| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes all CafInfo predictions and various hacks to preserve
predicted CafInfos from the compiler and assigns final CafInfos to
interface Ids after code generation. SRT analysis is extended to support
static data, and Cmm generator is modified to allow generating
static_link fields after SRT analysis.
This also fixes `-fcatch-bottoms`, which introduces error calls in case
expressions in CorePrep, which runs *after* CoreTidy (which is where we
decide on CafInfos) and turns previously non-CAFFY things into CAFFY.
Fixes #17648
Fixes #9718
Evaluation
==========
NoFib
-----
Boot with: `make boot mode=fast`
Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1`
--------------------------------------------------------------------------------
Program Size Allocs Instrs Reads Writes
--------------------------------------------------------------------------------
CS -0.0% 0.0% -0.0% -0.0% -0.0%
CSD -0.0% 0.0% -0.0% -0.0% -0.0%
FS -0.0% 0.0% -0.0% -0.0% -0.0%
S -0.0% 0.0% -0.0% -0.0% -0.0%
VS -0.0% 0.0% -0.0% -0.0% -0.0%
VSD -0.0% 0.0% -0.0% -0.0% -0.5%
VSM -0.0% 0.0% -0.0% -0.0% -0.0%
anna -0.1% 0.0% -0.0% -0.0% -0.0%
ansi -0.0% 0.0% -0.0% -0.0% -0.0%
atom -0.0% 0.0% -0.0% -0.0% -0.0%
awards -0.0% 0.0% -0.0% -0.0% -0.0%
banner -0.0% 0.0% -0.0% -0.0% -0.0%
bernouilli -0.0% 0.0% -0.0% -0.0% -0.0%
binary-trees -0.0% 0.0% -0.0% -0.0% -0.0%
boyer -0.0% 0.0% -0.0% -0.0% -0.0%
boyer2 -0.0% 0.0% -0.0% -0.0% -0.0%
bspt -0.0% 0.0% -0.0% -0.0% -0.0%
cacheprof -0.0% 0.0% -0.0% -0.0% -0.0%
calendar -0.0% 0.0% -0.0% -0.0% -0.0%
cichelli -0.0% 0.0% -0.0% -0.0% -0.0%
circsim -0.0% 0.0% -0.0% -0.0% -0.0%
clausify -0.0% 0.0% -0.0% -0.0% -0.0%
comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0%
compress -0.0% 0.0% -0.0% -0.0% -0.0%
compress2 -0.0% 0.0% -0.0% -0.0% -0.0%
constraints -0.0% 0.0% -0.0% -0.0% -0.0%
cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0%
cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0%
cse -0.0% 0.0% -0.0% -0.0% -0.0%
digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0%
digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0%
dom-lt -0.0% 0.0% -0.0% -0.0% -0.0%
eliza -0.0% 0.0% -0.0% -0.0% -0.0%
event -0.0% 0.0% -0.0% -0.0% -0.0%
exact-reals -0.0% 0.0% -0.0% -0.0% -0.0%
exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0%
expert -0.0% 0.0% -0.0% -0.0% -0.0%
fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0%
fasta -0.0% 0.0% -0.0% -0.0% -0.0%
fem -0.0% 0.0% -0.0% -0.0% -0.0%
fft -0.0% 0.0% -0.0% -0.0% -0.0%
fft2 -0.0% 0.0% -0.0% -0.0% -0.0%
fibheaps -0.0% 0.0% -0.0% -0.0% -0.0%
fish -0.0% 0.0% -0.0% -0.0% -0.0%
fluid -0.1% 0.0% -0.0% -0.0% -0.0%
fulsom -0.0% 0.0% -0.0% -0.0% -0.0%
gamteb -0.0% 0.0% -0.0% -0.0% -0.0%
gcd -0.0% 0.0% -0.0% -0.0% -0.0%
gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0%
genfft -0.0% 0.0% -0.0% -0.0% -0.0%
gg -0.0% 0.0% -0.0% -0.0% -0.0%
grep -0.0% 0.0% -0.0% -0.0% -0.0%
hidden -0.0% 0.0% -0.0% -0.0% -0.0%
hpg -0.1% 0.0% -0.0% -0.0% -0.0%
ida -0.0% 0.0% -0.0% -0.0% -0.0%
infer -0.0% 0.0% -0.0% -0.0% -0.0%
integer -0.0% 0.0% -0.0% -0.0% -0.0%
integrate -0.0% 0.0% -0.0% -0.0% -0.0%
