summaryrefslogtreecommitdiff
path: root/testsuite/tests/codeGen/should_fail
Commit message (Collapse)AuthorAgeFilesLines
* JS: fix bounds checking (Issue 23123)Josh Meredith2023-05-041-1/+0
| | | | | | | | | | | | | | | | | | | | * For ByteArray-based bounds-checking, the JavaScript backend must use the `len` field, instead of the inbuild JavaScript `length` field. * Range-based operations must also check both the start and end of the range for bounds * All indicies are valid for ranges of size zero, since they are essentially no-ops * For cases of ByteArray accesses (e.g. read as Int), the end index is (i * sizeof(type) + sizeof(type) - 1), while the previous implementation uses (i + sizeof(type) - 1). In the Int32 example, this is (i * 4 + 3) * IndexByteArrayOp_Word8As* primitives use byte array indicies (unlike the previous point), but now check both start and end indicies * Byte array copies now check if the arrays are the same by identity and then if the ranges overlap.
* StgToCmm: Upgrade -fcheck-prim-bounds behaviorMatthew Craven2023-04-049-4/+142
| | | | | Fixes #21054. Additionally, we can now check for range overlap when generating Cmm for primops that use memcpy internally.
* testsuite: Fix exit code of bounds checking tests on WindowsBen Gamari2022-04-071-1/+1
| | | | `abort` exits with 255, not 134, on Windows.
* codeGen: Fix two buglets in -fbounds-check logicBen Gamari2022-01-312-0/+20
| | | | | | | @Bodigrim noticed that the `compareByteArray#` bounds-checking logic had flipped arguments and an off-by-one. For the sake of clarity I also refactored occurrences of `cmmOffset` to rather use `cmmOffsetB`. I suspect the former should be retired.
* codeGen: Introduce flag to bounds-check array accessesBen Gamari2021-12-216-0/+98
| | | | | | | Here we introduce code generator support for instrument array primops with bounds checking, enabled with the `-fcheck-prim-bounds` flag. Introduced to debug #20769.
* Introduce Concrete# for representation polymorphism checkssheaf2021-10-175-85/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | PHASE 1: we never rewrite Concrete# evidence. This patch migrates all the representation polymorphism checks to the typechecker, using a new constraint form Concrete# :: forall k. k -> TupleRep '[] Whenever a type `ty` must be representation-polymorphic (e.g. it is the type of an argument to a function), we emit a new `Concrete# ty` Wanted constraint. If this constraint goes unsolved, we report a representation-polymorphism error to the user. The 'FRROrigin' datatype keeps track of the context of the representation-polymorphism check, for more informative error messages. This paves the way for further improvements, such as allowing type families in RuntimeReps and improving the soundness of typed Template Haskell. This is left as future work (PHASE 2). fixes #17907 #20277 #20330 #20423 #20426 updates haddock submodule ------------------------- Metric Decrease: T5642 -------------------------
* Reword: representation instead of levitysheaf2021-06-102-12/+14
| | | | fixes #19756, updates haddock submodule
* Make some simple primops levity-polymorphicsheaf2021-06-044-37/+2
| | | | Fixes #17817
* Allow visible type application for levity-poly data consSimon Peyton Jones2021-05-072-13/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch was driven by #18481, to allow visible type application for levity-polymorphic newtypes. As so often, it started simple but grew: * Significant refactor: I removed HsConLikeOut from the client-independent Language.Haskell.Syntax.Expr, and put it where it belongs, as a new constructor `ConLikeTc` in the GHC-specific extension data type for expressions, `GHC.Hs.Expr.XXExprGhcTc`. That changed touched a lot of files in a very superficial way. * Note [Typechecking data constructors] explains the main payload. The eta-expansion part is no longer done by the typechecker, but instead deferred to the desugarer, via `ConLikeTc` * A little side benefit is that I was able to restore VTA for data types with a "stupid theta": #19775. Not very important, but the code in GHC.Tc.Gen.Head.tcInferDataCon is is much, much more elegant now. * I had to refactor the levity-polymorphism checking code in GHC.HsToCore.Expr, see Note [Checking for levity-polymorphic functions] Note [Checking levity-polymorphic data constructors]
* Add tests for #17920Sylvain Henry2020-06-231-1/+1
| | | | | | Metric Decrease: T12150 T12234
