. This applies also to dependent/should_fail/{BadTelescope2,T14066,T14066e}, polykinds/T11142. Other minor changes: - isUnliftedTypeKind didn't look for tuples and sums. It does now. - check_type used check_arg_type on both sides of an AppTy. But the left side of an AppTy isn't an arg, and this was causing a bad error message. I've changed it to use check_type on the left-hand side. - Some refactoring around when we print (TYPE blah) in error messages. The changes decrease the times when we do so, to good effect. Of course, this is still all controlled by -fprint-explicit-runtime-reps Fixes #14066 #14749 Test cases: dependent/should_compile/{T14066a,T14749}, dependent/should_fail/T14066{,c,d,e,f,g,h}
* Fix performance of flattener patch (#12919)Alexander Vieth2018-03-261-5/+2
| | | | | | | | | | | This patch, authored by alexvieth and reviewed at D4451, makes performance improvements by critically optimizing parts of the flattener. Summary: T3064, T5321FD, T5321Fun, T9872a, T9872b, T9872c all pass. T9872a and T9872c show improvements beyond the -5% threshold. T9872d fails at 10.9% increased allocations.
* Fix a nasty bug in the pure unifierSimon Peyton Jones2018-02-271-0/+43
The pure unifier was building an infinite type, through a defective occurs check. So GHC went into an infinite loop. Reason: we were neglecting the 'kco' part of the type, which 'unify_ty' maintains. Yikes. The fix is easy. I refactored a bit to make it harder to go wrong in future.