k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0%
kahan -0.0% 0.0% -0.0% -0.0% -0.0%
knights -0.0% 0.0% -0.0% -0.0% -0.0%
lambda -0.0% 0.0% -0.0% -0.0% -0.0%
last-piece -0.0% 0.0% -0.0% -0.0% -0.0%
lcss -0.0% 0.0% -0.0% -0.0% -0.0%
life -0.0% 0.0% -0.0% -0.0% -0.0%
lift -0.0% 0.0% -0.0% -0.0% -0.0%
linear -0.1% 0.0% -0.0% -0.0% -0.0%
listcompr -0.0% 0.0% -0.0% -0.0% -0.0%
listcopy -0.0% 0.0% -0.0% -0.0% -0.0%
maillist -0.0% 0.0% -0.0% -0.0% -0.0%
mandel -0.0% 0.0% -0.0% -0.0% -0.0%
mandel2 -0.0% 0.0% -0.0% -0.0% -0.0%
mate -0.0% 0.0% -0.0% -0.0% -0.0%
minimax -0.0% 0.0% -0.0% -0.0% -0.0%
mkhprog -0.0% 0.0% -0.0% -0.0% -0.0%
multiplier -0.0% 0.0% -0.0% -0.0% -0.0%
n-body -0.0% 0.0% -0.0% -0.0% -0.0%
nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0%
para -0.0% 0.0% -0.0% -0.0% -0.0%
paraffins -0.0% 0.0% -0.0% -0.0% -0.0%
parser -0.1% 0.0% -0.0% -0.0% -0.0%
parstof -0.1% 0.0% -0.0% -0.0% -0.0%
pic -0.0% 0.0% -0.0% -0.0% -0.0%
pidigits -0.0% 0.0% -0.0% -0.0% -0.0%
power -0.0% 0.0% -0.0% -0.0% -0.0%
pretty -0.0% 0.0% -0.3% -0.4% -0.4%
primes -0.0% 0.0% -0.0% -0.0% -0.0%
primetest -0.0% 0.0% -0.0% -0.0% -0.0%
prolog -0.0% 0.0% -0.0% -0.0% -0.0%
puzzle -0.0% 0.0% -0.0% -0.0% -0.0%
queens -0.0% 0.0% -0.0% -0.0% -0.0%
reptile -0.0% 0.0% -0.0% -0.0% -0.0%
reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0%
rewrite -0.0% 0.0% -0.0% -0.0% -0.0%
rfib -0.0% 0.0% -0.0% -0.0% -0.0%
rsa -0.0% 0.0% -0.0% -0.0% -0.0%
scc -0.0% 0.0% -0.3% -0.5% -0.4%
sched -0.0% 0.0% -0.0% -0.0% -0.0%
scs -0.0% 0.0% -0.0% -0.0% -0.0%
simple -0.1% 0.0% -0.0% -0.0% -0.0%
solid -0.0% 0.0% -0.0% -0.0% -0.0%
sorting -0.0% 0.0% -0.0% -0.0% -0.0%
spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0%
sphere -0.0% 0.0% -0.0% -0.0% -0.0%
symalg -0.0% 0.0% -0.0% -0.0% -0.0%
tak -0.0% 0.0% -0.0% -0.0% -0.0%
transform -0.0% 0.0% -0.0% -0.0% -0.0%
treejoin -0.0% 0.0% -0.0% -0.0% -0.0%
typecheck -0.0% 0.0% -0.0% -0.0% -0.0%
veritas -0.0% 0.0% -0.0% -0.0% -0.0%
wang -0.0% 0.0% -0.0% -0.0% -0.0%
wave4main -0.0% 0.0% -0.0% -0.0% -0.0%
wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0%
wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0%
x2n1 -0.0% 0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Min -0.1% 0.0% -0.3% -0.5% -0.5%
Max -0.0% 0.0% -0.0% -0.0% -0.0%
Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Program Size Allocs Instrs Reads Writes
--------------------------------------------------------------------------------
circsim -0.1% 0.0% -0.0% -0.0% -0.0%
constraints -0.0% 0.0% -0.0% -0.0% -0.0%
fibheaps -0.0% 0.0% -0.0% -0.0% -0.0%
gc_bench -0.0% 0.0% -0.0% -0.0% -0.0%
hash -0.0% 0.0% -0.0% -0.0% -0.0%
lcss -0.0% 0.0% -0.0% -0.0% -0.0%
power -0.0% 0.0% -0.0% -0.0% -0.0%
spellcheck -0.0% 0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Min -0.1% 0.0% -0.0% -0.0% -0.0%
Max -0.0% 0.0% -0.0% -0.0% -0.0%
Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0%
Manual inspection of programs in testsuite/tests/programs
---------------------------------------------------------
I built these programs with a bunch of dump flags and `-O` and compared
STG, Cmm, and Asm dumps and file sizes.