* Various performance improvementsKrzysztof Gogolewski2020-06-172-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements several general performance improvements to GHC, to offset the effect of the linear types change. General optimisations: - Add a `coreFullView` function which iterates `coreView` on the head. This avoids making function recursive solely because the iterate `coreView` themselves. As a consequence, this functions can be inlined, and trigger case-of-known constructor (_e.g._ `kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`, `getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`, `tyConAppTyCon_maybe`). The common pattern about all these functions is that they are almost always used as views, and immediately consumed by a case expression. This commit also mark them asx `INLINE`. - In `subst_ty` add a special case for nullary `TyConApp`, which avoid allocations altogether. - Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This required quite a bit of module shuffling. case. `myTyConApp` enforces crucial sharing, which was lost during substitution. See also !2952 . - Make `subst_ty` stricter. - In `eqType` (specifically, in `nonDetCmpType`), add a special case, tested first, for the very common case of nullary `TyConApp`. `nonDetCmpType` has been made `INLINE` otherwise it is actually a regression. This is similar to the optimisations in !2952. Linear-type specific optimisations: - Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in the definition of the pattern synonyms `One` and `Many`. - Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`: `Multiplicity` now import `Type` normally, rather than from the `hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the `One` and `Many` pattern synonyms. - Make `updateIdTypeAndMult` strict in its type and multiplicity - The `scaleIdBy` gets a specialised definition rather than being an alias to `scaleVarBy` - `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type, Type)` instead of `Type -> Maybe (Scaled Type, Type)` - Remove the `MultMul` pattern synonym in favour of a view `isMultMul` because pattern synonyms appear not to inline well. - in `eqType`, in a `FunTy`, compare multiplicities last: they are almost always both `Many`, so it helps failing faster. - Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the instances of `TyConApp ManyDataConTy []` are physically the same. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Arnaud Spiwack Metric Decrease: haddock.base T12227 T12545 T12990 T1969 T3064 T5030 T9872b Metric Increase: haddock.base haddock.Cabal haddock.compiler T12150 T12234 T12425 T12707 T13035 T13056 T15164 T16190 T18304 T1969 T3064 T3294 T5631 T5642 T5837 T6048 T9020 T9233 T9675 T9872a T9961 WWRec
* Linear types (#15981)Krzysztof Gogolewski2020-06-173-44/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* Eta expand un-saturated primopsBen Gamari2020-05-293-3/+21
| | | | | | | | | | | Now since we no longer try to predict CAFfyness we have no need for the solution to #16846. Eta expanding unsaturated primop applications is conceptually simpler, especially in the presence of levity polymorphism. This essentially reverts cac8dc9f51e31e4c0a6cd9bc302f7e1bc7c03beb, as suggested in #18079. Closes #18079.
* Modules (#13009)Sylvain Henry2020-04-182-2/+2
| | | | | | | | | | | | | | * SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
* Always display inferred variables using bracesKrzysztof Gogolewski2020-02-124-4/+64
| | | | | | | | | | | | | We now always show "forall {a}. T" for inferred variables, previously this was controlled by -fprint-explicit-foralls. This implements part 1 of https://github.com/ghc-proposals/ghc-proposals/pull/179. Part of GHC ticket #16320. Furthermore, when printing a levity restriction error, we now display the HsWrap of the expression. This lets users see the full elaboration with -fprint-typechecker-elaboration (see also #17670)
* Don't eta-expand unsaturated primopsBen Gamari2019-06-252-9/+3
| | | | | | | | | | | Previously, as described in Note [Primop wrappers], `hasNoBinding` would return False in the case of `PrimOpId`s. This would result in eta expansion of unsaturated primop applications during CorePrep. Not only did this expansion result in unnecessary allocations, but it also meant lead to rather nasty inconsistencies between the CAFfy-ness determinations made by TidyPgm and CorePrep. This fixes #16846.
