| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Signed-off-by: Rodlogic <admin@rodlogic.net>
Test Plan: Does it compile?
Reviewers: hvr, austin
Reviewed By: austin
Subscribers: thomie, carter, simonmar
Differential Revision: https://phabricator.haskell.org/D319
|
|
|
|
|
|
|
| |
This reverts commit 35672072b4091d6f0031417bc160c568f22d0469.
Conflicts:
compiler/main/DriverPipeline.hs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The code is equivalent, just formatted nicely and without the
enthusiastic message to clean it up.
Test Plan: None
Reviewers: austin
Reviewed By: austin
Subscribers: simonmar, ezyang, carter, thomie
Differential Revision: https://phabricator.haskell.org/D307
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In preparation for indirecting all references to closures,
we rename _closure to _static_closure to ensure any old code
will get an undefined symbol error. In order to reference
a closure foobar_closure (which is now undefined), you should instead
use STATIC_CLOSURE(foobar). For convenience, a number of these
old identifiers are macro'd.
Across C-- and C (Windows and otherwise), there were differing
conventions on whether or not foobar_closure or &foobar_closure
was the address of the closure. Now, all foobar_closure references
are addresses, and no & is necessary.
CHARLIKE/INTLIKE were not changed, simply alpha-renamed.
Part of remove HEAP_ALLOCED patch set (#8199)
Depends on D265
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
Test Plan: validate
Reviewers: simonmar, austin
Subscribers: simonmar, ezyang, carter, thomie
Differential Revision: https://phabricator.haskell.org/D267
GHC Trac Issues: #8199
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, both Cabal and GHC defined the type PackageId, and we expected
them to be roughly equivalent (but represented differently). This refactoring
separates these two notions.
A package ID is a user-visible identifier; it's the thing you write in a
Cabal file, e.g. containers-0.9. The components of this ID are semantically
meaningful, and decompose into a package name and a package vrsion.
A package key is an opaque identifier used by GHC to generate linking symbols.
Presently, it just consists of a package name and a package version, but
pursuant to #9265 we are planning to extend it to record other information.
Within a single executable, it uniquely identifies a package. It is *not* an
InstalledPackageId, as the choice of a package key affects the ABI of a package
(whereas an InstalledPackageId is computed after compilation.) Cabal computes
a package key for the package and passes it to GHC using -package-name (now
*extremely* misnamed).
As an added bonus, we don't have to worry about shadowing anymore.
As a follow on, we should introduce -current-package-key having the same role as
-package-name, and deprecate the old flag. This commit is just renaming.
The haddock submodule needed to be updated.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, simonmar, hvr, austin
Subscribers: simonmar, relrod, carter
Differential Revision: https://phabricator.haskell.org/D79
Conflicts:
compiler/main/HscTypes.lhs
compiler/main/Packages.lhs
utils/haddock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit exposes GHC's internal compiler pipeline through a `Hooks`
module in the GHC API. It currently allows you to hook:
* Foreign import/exports declarations
* The frontend up to type checking
* The one shot compilation mode
* Core compilation, and the module iface
* Linking and the phases in DriverPhases.hs
* Quasiquotation
Authored-by: Luite Stegeman <stegeman@gmail.com>
Authored-by: Edsko de Vries <edsko@well-typed.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
FastStrings are now always UTF8-encoded.
There's no StringTable for FastZString, but I don't think one is needed.
We only ever make a FastZString by running zEncodeFS on a FastString,
and the FastStrings are shared via the FastString StringTable, so we get
the same FastZString from the IORef.
|
|
|
|
|
| |
By using Haskell's debugIsOn rather than CPP's "#ifdef DEBUG", we
don't need to kludge things to keep the warning checker happy etc.
|
| |
|
|
|
|
|
|
| |
We now have addrToAny# rather than addrToHValue#, and both addrToAny#
and mkApUpd0# return "Any" rather than "a". This makes it a little
easier to see what's going on, and fixes a warning in ByteCodeLink.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is work mostly done by Daniel Winograd-Cort during his
internship at MSR Cambridge, with some further refactoring by me.
This commit adds support to GHCi for most top-level declarations that
can be used in Haskell source files. Class, data, newtype, type,
instance are all supported, as are Type Family-related declarations.
The current set of declarations are shown by :show bindings. As with
variable bindings, entities bound by newer declarations shadow earlier
ones.
Tests are in testsuite/tests/ghci/scripts/ghci039--ghci054.
