summaryrefslogtreecommitdiff
path: root/compiler/nativeGen/X86/Instr.hs
Commit message (Collapse)AuthorAgeFilesLines
* Modules: CmmToAsm (#13009)Sylvain Henry2020-02-241-1054/+0
|
* Modules: Driver (#13009)Sylvain Henry2020-02-211-1/+1
| | | | submodule updates: nofib, haddock
* Do CafInfo/SRT analysis in CmmÖmer Sinan Ağacan2020-01-311-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes all CafInfo predictions and various hacks to preserve predicted CafInfos from the compiler and assigns final CafInfos to interface Ids after code generation. SRT analysis is extended to support static data, and Cmm generator is modified to allow generating static_link fields after SRT analysis. This also fixes `-fcatch-bottoms`, which introduces error calls in case expressions in CorePrep, which runs *after* CoreTidy (which is where we decide on CafInfos) and turns previously non-CAFFY things into CAFFY. Fixes #17648 Fixes #9718 Evaluation ========== NoFib ----- Boot with: `make boot mode=fast` Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1` -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.0% 0.0% -0.0% -0.0% -0.0% CSD -0.0% 0.0% -0.0% -0.0% -0.0% FS -0.0% 0.0% -0.0% -0.0% -0.0% S -0.0% 0.0% -0.0% -0.0% -0.0% VS -0.0% 0.0% -0.0% -0.0% -0.0% VSD -0.0% 0.0% -0.0% -0.0% -0.5% VSM -0.0% 0.0% -0.0% -0.0% -0.0% anna -0.1% 0.0% -0.0% -0.0% -0.0% ansi -0.0% 0.0% -0.0% -0.0% -0.0% atom -0.0% 0.0% -0.0% -0.0% -0.0% awards -0.0% 0.0% -0.0% -0.0% -0.0% banner -0.0% 0.0% -0.0% -0.0% -0.0% bernouilli -0.0% 0.0% -0.0% -0.0% -0.0% binary-trees -0.0% 0.0% -0.0% -0.0% -0.0% boyer -0.0% 0.0% -0.0% -0.0% -0.0% boyer2 -0.0% 0.0% -0.0% -0.0% -0.0% bspt -0.0% 0.0% -0.0% -0.0% -0.0% cacheprof -0.0% 0.0% -0.0% -0.0% -0.0% calendar -0.0% 0.0% -0.0% -0.0% -0.0% cichelli -0.0% 0.0% -0.0% -0.0% -0.0% circsim -0.0% 0.0% -0.0% -0.0% -0.0% clausify -0.0% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0% compress -0.0% 0.0% -0.0% -0.0% -0.0% compress2 -0.0% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0% cse -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0% dom-lt -0.0% 0.0% -0.0% -0.0% -0.0% eliza -0.0% 0.0% -0.0% -0.0% -0.0% event -0.0% 0.0% -0.0% -0.0% -0.0% exact-reals -0.0% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0% expert -0.0% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0% fasta -0.0% 0.0% -0.0% -0.0% -0.0% fem -0.0% 0.0% -0.0% -0.0% -0.0% fft -0.0% 0.0% -0.0% -0.0% -0.0% fft2 -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% fish -0.0% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.0% 0.0% -0.0% -0.0% -0.0% gamteb -0.0% 0.0% -0.0% -0.0% -0.0% gcd -0.0% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0% genfft -0.0% 0.0% -0.0% -0.0% -0.0% gg -0.0% 0.0% -0.0% -0.0% -0.0% grep -0.0% 0.0% -0.0% -0.0% -0.0% hidden -0.0% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.0% 0.0% -0.0% -0.0% -0.0% infer -0.0% 0.0% -0.0% -0.0% -0.0% integer -0.0% 0.0% -0.0% -0.0% -0.0% integrate -0.0% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0% kahan -0.0% 0.0% -0.0% -0.0% -0.0% knights -0.0% 0.0% -0.0% -0.0% -0.0% lambda -0.0% 0.0% -0.0% -0.0% -0.0% last-piece -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% life -0.0% 0.0% -0.0% -0.0% -0.0% lift -0.0% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.0% 0.0% -0.0% -0.0% -0.0% listcopy -0.0% 0.0% -0.0% -0.0% -0.0% maillist -0.0% 0.0% -0.0% -0.0% -0.0% mandel -0.0% 0.0% -0.0% -0.0% -0.0% mandel2 -0.0% 0.0% -0.0% -0.0% -0.0% mate -0.0% 0.0% -0.0% -0.0% -0.0% minimax -0.0% 0.0% -0.0% -0.0% -0.0% mkhprog -0.0% 0.0% -0.0% -0.0% -0.0% multiplier -0.0% 0.0% -0.0% -0.0% -0.0% n-body -0.0% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0% para -0.0% 0.0% -0.0% -0.0% -0.0% paraffins -0.0% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.0% 0.0% -0.0% -0.0% -0.0% pidigits -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% pretty -0.0% 0.0% -0.3% -0.4% -0.4% primes -0.0% 0.0% -0.0% -0.0% -0.0% primetest -0.0% 0.0% -0.0% -0.0% -0.0% prolog -0.0% 0.0% -0.0% -0.0% -0.0% puzzle -0.0% 0.0% -0.0% -0.0% -0.0% queens -0.0% 0.0% -0.0% -0.0% -0.0% reptile -0.0% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0% rewrite -0.0% 0.0% -0.0% -0.0% -0.0% rfib -0.0% 0.0% -0.0% -0.0% -0.0% rsa -0.0% 0.0% -0.0% -0.0% -0.0% scc -0.0% 0.0% -0.3% -0.5% -0.4% sched -0.0% 0.0% -0.0% -0.0% -0.0% scs -0.0% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.0% 0.0% -0.0% -0.0% -0.0% sorting -0.0% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0% sphere -0.0% 0.0% -0.0% -0.0% -0.0% symalg -0.0% 0.0% -0.0% -0.0% -0.0% tak -0.0% 0.0% -0.0% -0.0% -0.0% transform -0.0% 0.0% -0.0% -0.0% -0.0% treejoin -0.0% 0.0% -0.0% -0.0% -0.0% typecheck -0.0% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.0% 0.0% -0.0% -0.0% -0.0% wave4main -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0% x2n1 -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.3% -0.5% -0.5% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- circsim -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% gc_bench -0.0% 0.0% -0.0% -0.0% -0.0% hash -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% spellcheck -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.0% -0.0% -0.0% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0% Manual inspection of programs in testsuite/tests/programs --------------------------------------------------------- I built these programs with a bunch of dump flags and `-O` and compared STG, Cmm, and Asm dumps and file sizes. (Below the numbers in parenthesis show number of modules in the program) These programs have identical compiler (same .hi and .o sizes, STG, and Cmm and Asm dumps): - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3), andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2), jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4), jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1), bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1), strict_anns (1), thurston-module-arith (2), okeefe_neural (1), joao-circular (6), 10queens (1) Programs with different compiler outputs: - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level `[Int]` closures as CAFFY for no reason. With this patch we no longer make them CAFFY and generate less SRT entries. For some reason Main.o is slightly larger with this patch (1.3%) and the executable sizes are the same. (I'd expect both to be smaller) - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the executable sizes are the same. - galois_raytrace (13): Differences are in the Parse module. There are a lot, but some of the changes are caused by the fact that for some reason (I think a bug) GHC HEAD marks the dictionary for `Functor Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the same. - north_array: We now generate less SRT entries because some of array primops used in this program like `NewArrayOp` get eliminated during Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24% larger (9224 bytes from 9000 bytes), executable sizes are the same. - seward-space-leak: Difference in this program is better shown by this smaller example: module Lib where data CDS = Case [CDS] [(Int, CDS)] | Call CDS CDS instance Eq CDS where Case sels1 rets1 == Case sels2 rets2 = sels1 == sels2 && rets1 == rets2 Call a1 b1 == Call a2 b2 = a1 == a2 && b1 == b2 _ == _ = False In this program GHC HEAD builds a new SRT for the recursive group of `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==` in its SRT field, and `==` uses the SRT object as its SRT. With this patch we use the closure for `/=` as the SRT and add `==` there. Then `/=` gets an empty SRT field and `==` points to `/=` in its SRT field. This change looks fine to me. Main.o gets 0.07% larger, executable sizes are identical. head.hackage ------------ head.hackage's CI script builds 428 packages from Hackage using this patch with no failures. Compiler performance -------------------- The compiler perf tests report that the compiler allocates slightly more (worst case observed so far is 4%). However most programs in the test suite are small, single file programs. To benchmark compiler performance on something more realistic I build Cabal (the library, 236 modules) with different optimisation levels. For the "max residency" row I run GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows are generated with just `-s`. (This is because `-i0` causes running GC much more frequently and as a result "bytes copied" gets inflated by more than 25x in some cases) * -O0 | | GHC HEAD | This MR | Diff | | --------------- | -------------- | -------------- | ------ | | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% | | Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% | | Max residency | 421,225,624 | 424,324,264 | +0.73% | * -O1 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% | | Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% | | Max residency | 982,643,440 | 991,663,432 | +0.91% | * -O2 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% | | Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% | | Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% | Extra compiler allocations -------------------------- Runtime allocations of programs are as reported above (NoFib section). The compiler now allocates more than before. Main source of allocation in this patch compared to base commit is the new SRT algorithm (GHC.Cmm.Info.Build). Below is some of the extra work we do with this patch, numbers generated by profiled stage 2 compiler when building a pathological case (the test 'ManyConstructors') with '-O2': - We now sort the final STG for a module, which means traversing the entire program, generating free variable set for each top-level binding, doing SCC analysis, and re-ordering the program. In ManyConstructors this step allocates 97,889,952 bytes. - We now do SRT analysis on static data, which in a program like ManyConstructors causes analysing 10,000 bindings that we would previously just skip. This step allocates 70,898,352 bytes. - We now maintain an SRT map for the entire module as we compile Cmm groups: data ModuleSRTInfo = ModuleSRTInfo { ... , moduleSRTMap :: SRTMap } (SRTMap is just a strict Map from the 'containers' library) This map gets an entry for most bindings in a module (exceptions are THUNKs and CAFFY static functions). For ManyConstructors this map gets 50015 entries. - Once we're done with code generation we generate a NameSet from SRTMap for the non-CAFFY names in the current module. This set gets the same number of entries as the SRTMap. - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using the NameSet generated in the previous step. This usually does the least amount of allocation among the work listed here. Only place with this patch where we do less work in the CAF analysis in the tidying pass (CoreTidy). However that doesn't save us much, as the pass still needs to traverse the whole program and update IdInfos for other reasons. Only thing we don't here do is the `hasCafRefs` pass over the RHS of bindings, which is a stateless pass that returns a boolean value, so it doesn't allocate much. (Metric changes blow are all increased allocations) Metric changes -------------- Metric Increase: ManyAlternatives ManyConstructors T13035 T14683 T1969 T9961