* Implement the -XUnliftedNewtypes extension.Andrew Martin2019-06-141-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | GHC Proposal: 0013-unlifted-newtypes.rst Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/98 Issues: #15219, #1311, #13595, #15883 Implementation Details: Note [Implementation of UnliftedNewtypes] Note [Unifying data family kinds] Note [Compulsory newtype unfolding] This patch introduces the -XUnliftedNewtypes extension. When this extension is enabled, GHC drops the restriction that the field in a newtype must be of kind (TYPE 'LiftedRep). This allows types like Int# and ByteArray# to be used in a newtype. Additionally, coerce is made levity-polymorphic so that it can be used with newtypes over unlifted types. The bulk of the changes are in TcTyClsDecls.hs. With -XUnliftedNewtypes, getInitialKind is more liberal, introducing a unification variable to return the kind (TYPE r0) rather than just returning (TYPE 'LiftedRep). When kind-checking a data constructor with kcConDecl, we attempt to unify the kind of a newtype with the kind of its field's type. When typechecking a data declaration with tcTyClDecl, we again perform a unification. See the implementation note for more on this. Co-authored-by: Richard Eisenberg <rae@richarde.dev>
* Treat kind/type variables identically, demolish FKTVVladislav Zavialov2019-02-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implements GHC Proposal #24: .../ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst Fixes Trac #16334, Trac #16315 With this patch, scoping rules for type and kind variables have been unified: kind variables no longer receieve special treatment. This simplifies both the language and the implementation. User-facing changes ------------------- * Kind variables are no longer implicitly quantified when an explicit forall is used: p :: Proxy (a :: k) -- still accepted p :: forall k a. Proxy (a :: k) -- still accepted p :: forall a. Proxy (a :: k) -- no longer accepted In other words, now we adhere to the "forall-or-nothing" rule more strictly. Related function: RnTypes.rnImplicitBndrs * The -Wimplicit-kind-vars warning has been deprecated. * Kind variables are no longer implicitly quantified in constructor declarations: data T a = T1 (S (a :: k) | forall (b::k). T2 (S b) -- no longer accepted data T (a :: k) = T1 (S (a :: k) | forall (b::k). T2 (S b) -- still accepted Related function: RnTypes.extractRdrKindSigVars * Implicitly quantified kind variables are no longer put in front of other variables: f :: Proxy (a :: k) -> Proxy (b :: j) f :: forall k j (a :: k) (b :: j). Proxy a -> Proxy b -- old order f :: forall k (a :: k) j (b :: j). Proxy a -> Proxy b -- new order This is a breaking change for users of TypeApplications. Note that we still respect the dpendency order: 'k' before 'a', 'j' before 'b'. See "Ordering of specified variables" in the User's Guide. Related function: RnTypes.rnImplicitBndrs * In type synonyms and type family equations, free variables on the RHS are no longer implicitly quantified unless used in an outermost kind annotation: type T = Just (Nothing :: Maybe a) -- no longer accepted type T = Just Nothing :: Maybe (Maybe a) -- still accepted The latter form is a workaround due to temporary lack of an explicit quantification method. Ideally, we would write something along these lines: type T @a = Just (Nothing :: Maybe a) Related function: RnTypes.extractHsTyRdrTyVarsKindVars * Named wildcards in kinds are fixed (Trac #16334): x :: (Int :: _t) -- this compiles, infers (_t ~ Type) Related function: RnTypes.partition_nwcs Implementation notes -------------------- * One of the key changes is the removal of FKTV in RnTypes: - data FreeKiTyVars = FKTV { fktv_kis :: [Located RdrName] - , fktv_tys :: [Located RdrName] } + type FreeKiTyVars = [Located RdrName] We used to keep track of type and kind variables separately, but now that they are on equal footing when it comes to scoping, we can put them in the same list. * extract_lty and family are no longer parametrized by TypeOrKind, as we now do not distinguish kind variables from type variables. * PatSynExPE and the related Note [Pattern synonym existentials do not scope] have been removed (Trac #16315). With no implicit kind quantification, we can no longer trigger the error. * reportFloatingKvs and the related Note [Free-floating kind vars] have been removed. With no implicit kind quantification, we can no longer trigger the error.