(Below the numbers in parenthesis show number of modules in the program)
These programs have identical compiler (same .hi and .o sizes, STG, and
Cmm and Asm dumps):
- Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3),
andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2),
jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4),
jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1),
bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1),
strict_anns (1), thurston-module-arith (2), okeefe_neural (1),
joao-circular (6), 10queens (1)
Programs with different compiler outputs:
- jl_defaults (1): For some reason GHC HEAD marks a lot of top-level
`[Int]` closures as CAFFY for no reason. With this patch we no longer
make them CAFFY and generate less SRT entries. For some reason Main.o
is slightly larger with this patch (1.3%) and the executable sizes are
the same. (I'd expect both to be smaller)
- launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked
as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the
executable sizes are the same.
- galois_raytrace (13): Differences are in the Parse module. There are a
lot, but some of the changes are caused by the fact that for some
reason (I think a bug) GHC HEAD marks the dictionary for `Functor
Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the
same.
- north_array: We now generate less SRT entries because some of array
primops used in this program like `NewArrayOp` get eliminated during
Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24%
larger (9224 bytes from 9000 bytes), executable sizes are the same.
- seward-space-leak: Difference in this program is better shown by this
smaller example:
module Lib where
data CDS
= Case [CDS] [(Int, CDS)]
| Call CDS CDS
instance Eq CDS where
Case sels1 rets1 == Case sels2 rets2 =
sels1 == sels2 && rets1 == rets2
Call a1 b1 == Call a2 b2 =
a1 == a2 && b1 == b2
_ == _ =
False
In this program GHC HEAD builds a new SRT for the recursive group of
`(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==`
in its SRT field, and `==` uses the SRT object as its SRT. With this
patch we use the closure for `/=` as the SRT and add `==` there. Then
`/=` gets an empty SRT field and `==` points to `/=` in its SRT
field.
This change looks fine to me.
Main.o gets 0.07% larger, executable sizes are identical.
head.hackage
------------
head.hackage's CI script builds 428 packages from Hackage using this
patch with no failures.
Compiler performance
--------------------
The compiler perf tests report that the compiler allocates slightly more
(worst case observed so far is 4%). However most programs in the test
suite are small, single file programs. To benchmark compiler performance
on something more realistic I build Cabal (the library, 236 modules)
with different optimisation levels. For the "max residency" row I run
GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows
are generated with just `-s`. (This is because `-i0` causes running GC
much more frequently and as a result "bytes copied" gets inflated by
more than 25x in some cases)
* -O0
| | GHC HEAD | This MR | Diff |
| --------------- | -------------- | -------------- | ------ |
| Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% |
| Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% |
| Max residency | 421,225,624 | 424,324,264 | +0.73% |
* -O1
| | GHC HEAD | This MR | Diff |
| --------------- | --------------- | --------------- | ------ |
| Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% |
| Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% |
| Max residency | 982,643,440 | 991,663,432 | +0.91% |
* -O2
| | GHC HEAD | This MR | Diff |
| --------------- | --------------- | --------------- | ------ |
| Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% |
| Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% |
| Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% |
Extra compiler allocations
--------------------------
Runtime allocations of programs are as reported above (NoFib section).
The compiler now allocates more than before. Main source of allocation
in this patch compared to base commit is the new SRT algorithm
(GHC.Cmm.Info.Build). Below is some of the extra work we do with this
patch, numbers generated by profiled stage 2 compiler when building a
pathological case (the test 'ManyConstructors') with '-O2':
- We now sort the final STG for a module, which means traversing the
entire program, generating free variable set for each top-level
binding, doing SCC analysis, and re-ordering the program. In
ManyConstructors this step allocates 97,889,952 bytes.
- We now do SRT analysis on static data, which in a program like
ManyConstructors causes analysing 10,000 bindings that we would
previously just skip. This step allocates 70,898,352 bytes.
- We now maintain an SRT map for the entire module as we compile Cmm
groups:
data ModuleSRTInfo = ModuleSRTInfo
{ ...