* Module hierarchy: Cmm (cf #13009)Sylvain Henry2020-01-251-6/+6
|
* Fix typos, using Wikipedia list of common typosBrian Wignall2019-11-281-1/+1
|
* Fix bug in the x86 backend involving the CFG.Andreas Klebinger2019-10-231-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is part two of fixing #17334. There are two parts to this commit: - A bugfix for computing loop levels - A bugfix of basic block invariants in the NCG. ----------------------------------------------------------- In the first bug we ended up with a CFG of the sort: [A -> B -> C] This was represented via maps as fromList [(A,B),(B,C)] and later transformed into a adjacency array. However the transformation did not include block C in the array (since we only looked at the keys of the map). This was still fine until we tried to look up successors for C and tried to read outside of the array bounds when accessing C. In order to prevent this in the future I refactored to code to include all nodes as keys in the map representation. And make this a invariant which is checked in a few places. Overall I expect this to make the code more robust as now any failed lookup will represent an error, versus failed lookups sometimes being expected and sometimes not. In terms of performance this makes some things cheaper (getting a list of all nodes) and others more expensive (adding a new edge). Overall this adds up to no noteable performance difference. ----------------------------------------------------------- Part 2: When the NCG generated a new basic block, it did not always insert a NEWBLOCK meta instruction in the stream which caused a quite subtle bug. During instruction selection a statement `s` in a block B with control of the sort: B -> C will sometimes result in control flow of the sort: ┌ < ┐ v ^ B -> B1 ┴ -> C as is the case for some atomic operations. Now to keep the CFG in sync when introducing B1 we clearly want to insert it between B and C. However there is a catch when we have to deal with self loops. We might start with code and a CFG of these forms: loop: stmt1 ┌ < ┐ .... v ^ stmtX loop ┘ stmtY .... goto loop: Now we introduce B1: ┌ ─ ─ ─ ─ ─┐ loop: │ ┌ < ┐ │ instrs v │ │ ^ .... loop ┴ B1 ┴ ┘ instrsFromX stmtY goto loop: This is simple, all outgoing edges from loop now simply start from B1 instead and the code generator knows which new edges it introduced for the self loop of B1. Disaster strikes if the statement Y follows the same pattern. If we apply the same rule that all outgoing edges change then we end up with: loop ─> B1 ─> B2 ┬─┐ │ │ └─<┤ │ │ └───<───┘ │ └───────<────────┘ This is problematic. The edge B1->B1 is modified as expected. However the modification is wrong! The assembly in this case looked like this: _loop: <instrs> _B1: ... cmpxchgq ... jne _B1 <instrs> <end _B1> _B2: ... cmpxchgq ... jne _B2 <instrs> jmp loop There is no edge _B2 -> _B1 here. It's still a self loop onto _B1. The problem here is that really B1 should be two basic blocks. Otherwise we have control flow in the *middle* of a basic block. A contradiction! So to account for this we add yet another basic block marker: _B: <instrs> _B1: ... cmpxchgq ... jne _B1 jmp _B1' _B1': <instrs> <end _B1> _B2: ... Now when inserting B2 we will only look at the outgoing edges of B1' and everything will work out nicely. You might also wonder why we don't insert jumps at the end of _B1'. There is no way another block ends up jumping to the labels _B1 or _B2 since they are essentially invisible to other blocks. View them as control flow labels local to the basic block if you'd like. Not doing this ultimately caused (part 2 of) #17334.
* Remove empty NCG.hJohn Ericson2019-09-131-1/+0
|
* Module hierarchy: StgToCmm (#13009)Sylvain Henry2019-09-101-1/+1
| | | | | | Add StgToCmm module hierarchy. Platform modules that are used in several other places (NCG, LLVM codegen, Cmm transformations) are put into GHC.Platform.
* Revert "Add support for SIMD operations in the NCG"Ben Gamari2019-07-161-81/+0
| | | | | | | Unfortunately this will require more work; register allocation is quite broken. This reverts commit acd795583625401c5554f8e04ec7efca18814011.
* Add support for SIMD operations in the NCGAbhiroop Sarkar2019-07-031-0/+81
| | | | | | | This adds support for constructing vector types from Float#, Double# etc and performing arithmetic operations on them Cleaned-Up-By: Ben Gamari <ben@well-typed.com>
* Move 'Platform' to ghc-bootJohn Ericson2019-06-191-1/+1
| | | | | | | ghc-pkg needs to be aware of platforms so it can figure out which subdire within the user package db to use. This is admittedly roundabout, but maybe Cabal could use the same notion of a platform as GHC to good affect too.