* Embrace -XTypeInType, add -XStarIsTypeVladislav Zavialov2018-06-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: Implement the "Embrace Type :: Type" GHC proposal, .../ghc-proposals/blob/master/proposals/0020-no-type-in-type.rst GHC 8.0 included a major change to GHC's type system: the Type :: Type axiom. Though casual users were protected from this by hiding its features behind the -XTypeInType extension, all programs written in GHC 8+ have the axiom behind the scenes. In order to preserve backward compatibility, various legacy features were left unchanged. For example, with -XDataKinds but not -XTypeInType, GADTs could not be used in types. Now these restrictions are lifted and -XTypeInType becomes a redundant flag that will be eventually deprecated. * Incorporate the features currently in -XTypeInType into the -XPolyKinds and -XDataKinds extensions. * Introduce a new extension -XStarIsType to control how to parse * in code and whether to print it in error messages. Test Plan: Validate Reviewers: goldfire, hvr, bgamari, alanz, simonpj Reviewed By: goldfire, simonpj Subscribers: rwbarton, thomie, mpickering, carter GHC Trac Issues: #15195 Differential Revision: https://phabricator.haskell.org/D4748
* Track type variable scope more carefully.Richard Eisenberg2018-03-311-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main job of this commit is to track more accurately the scope of tyvars introduced by user-written foralls. For example, it would be to have something like this: forall a. Int -> (forall k (b :: k). Proxy '[a, b]) -> Bool In that type, a's kind must be k, but k isn't in scope. We had a terrible way of doing this before (not worth repeating or describing here, but see the old tcImplicitTKBndrs and friends), but now we have a principled approach: make an Implication when kind-checking a forall. Doing so then hooks into the existing machinery for preventing skolem-escape, performing floating, etc. This also means that we bump the TcLevel whenever going into a forall. The new behavior is done in TcHsType.scopeTyVars, but see also TcHsType.tc{Im,Ex}plicitTKBndrs, which have undergone significant rewriting. There are several Notes near there to guide you. Of particular interest there is that Implication constraints can now have skolems that are out of order; this situation is reported in TcErrors. A major consequence of this is a slightly tweaked process for type- checking type declarations. The new Note [Use SigTvs in kind-checking pass] in TcTyClsDecls lays it out. The error message for dependent/should_fail/TypeSkolEscape has become noticeably worse. However, this is because the code in TcErrors goes to some length to preserve pre-8.0 error messages for kind errors. It's time to rip off that plaster and get rid of much of the kind-error-specific error messages. I tried this, and doing so led to a lovely error message for TypeSkolEscape. So: I'm accepting the error message quality regression for now, but will open up a new ticket to fix it, along with a larger error-message improvement I've been pondering. This applies also to dependent/should_fail/{BadTelescope2,T14066,T14066e}, polykinds/T11142. Other minor changes: - isUnliftedTypeKind didn't look for tuples and sums. It does now. - check_type used check_arg_type on both sides of an AppTy. But the left side of an AppTy isn't an arg, and this was causing a bad error message. I've changed it to use check_type on the left-hand side. - Some refactoring around when we print (TYPE blah) in error messages. The changes decrease the times when we do so, to good effect. Of course, this is still all controlled by -fprint-explicit-runtime-reps Fixes #14066 #14749 Test cases: dependent/should_compile/{T14066a,T14749}, dependent/should_fail/T14066{,c,d,e,f,g,h}
* Fix #13233 by checking for lev-poly primopsRichard Eisenberg2017-05-021-3/+3
| | | | | The implementation plan is all in Note [Detecting forced eta expansion] in DsExpr.
* Fix #13233 by checking for lev-poly primopsRichard Eisenberg2017-05-023-0/+52
| | | | | | | | | | | | | | | The implementation plan is all in Note [Detecting forced eta expansion] in DsExpr. Test Plan: ./validate, codeGen/should_fail/T13233 Reviewers: simonpj, austin, bgamari Subscribers: rwbarton, thomie GHC Trac Issues: #13233 Differential Revision: https://phabricator.haskell.org/D3490
* CmmParse: Don't force alignment in memcpy-ish operationsBen Gamari2015-08-031-1/+3
| | | | | | | | | | | | This was initially made in 681973c31c614185229bdae4f6b7ab4f6e64753d. Here I wanted to enforce that the alignment passed to %memcpy was a constant expression, as this is required by LLVM. However, this breaks the knot-tying done in `loopDecls`, causing T8131 to hang. Here I remove the `seq` and mark T8131 as `expect_broken` in the case of the NCG, which doesn't force the alignment in this case. Fixes #10664.
* Encode alignment in MO_Memcpy and friendsBen Gamari2015-06-163-0/+13
Summary: Alignment needs to be a compile-time constant. Previously the code generators had to jump through hoops to ensure this was the case as the alignment was passed as a CmmExpr in the arguments list. Now we take care of this up front. This fixes #8131. Authored-by: Reid Barton <rwbarton@gmail.com> Dusted-off-by: Ben Gamari <ben@smart-cactus.org> Tests for T8131 Test Plan: Validate Reviewers: rwbarton, austin Reviewed By: rwbarton, austin Subscribers: bgamari, carter, thomie Differential Revision: https://phabricator.haskell.org/D624 GHC Trac Issues: #8131