, moduleSRTMap :: SRTMap
}
(SRTMap is just a strict Map from the 'containers' library)
This map gets an entry for most bindings in a module (exceptions are
THUNKs and CAFFY static functions). For ManyConstructors this map
gets 50015 entries.
- Once we're done with code generation we generate a NameSet from SRTMap
for the non-CAFFY names in the current module. This set gets the same
number of entries as the SRTMap.
- Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using
the NameSet generated in the previous step. This usually does the
least amount of allocation among the work listed here.
Only place with this patch where we do less work in the CAF analysis in
the tidying pass (CoreTidy). However that doesn't save us much, as the
pass still needs to traverse the whole program and update IdInfos for
other reasons. Only thing we don't here do is the `hasCafRefs` pass over
the RHS of bindings, which is a stateless pass that returns a boolean
value, so it doesn't allocate much.
(Metric changes blow are all increased allocations)
Metric changes
--------------
Metric Increase:
ManyAlternatives
ManyConstructors
T13035
T14683
T1969
T9961
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a new closure identifier is being established to a
local or exported closure already emitted into the same
module, refrain from adding an IND_STATIC closure, and
instead emit an assembly-language alias.
Inter-module IND_STATIC objects still remain, and need to be
addressed by other measures.
Binary-size savings on nofib are around 0.1%.
|
|
|
|
| |
remove local
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LLVM backend shells out to LLVMs `opt` and `llc` tools. This clean
up introduces a shared data structure to carry the arguments we pass to
each tool so that corresponding flags are next to each other. It drops
the hard coded data layouts in favor of using `-mtriple` and have LLVM
infer them. Furthermore we add `clang` as a proper tool, so we don't
rely on assuming that `clang` is called `clang` on the `PATH` when using
`clang` as the assembler. Finally this diff also changes the type of
`optLevel` from `Int` to `Word`, as we do not have negative optimization
levels.
Reviewers: erikd, hvr, austin, rwbarton, bgamari, kavon
Reviewed By: kavon
Subscribers: michalt, Ericson2314, ryantrinkle, dfeuer, carter, simonpj,
kavon, simonmar, thomie, erikd, snowleopard
Differential Revision: https://phabricator.haskell.org/D3352
|
|
|
|
| |
This reverts commit 667abf17dced8b4a4cd2dc6a291a6f244ffa031f.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverses commit 1686f30951292e94bf3076ce8b3eafb0bcbba91d (Mangle
.subsections_via_symbols away., D3287), and implements proper support
for `-dead_strip` via the injection of `.alt_entry` symbols for the
function definition pointing to the beginning of the prefix data.
This is the result of a lengthy discussion with rwbarton, and the
following llvm-dev mailing list thread:
http://lists.llvm.org/pipermail/llvm-dev/2017-March/110733.html
The essential problem is that there is no reference from a function to
its info table. This combined with `.subsections_via_symbols`, which
llvm emits unconditionally, leads the linker to believe that the prefix
data is unnecessary and stripping it away if presented with the
`-dead_strip` flag.
The NCG has for this purpose special $dsp (dead strip preventer) symbols
and adds a relocation to the end of each function body pointing to that
function's $dsp symbol. We cannot easily do the same thing via LLVM.
Instead we use the `.alt_entry` directive on the function symbol, which
causes the linker to treat it as a continuation of the previous symbol,
namely the $dsp symbol. As a result the function body will not be
separated from its info table.
Reviewers: erikd, austin, rwbarton, bgamari
Reviewed By: bgamari
Subscribers: michalt, thomie
Differential Revision: https://phabricator.haskell.org/D3290
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
x86_64-apple-darwin14, is the target for the 64bit simulator.
Ideally, we'd have (i386|armv7|arm64|x64_86)-apple-ios, yet,
many #ifdefs depend on `darwin`, notably libffi. Hence, this only adds
x86_64-apple-darwin14 as a target. This also updates the comment to
add the `-S` flag, and dump the output to stdout; and adjusts the
`datalayout` and `triple` values, as obtained through the method
mentioned in the comment.
Reviewers: hvr, erikd, austin, bgamari, simonmar
Reviewed By: simonmar
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2378
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a flag -split-sections that does similar things to
-split-objs, but using sections in single object files instead of
relying on the Satanic Splitter and other abominations. This is very
similar to the GCC flags -ffunction-sections and -fdata-sections.
The --gc-sections linker flag, which allows unused sections to actually
be removed, is added to all link commands (if the linker supports it) so
that space savings from having base compiled with sections can be
realized.