* removing x87 register support from native code genCarter Schonwald2019-04-101-152/+18
| | | | | | | | | | | | | | | | * simplifies registers to have GPR, Float and Double, by removing the SSE2 and X87 Constructors * makes -msse2 assumed/default for x86 platforms, fixing a long standing nondeterminism in rounding behavior in 32bit haskell code * removes the 80bit floating point representation from the supported float sizes * theres still 1 tiny bit of x87 support needed, for handling float and double return values in FFI calls wrt the C ABI on x86_32, but this one piece does not leak into the rest of NCG. * Lots of code thats not been touched in a long time got deleted as a consequence of all of this all in all, this change paves the way towards a lot of future further improvements in how GHC handles floating point computations, along with making the native code gen more accessible to a larger pool of contributors.
* Stack: fix name mangling.Tamar Christina2019-02-091-1/+1
|
* Allow resizing the stack for the graph allocator.klebinger.andreas@gmx.at2019-02-081-0/+2
| | | | | | | | | | The graph allocator now dynamically resizes the number of stack slots when running into the limit. This fixes #8657. Also loop membership of basic blocks is now available in the register allocator for cost heuristics.
* Compile count{Leading,Trailing}Zeros to corresponding x86_64 instructions ↵Dmitry Ivanov2019-01-301-0/+6
| | | | | | | under -mbmi2 This works similarly to existing implementation for popCount. Trac ticket: #16086.
* Revert "Batch merge"Ben Gamari2019-01-301-6/+0
| | | | This reverts commit 76c8fd674435a652c75a96c85abbf26f1f221876.
* Batch mergeBen Gamari2019-01-301-0/+6
|
* NCG: New code layout algorithm.Andreas Klebinger2018-11-171-5/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: This patch implements a new code layout algorithm. It has been tested for x86 and is disabled on other platforms. Performance varies slightly be CPU/Machine but in general seems to be better by around 2%. Nofib shows only small differences of about +/- ~0.5% overall depending on flags/machine performance in other benchmarks improved significantly. Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec, containers, text and xeno. While the magnitude of gains differed three different CPUs where tested with all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell, Skylake * Library benchmark results summarized: * containers: ~1.5% faster * aeson: ~2% faster * megaparsec: ~2-5% faster * xml library benchmarks: 0.2%-1.1% faster * vector-benchmarks: 1-4% faster * text: 5.5% faster On average GHC compile times go down, as GHC compiled with the new layout is faster than the overhead introduced by using the new layout algorithm, Things this patch does: * Move code responsilbe for block layout in it's own module. * Move the NcgImpl Class into the NCGMonad module. * Extract a control flow graph from the input cmm. * Update this cfg to keep it in sync with changes during asm codegen. This has been tested on x64 but should work on x86. Other platforms still use the old codelayout. * Assign weights to the edges in the CFG based on type and limited static analysis which are then used for block layout. * Once we have the final code layout eliminate some redundant jumps. In particular turn a sequences of: jne .foo jmp .bar foo: into je bar foo: .. Test Plan: ci Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott Reviewed By: RyanGlScott Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton GHC Trac Issues: #15124 Differential Revision: https://phabricator.haskell.org/D4726
* Add Int8# and Word8#Michal Terepeta2018-11-021-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step of implementing: https://github.com/ghc-proposals/ghc-proposals/pull/74 The main highlights/changes: primops.txt.pp gets two new sections for two new primitive types for signed and unsigned 8-bit integers (Int8# and Word8 respectively) along with basic arithmetic and comparison operations. PrimRep/RuntimeRep get two new constructors for them. All of the primops translate into the existing MachOPs. For CmmCalls the codegen will now zero-extend the values at call site (so that they can be moved to the right register) and then truncate them back their original width. x86 native codegen needed some updates, since it wasn't able to deal with the new widths, but all the changes are quite localized. LLVM backend seems to just work. This is the second attempt at merging this, after the first attempt in D4475 had to be backed out due to regressions on i386. Bumps binary submodule. Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate (on both x86-{32,64}) Reviewers: bgamari, hvr, goldfire, simonmar Subscribers: rwbarton, carter Differential Revision: https://phabricator.haskell.org/D5258
* Revert "Add Int8# and Word8#"Ben Gamari2018-10-091-7/+1
| | | | | | | | | This unfortunately broke i386 support since it introduced references to byte-sized registers that don't exist on that architecture. Reverts binary submodule This reverts commit 5d5307f943d7581d7013ffe20af22233273fba06.
* Add Int8# and Word8#Michal Terepeta2018-10-071-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step of implementing: https://github.com/ghc-proposals/ghc-proposals/pull/74 The main highlights/changes: - `primops.txt.pp` gets two new sections for two new primitive types for signed and unsigned 8-bit integers (`Int8#` and `Word8` respectively) along with basic arithmetic and comparison operations. `PrimRep`/`RuntimeRep` get two new constructors for them. All of the primops translate into the existing `MachOP`s. - For `CmmCall`s the codegen will now zero-extend the values at call site (so that they can be moved to the right register) and then truncate them back their original width. - x86 native codegen needed some updates, since it wasn't able to deal with the new widths, but all the changes are quite localized. LLVM backend seems to just work. Bumps binary submodule. Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate with new tests Reviewers: hvr, goldfire, bgamari, simonmar Subscribers: Abhiroop, dfeuer, rwbarton, thomie, carter Differential Revision: https://phabricator.haskell.org/D4475
* stack: fix stack allocations on WindowsTamar Christina2018-07-181-11/+89
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: On Windows one is not allowed to drop the stack by more than a page size. The reason for this is that the OS only allocates enough stack till what the TEB specifies. After that a guard page is placed and the rest of the virtual address space is unmapped. The intention is that doing stack allocations will cause you to hit the guard which will then map the next page in and move the guard. This is done to prevent what in the Linux world is known as stack clash vulnerabilities https://access.redhat.com/security/cve/cve-2017-1000364. There are modules in GHC for which the liveliness analysis thinks the reserved 8KB of spill slots isn't enough. One being DynFlags and the other being Cabal. Though I think the Cabal one is likely a bug: ``` 4d6544: 81 ec 00 46 00 00 sub $0x4600,%esp 4d654a: 8d 85 94 fe ff ff lea -0x16c(%ebp),%eax 4d6550: 3b 83 1c 03 00 00 cmp 0x31c(%ebx),%eax 4d6556: 0f 82 de 8d 02 00 jb 4ff33a <_cLpg_info+0x7a> 4d655c: c7 45 fc 14 3d 50 00 movl $0x503d14,-0x4(%ebp) 4d6563: 8b 75 0c mov 0xc(%ebp),%esi 4d6566: 83 c5 fc add $0xfffffffc,%ebp 4d6569: 66 f7 c6 03 00 test $0x3,%si 4d656e: 0f 85 a6 d7 02 00 jne 503d1a <_cLpb_info+0x6> 4d6574: 81 c4 00 46 00 00 add $0x4600,%esp ``` It allocates nearly 18KB of spill slots for a simple 4 line function and doesn't even use it. Note that this doesn't happen on x64 or when making a validate build. Only when making a build without a validate and build.mk. This and the allocation in DynFlags means the stack allocation will jump over the guard page into unmapped memory areas and GHC or an end program segfaults. The pagesize on x86 Windows is 4KB which means we hit it very easily for these two modules, which explains the total DOA of GHC 32bit for the past 3 releases and the "random" segfaults on Windows. ``` 0:000> bp 00503d29 0:000> gn Breakpoint 0 hit WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40 eip=00503d29 esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202 setup+0x103d29: 00503d29 89442440 mov dword ptr [esp+40h],eax ss:002b:013e973c=???????? WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. 0:000> !teb TEB at 00384000 ExceptionList: 013effcc StackBase: 013f0000 StackLimit: 013eb000 ``` This doesn't fix the liveliness analysis but does fix the allocations, by emitting a function call to `__chkstk_ms` when doing allocations of larger than a page, this will make sure the stack is probed every page so the kernel maps in the next page. `__chkstk_ms` is provided by `libGCC`, which is under the `GNU runtime exclusion license`, so it's safe to link against it, even for proprietary code. (Technically we already do since we link compiled C code in.) For allocations smaller than a page we drop the stack and probe the new address. This avoids the function call and still makes sure we hit the guard if needed. PS: In case anyone is Wondering why we didn't notice this before, it's because we only test x86_64 and on Windows 10. On x86_64 the page size is 8KB and also the kernel is a bit more lenient on Windows 10 in that it seems to catch the segfault and resize the stack if it was unmapped: ``` 0:000> t eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40 eip=00503d2d esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202 setup+0x103d2d: 00503d2d 8b461b mov eax,dword ptr [esi+1Bh] ds:002b:03b6b9e4=03cac431 0:000> !teb TEB at 00384000 ExceptionList: 013effcc StackBase: 013f0000 StackLimit: 013e9000 ``` Likely Windows 10 has a guard page larger than previous versions. This fixes the stack allocations, and as soon as I get the time I will look at the liveliness analysis. I find it highly unlikely that simple Cabal function requires ~2200 spill slots. Test Plan: ./validate Reviewers: simonmar, bgamari Reviewed By: bgamari Subscribers: AndreasK, rwbarton, thomie, carter GHC Trac Issues: #15154 Differential Revision: https://phabricator.haskell.org/D4917
* Change jump targets in JMP_TBL from blocks to X86.JumpDest.Andreas Klebinger2018-05-301-10/+12
| | | | | | | | | | | | | | | | | | | | | Jump tables always point to blocks when we first generate them. However there are rare situations where we can shortcut one of these blocks to a static address during the asm shortcutting pass. While we already updated the data section accordingly this patch also extends this to the references stored in JMP_TBL. Test Plan: ci Reviewers: bgamari Reviewed By: bgamari Subscribers: thomie, carter GHC Trac Issues: #15104 Differential Revision: https://phabricator.haskell.org/D4595