Supported both in LLVM and the native code-gen, in theory for all
architectures, but really tested on x86 only.
In the GHC build, a new SplitSections variable enables -split-sections
for relevant parts of the build.
Test Plan: validate with both settings of SplitSections
Reviewers: dterei, Phyx, austin, simonmar, thomie, bgamari
Reviewed By: simonmar, thomie, bgamari
Subscribers: hsyl20, erikd, kgardas, thomie
Differential Revision: https://phabricator.haskell.org/D1242
GHC Trac Issues: #8405
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Arm has two instruction sets, Arm and Thumb, and an execution mode for each.
Executing Arm code in Thumb mode or vice-versa will likely result in an
Illegal instruction exception.
Furthermore, Haskell code compiled via LLVM was generating Arm instructions
while C code compiled via GCC was generating Thumb code by default. When
these two object code types were being linked by the system linker, all was
fine, because the system linker knows how to jump and call from one
instruction set to the other.
The first problem was with GHCi's object code loader which did not know
about Thumb vs Arm. When loading an object file `StgCRun` would jump
into the loaded object which could change the mode causing a crash after
it returned. This was fixed by forcing all C code to generate Arm
instructions by passing `-marm` to GCC.
The second problem was the `mkJumpToAddr` function which was generating
Thumb instructions. Changing that to generate Arm instructions instead
results in a working GHCi on Arm.
Test Plan: validate on x86_64 and arm
Reviewers: bgamari, austin, hvr
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1323
GHC Trac Issues: #10375
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Rework llvmGen to use LLVM 3.6 exclusively. The plans for the 7.12 release are to ship LLVM alongside GHC in the interests of user (and developer) sanity.
Along the way, refactor TNTC support to take advantage of the new `prefix` data support in LLVM 3.6. This allows us to drop the section-reordering component of the LLVM mangler.
Test Plan: Validate, look at emitted code
Reviewers: dterei, austin, scpmw
Reviewed By: austin
Subscribers: erikd, awson, spacekitteh, thomie, carter
Differential Revision: https://phabricator.haskell.org/D530
GHC Trac Issues: #10074
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* Throw an error when cross-compiling without a target definition.
When cross compiling via LLVM, a target 'datalayout' and 'triple' must
be defined or LLVM will generate code for the compile host instead of
the compile target.
* Add aarch64-unknown-linux-gnu target.
The datalayout and triple lines were found by using clang to compile a
small C program and -emit-llvm to get the LLVM IR output.
Signed-off-by: Erik de Castro Lopo <erikd@mega-nerd.com>
Test Plan: validate
Reviewers: rwbarton, carter, hvr, bgamari, austin
Reviewed By: austin
Subscribers: carter, thomie, garious
Differential Revision: https://phabricator.haskell.org/D585
GHC Trac Issues: #9895
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Due to changes in LLVM 3.5 aliases now may only refer to definitions.
Previously to handle symbols defined outside of the current commpilation
unit GHC would emit both an `external` declaration, as well as an alias
pointing to it, e.g.,
@stg_BCO_info = external global i8
@stg_BCO_info$alias = alias private i8* @stg_BCO_info
Where references to `stg_BCO_info` will use the alias
`stg_BCO_info$alias`. This is not permitted under the new alias
behavior, resulting in errors resembling,
Alias must point to a definition
i8* @"stg_BCO_info$alias"
To fix this, we invert the naming relationship between aliases and
definitions. That is, now the symbol definition takes the name
`@stg_BCO_info$def` and references use the actual name, `@stg_BCO_info`.
This means the external symbols can be handled by simply emitting an
`external` declaration,
@stg_BCO_info = external global i8
Whereas in the case of a forward declaration we emit,
@stg_BCO_info = alias private i8* @stg_BCO_info$def
Reviewed By: austin
Differential Revision: https://phabricator.haskell.org/D155
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows to link objects produced with the llvm code generator to be linked with -dead_strip. This applies to at least the iOS cross compiler and OS X compiler.
Signed-off-by: Moritz Angermann <moritz@lichtzwerge.de>
Test Plan: Create a ffi library and link it with -dead_strip. If the resulting binary does not crash, the patch works as advertised.
Reviewers: rwbarton, simonmar, hvr, dterei, mzero, ezyang, austin
Reviewed By: dterei, ezyang, austin
Subscribers: thomie, mzero, simonmar, ezyang, carter
Differential Revision: https://phabricator.haskell.org/D206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
| |
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
|
|
|
|
| |
The iOS simulator is essentially an iOS target but for an x86 machine
instead. It doesn't support the native code generator either, though.