* Allow CmmLabelDiffOff with different widthsSimon Marlow2018-05-161-2/+2
| | | | | | | | | | | | | | | | | | Summary: This change makes it possible to generate a static 32-bit relative label offset on x86_64. Currently we can only generate word-sized label offsets. This will be used in D4634 to shrink info tables. See D4632 for more details. Test Plan: See D4632 Reviewers: bgamari, niteria, michalt, erikd, jrtc27, osa1 Subscribers: thomie, carter Differential Revision: https://phabricator.haskell.org/D4633
* Update JMP_TBL targets during shortcutting in X86 NCG.Andreas Klebinger2018-04-131-8/+20
| | | | | | | | | | | | | | | | | | | | | | Without updating the JMP_TBL information the block list in JMP_TBL contained blocks which were eliminated in some circumstances. The actual assembly generation doesn't look at these fields so this didn't cause any bugs yet. However as long as we carry this information around we should make an effort to keep it correct. Especially since it's useful for debugging purposes and can be used for passes near the end of the codegen pipeline. In particular it's used by jumpDestsOfInstr which without these changes returns the wrong destinations. Test Plan: ci Reviewers: bgamari Subscribers: thomie, carter Differential Revision: https://phabricator.haskell.org/D4566
* Add new mbmi and mbmi2 compiler flagsJohn Ky2018-01-211-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the bit deposit and extraction operations provided by the BMI and BMI2 instruction set extensions on modern amd64 machines. Implement x86 code generator for pdep and pext. Properly initialise bmiVersion field. pdep and pext test cases Fix pattern match for pdep and pext instructions Fix build of pdep and pext code for 32-bit architectures Test Plan: Validate Reviewers: austin, simonmar, bgamari, angerman Reviewed By: bgamari Subscribers: trommler, carter, angerman, thomie, rwbarton, newhoggy GHC Trac Issues: #14206 Differential Revision: https://phabricator.haskell.org/D4236
* cmm: Use LocalBlockLabel instead of AsmTempLabel to represent blocksBen Gamari2017-11-281-4/+4
| | | | | | | | | | blockLbl was originally changed in 8b007abbeb3045900a11529d907a835080129176 to use mkTempAsmLabel to fix an inconsistency resulting in #14221. However, this breaks the C code generator, which doesn't support AsmTempLabels (#14454). Instead let's try going the other direction: use a new CLabel variety, LocalBlockLabel. Then we can teach the C code generator to deal with these as well.
* Revert "Add new mbmi and mbmi2 compiler flags"Ben Gamari2017-11-221-9/+0
| | | | | | This broke the 32-bit build. This reverts commit f5dc8ccc29429d0a1d011f62b6b430f6ae50290c.
* Add new mbmi and mbmi2 compiler flagsJohn Ky2017-11-151-0/+9
| | | | | | | | | | | | | | | | | This adds support for the bit deposit and extraction operations provided by the BMI and BMI2 instruction set extensions on modern amd64 machines. Test Plan: Validate Reviewers: austin, simonmar, bgamari, hvr, goldfire, erikd Reviewed By: bgamari Subscribers: goldfire, erikd, trommler, newhoggy, rwbarton, thomie GHC Trac Issues: #14206 Differential Revision: https://phabricator.haskell.org/D4063
* compiler: introduce custom "GhcPrelude" PreludeHerbert Valerio Riedel2017-09-191-0/+2
| | | | | | | | | | | | | | | | | | This switches the compiler/ component to get compiled with -XNoImplicitPrelude and a `import GhcPrelude` is inserted in all modules. This is motivated by the upcoming "Prelude" re-export of `Semigroup((<>))` which would cause lots of name clashes in every modulewhich imports also `Outputable` Reviewers: austin, goldfire, bgamari, alanz, simonmar Reviewed By: bgamari Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari Differential Revision: https://phabricator.haskell.org/D3989
* Hoopl: remove dependency on Hoopl packageMichal Terepeta2017-06-231-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This copies the subset of Hoopl's functionality needed by GHC to `cmm/Hoopl` and removes the dependency on the Hoopl package. The main motivation for this change is the confusing/noisy interface between GHC and Hoopl: - Hoopl has `Label` which is GHC's `BlockId` but different than GHC's `CLabel` - Hoopl has `Unique` which is different than GHC's `Unique` - Hoopl has `Unique{Map,Set}` which are different than GHC's `Uniq{FM,Set}` - GHC has its own specialized copy of `Dataflow`, so `cmm/Hoopl` is needed just to filter the exposed functions (filter out some of the Hoopl's and add the GHC ones) With this change, we'll be able to simplify this significantly. It'll also be much easier to do invasive changes (Hoopl is a public package on Hackage with users that depend on the current behavior) This should introduce no changes in functionality - it merely copies the relevant code. Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate Reviewers: austin, bgamari, simonmar Reviewed By: bgamari, simonmar Subscribers: simonpj, kavon, rwbarton, thomie Differential Revision: https://phabricator.haskell.org/D3616
* nativeGen: Use SSE2 SQRT instructionBen Gamari2017-04-281-1/+3
| | | | | | | | | | Reviewers: austin, dfeuer Subscribers: dfeuer, rwbarton, thomie GHC Trac Issues: #13629 Differential Revision: https://phabricator.haskell.org/D3508
* Debug: Use local symbols for unwind points (#13278)Ben Gamari2017-02-141-1/+1
| | | | | | | | | | | | | | | | | | | While this apparently didn't matter on Linux, the OS X toolchain seems to treat local and external symbols differently during linking. Namely, the linker assumes that an external symbol marks the beginning of a new, unused procedure, and consequently drops it. Fixes regression introduced in D2741. Test Plan: `debug` testcase on OS X Reviewers: austin, simonmar, rwbarton Reviewed By: rwbarton Subscribers: rwbarton, thomie Differential Revision: https://phabricator.haskell.org/D3135
* Generalize CmmUnwind and pass unwind information through NCGBen Gamari2017-02-081-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As discussed in D1532, Trac Trac #11337, and Trac Trac #11338, the stack unwinding information produced by GHC is currently quite approximate. Essentially we assume that register values do not change at all within a basic block. While this is somewhat true in normal Haskell code, blocks containing foreign calls often break this assumption. This results in unreliable call stacks, especially in the code containing foreign calls. This is worse than it sounds as unreliable unwinding information can at times result in segmentation faults. This patch set attempts to improve this situation by tracking unwinding information with finer granularity. By dispensing with the assumption of one unwinding table per block, we allow the compiler to accurately represent the areas surrounding foreign calls. Towards this end we generalize the representation of unwind information in the backend in three ways, * Multiple CmmUnwind nodes can occur per block * CmmUnwind nodes can now carry unwind information for multiple registers (while not strictly necessary; this makes emitting unwinding information a bit more convenient in the compiler) * The NCG backend is given an opportunity to modify the unwinding records since it may need to make adjustments due to, for instance, native calling convention requirements for foreign calls (see #11353). This sets the stage for resolving #11337 and #11338. Test Plan: Validate Reviewers: scpmw, simonmar, austin, erikd Subscribers: qnikst, thomie Differential Revision: https://phabricator.haskell.org/D2741
* BlockId: remove BlockMap and BlockSet synonymsMichal Terepeta2016-12-081-2/+3
| | | | | | | | | | | | | | | | | | | | This continues removal of `BlockId` module in favor of Hoopl's `Label`. Most of the changes here are mechanical, apart from the orphan `Outputable` instances for `LabelMap` and `LabelSet`. For now I've moved them to `cmm/Hoopl`, since it's already trying to manage all imports from Hoopl (to avoid any collisions). Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: validate Reviewers: bgamari, austin, simonmar Reviewed By: simonmar Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D2800
* Delete FastBoolThomas Miedema2015-08-211-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverses some of the work done in Trac #1405, and assumes GHC is smart enough to do its own unboxing of booleans now. I would like to do some more performance measurements, but the code changes can be reviewed already. Test Plan: With a perf build: ./inplace/bin/ghc-stage2 nofib/spectral/simple/Main.hs -fforce-recomp +RTS -t --machine-readable before: ``` [("bytes allocated", "1300744864") ,("num_GCs", "302") ,("average_bytes_used", "8811118") ,("max_bytes_used", "24477464") ,("num_byte_usage_samples", "9") ,("peak_megabytes_allocated", "64") ,("init_cpu_seconds", "0.001") ,("init_wall_seconds", "0.001") ,("mutator_cpu_seconds", "2.833") ,("mutator_wall_seconds", "4.283") ,("GC_cpu_seconds", "0.960") ,("GC_wall_seconds", "0.961") ] ``` after: ``` [("bytes allocated", "1301088064") ,("num_GCs", "310") ,("average_bytes_used", "8820253") ,("max_bytes_used", "24539904") ,("num_byte_usage_samples", "9") ,("peak_megabytes_allocated", "64") ,("init_cpu_seconds", "0.001") ,("init_wall_seconds", "0.001") ,("mutator_cpu_seconds", "2.876") ,("mutator_wall_seconds", "4.474") ,("GC_cpu_seconds", "0.965") ,("GC_wall_seconds", "0.979") ] ``` CPU time seems to be up a bit, but I'm not sure. Unfortunately CPU time measurements are rather noisy. Reviewers: austin, bgamari, rwbarton Subscribers: nomeata Differential Revision: https://phabricator.haskell.org/D1143 GHC Trac Issues: #1405
* Fix todo in compiler/nativeGen: Rename Size to Formatmarkus2015-07-071-127/+127
| | | | | | | | | | | | | | | | | | This commit renames the Size module in the native code generator to Format, as proposed by a todo, as well as adjusting parameter names in other modules that use it. Test Plan: validate Reviewers: austin, simonmar, bgamari Reviewed By: simonmar, bgamari Subscribers: bgamari, simonmar, thomie Projects: #ghc Differential Revision: https://phabricator.haskell.org/D865
* Generate .loc/.file directives from source ticksPeter Wortmann2014-12-161-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | This generates DWARF, albeit indirectly using the assembler. This is the easiest (and, apparently, quite standard) method of generating the .debug_line DWARF section. Notes: * Note we have to make sure that .file directives appear correctly before the respective .loc. Right now we ppr them manually, which makes them absent from dumps. Fixing this would require .file to become a native instruction. * We have to pass a lot of things around the native code generator. I know Ian did quite a bit of refactoring already, but having one common monad could *really* simplify things here... * To support SplitObjcs, we need to emit/reset all DWARF data at every split. We use the occassion to move split marker generation to cmmNativeGenStream as well, so debug data extraction doesn't have to choke on it. (From Phabricator D396)
* Per-thread allocation counters and limitsSimon Marlow2014-11-121-0/+3
| | | | | | | | This reverts commit f0fcc41d755876a1b02d1c7c79f57515059f6417. New changes: now works on 32-bit platforms too. I added some basic support for 64-bit subtraction and comparison operations to the x86 NCG.