Authored-by: Stephen Blackheath <...@blacksapphire.com>
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This combined patch reworks the LLVM backend in a number of ways:
1. Most prominently, we introduce a LlvmM monad carrying the contents of
the old LlvmEnv around. This patch completely removes LlvmEnv and
refactors towards standard library monad combinators wherever possible.
2. Support for streaming - we can now generate chunks of Llvm for Cmm as
it comes in. This might improve our speed.
3. To allow streaming, we need a more flexible way to handle forward
references. The solution (getGlobalPtr) unifies LlvmCodeGen.Data
and getHsFunc as well.
4. Skip alloca-allocation for registers that are actually never written.
LLVM will automatically eliminate these, but output is smaller and
friendlier to human eyes this way.
5. We use LlvmM to collect references for llvm.used. This allows places
other than cmmProcLlvmGens to generate entries.
|
|
|
|
|
| |
Also give them a proper constructor - getGlobalVar and getGlobalValue
map directly to the accessors.
|
|
|
|
| |
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
| |
Patch from Stephen Blackheath
|
|
|
|
| |
Signed-off-by: David Terei <davidterei@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now have accurate global register liveness information attached to all Cmm
procedures and jumps. With this patch, the LLVM back end uses this information
to pass only the live floating point (F and D) registers on tail calls. This
makes the LLVM back end compatible with the new register allocation strategy.
Ideally the GHC LLVM calling convention would put all registers that are always
live first in the parameter sequence. Unfortunately the specification is written
so that on x86-64 SpLim (always live) is passed after the R registers. Therefore
we must always pass *something* in the R registers, so we pass the LLVM value
undef.
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
| |
|
| |
|
|
|
|
|
|
| |
I changed the behaviour slightly, e.g. i386/FreeBSD will no longer
fall through and use the Linux "i386-pc-linux-gnu", but will get the
final empty case instead. I assume that that's the right thing to do.
|
|
|
|
|
| |
In particular, this makes life simpler when we want to use a general
GHC SDoc in the middle of some LLVM.
|
|
|
|
|
|
|
| |
TBAA allows us to specify a type hierachy in metadata with
the property that nodes on different branches don't alias.
This should somewhat improve the optimizations LLVM does that
rely on alias information.
|
| |
|
|
|
|
|
|
|
|
|
| |
LLVM has a problem when the user imports some FFI types
like memcpy and memset in a manner that conflicts with
the types that GHC uses internally.
So now we pre-initialise the environment with the most
general types for these functions.
|
|
|
|
| |
And some knock-on changes
|
|
|
|
|
| |
CmmTop -> CmmDecl
CmmPgm -> CmmGroup
|
|
|
|
|
|
|
|
|
|
| |
This patch is allowed by the 'on ARMv7 with VFPv3[D16] support pass
appropriate -mattr value to LLVM llc' patch. The trick is that LLVM
by default (probably!) does not enable VFP, but GHC requires it
so LLVM's llc asserts on unavailable floating point register. i.e. GHC/LLVM
backend compiles into LLVM code which is using floats, but llc thinks
no float regs for this are available. Passing appropriate llc option
which is implemented in patch mentioned above fixes this issue.
|
|
|
|
|
|
|
|
| |
This patch disables ARM specific target data layout and triple.
The reason for this is that LLVM asserts on some files if this
is in use. The assert looks:
Formal argument #8 has unhandled type i32UNREACHABLE executed at
/llvm-ghc-arm/lib/CodeGen/CallingConvLower.cpp:81!
|
|
|
|
|
|
| |
This patch fixes ARM/LLVM target data layout specification based
on what Clang is using itself. I've modified Clang's used triple
a little bit from armv4t-* to arm-* though
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
I introduced this to support explicitly recording the info table label
in RawCmm for another patch I am working on, but it turned out to lead
to significant simplification in those parts of the compiler that
consume RawCmm.
Now, instead of lots of tests for null [CmmStatic] we have a simple
test of a Maybe, and have reduced the number of guys that need to know
how to convert entry->info labels by a TON. There are only 3 callers
of that function now!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
|
|
|
|
| |
Instead of using the GNU As subsection feature on Linux/Windows
for TNTC we now use the LLVM Mangler on all platforms.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|
| |
|
| |
|
| |
|
| |
|