* Stop exporting, and stop using, functions marked as deprecatedThomas Miedema2014-09-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Don't export `getUs` and `getUniqueUs`. `UniqSM` has a `MonadUnique` instance: instance MonadUnique UniqSM where getUniqueSupplyM = getUs getUniqueM = getUniqueUs getUniquesM = getUniquesUs Commandline-fu used: git grep -l 'getUs\>' | grep -v compiler/basicTypes/UniqSupply.lhs | xargs sed -i 's/getUs/getUniqueSupplyM/g git grep -l 'getUniqueUs\>' | grep -v combiler/basicTypes/UniqSupply.lhs | xargs sed -i 's/getUniqueUs/getUniqueM/g' Follow up on b522d3a3f970a043397a0d6556ca555648e7a9c3 Reviewed By: austin, hvr Differential Revision: https://phabricator.haskell.org/D220
* `M-x delete-trailing-whitespace` & `M-x untabify`...Herbert Valerio Riedel2014-08-311-2/+2
| | | | | | ...some files more or less recently touched by me [ci skip]
* Add MO_AddIntC, MO_SubIntC MachOps and implement in X86 backendReid Barton2014-08-231-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | Summary: These MachOps are used by addIntC# and subIntC#, which in turn are used in integer-gmp when adding or subtracting small Integers. The following benchmark shows a ~6% speedup after this commit on x86_64 (building GHC with BuildFlavour=perf). {-# LANGUAGE MagicHash #-} import GHC.Exts import Criterion.Main count :: Int -> Integer count (I# n#) = go n# 0 where go :: Int# -> Integer -> Integer go 0# acc = acc go n# acc = go (n# -# 1#) $! acc + 1 main = defaultMain [bgroup "count" [bench "100" $ whnf count 100]] Differential Revision: https://phabricator.haskell.org/D140
* Add CMOVcc insns to x86 NCGHerbert Valerio Riedel2014-08-121-0/+3
| | | | | | | | | | | | | | This is a pre-requisite for implementing count-{leading,trailing}-zero prim-ops (re #9340) and may be useful to NCG to help turn some code into branch-less code sequences. Test Plan: Compiles and validates in combination with clz/ctz primop impl Reviewers: ezyang, rwbarton, simonmar, austin Subscribers: simonmar, relrod, ezyang, carter Differential Revision: https://phabricator.haskell.org/D141
* Add bit scan {forward,reverse} insns to x86 NCGHerbert Valerio Riedel2014-08-121-2/+8
| | | | | | | | | | | This is a pre-requisite for implementing count-{leading,trailing}-zero prim-ops (re #9340) Reviewers: ezyang, rwbarton, simonmar, austin Subscribers: simonmar, relrod, ezyang, carter Differential Revision: https://phabricator.haskell.org/D141
* x86: Always generate add instruction in MO_Add2 (#9013)Reid Barton2014-08-111-0/+8
| | | | | | | | | | | | | Test Plan: - ran validate - ran T9013 test with all ways - ran CarryOverflow test with all ways, for good measure Reviewers: austin, simonmar Reviewed By: simonmar Differential Revision: https://phabricator.haskell.org/D137
* Add missing memory fence to atomicWriteIntArray#Johan Tibell2014-07-231-0/+3
|
* X86 codegen: make LOCK a real instruction prefixJohan Tibell2014-07-231-3/+3
| | | | | | | | | | Before LOCK was a separate instruction and this led to the register allocator separating it from the instruction it was supposed to be a prefix of, leading to illegal assembly such as lock mov Fix contributed by PÁLI Gábor János.
* Re-add more primops for atomic ops on byte arraysJohan Tibell2014-06-301-1/+37
| | | | | | | | | | | | | | | | | | | | | | | This is the second attempt to add this functionality. The first attempt was reverted in 950fcae46a82569e7cd1fba1637a23b419e00ecd, due to register allocator failure on x86. Given how the register allocator currently works, we don't have enough registers on x86 to support cmpxchg using complicated addressing modes. Instead we fall back to a simpler addressing mode on x86. Adds the following primops: * atomicReadIntArray# * atomicWriteIntArray# * fetchSubIntArray# * fetchOrIntArray# * fetchXorIntArray# * fetchAndIntArray# Makes these pre-existing out-of-line primops inline: * fetchAddIntArray# * casIntArray#
* Revert "Add more primops for atomic ops on byte arrays"Johan Tibell2014-06-261-37/+1
| | | | | | | | This commit caused the register allocator to fail on i386. This reverts commit d8abf85f8ca176854e9d5d0b12371c4bc402aac3 and 04dd7cb3423f1940242fdfe2ea2e3b8abd68a177 (the second being a fix to the first).
* Add more primops for atomic ops on byte arraysJohan Tibell2014-06-241-1/+37
| | | | | | | | | | | | | | | | | | | Summary: Add more primops for atomic ops on byte arrays Adds the following primops: * atomicReadIntArray# * atomicWriteIntArray# * fetchSubIntArray# * fetchOrIntArray# * fetchXorIntArray# * fetchAndIntArray# Makes these pre-existing out-of-line primops inline: * fetchAddIntArray# * casIntArray#