Documentation to follow.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
We were making arrays with range (0, n-1) which is bad if n == 0 now
that we are using Word types.
|
|
|
|
|
| |
We were keeping things as Int, and then converting them to Word16 at
the last minute, when really they ought to have been Word16 all along.
|
|
|
|
|
| |
For now we only get a warning, rather than an error, because the alex
and happy templates don't follow the new rules yet.
|
|
|
|
|
|
| |
nameModule fails on an InternalName. These ASSERTS tell you
which call failed.
|
| |
|
| |
|
|
|
|
| |
MERGE TO STABLE
|
| |
|
|
|
|
|
|
|
| |
Older GHCs can't parse OPTIONS_GHC.
This also changes the URL referenced for the -w options from
WorkingConventions#Warnings to CodingStyle#Warnings for the compiler
modules.
|
| |
|
| |
|
|
|
|
|
| |
Otherwise :print only works for local identifiers, not global ones.
In fact it was silently failing, so I fixed that too.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the result of Bernie Pope's internship work at MSR Cambridge,
with some subsequent improvements by me. The main plan was to
(a) Reduce the overhead for breakpoints, so we could enable
the feature by default without incurrent a significant penalty
(b) Scatter more breakpoint sites throughout the code
Currently we can set a breakpoint on almost any subexpression, and the
overhead is around 1.5x slower than normal GHCi. I hope to be able to
get this down further and/or allow breakpoints to be turned off.
This patch also fixes up :print following the recent changes to
constructor info tables. (most of the :print tests now pass)
We now support single-stepping, which just enables all breakpoints.
:step <expr> executes <expr> with single-stepping turned on
:step single-steps from the current breakpoint
The mechanism is quite different to the previous implementation. We
share code with the HPC (haskell program coverage) implementation now.
The coverage pass annotates source code with "tick" locations which
are tracked by the coverage tool. In GHCi, each "tick" becomes a
potential breakpoint location.
Previously breakpoints were compiled into code that magically invoked
a nested instance of GHCi. Now, a breakpoint causes the current
thread to block and control is returned to GHCi.
See the wiki page for more details and the current ToDo list:
http://hackage.haskell.org/trac/ghc/wiki/NewGhciDebugger
|
|
|
|
| |
This is a simplification & minor optimisation for GHCi
|
|
|
|
|
|
|
|
|
|
|
|
| |
The dynamic linker has been modified so that it won't panic if one of the breakpointJump functions fails to resolve.
Now, if the dynamic linker fails to find a HValue for a Name, before looking for a static symbol it will ask to
Breakpoints.lookupBogusBreakpointVal :: Name -> Maybe HValue
which returns an identity function for the Jump names or Nothing else.
A TH function might contain a call to a breakpoint function. So if it is compiled to bytecodes, the breakpoints will be desugared to 'jumps'. Whenever this code is spliced, the linker will fail to find the jumpfunctions unless there is a default.
|
|
|
|
|
|
|
|
|
|
|
| |
This patch extends the RTS linker and the dynamic linker so that it is possible to find out the datacon of a closure in heap at runtime:
- The RTS linker now carries a hashtable 'Address->Symbol' for data constructors
- The Persistent Linker State in the dynamic linker is extended in a similar way.
Finally, these two sources of information are consulted by:
> Linker.recoverDataCon :: a -> TcM Name
|
|
|
|
| |
Original patch by brianlsmith@gmail.com
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch pushes through one fundamental change: a module is now
identified by the pair of its package and module name, whereas
previously it was identified by its module name alone. This means
that now a program can contain multiple modules with the same name, as
long as they belong to different packages.
This is a language change - the Haskell report says nothing about
packages, but it is now necessary to understand packages in order to
understand GHC's module system. For example, a type T from module M
in package P is different from a type T from module M in package Q.
Previously this wasn't an issue because there could only be a single
module M in the program.
The "module restriction" on combining packages has therefore been
lifted, and a program can contain multiple versions of the same
package.
Note that none of the proposed syntax changes have yet been
implemented, but the architecture is geared towards supporting import
declarations qualified by package name, and that is probably the next
step.
It is now necessary to specify the package name when compiling a
package, using the -package-name flag (which has been un-deprecated).
Fortunately Cabal still uses -package-name.
Certain packages are "wired in". Currently the wired-in packages are:
base, haskell98, template-haskell and rts, and are always referred to
by these versionless names. Other packages are referred to with full
package IDs (eg. "network-1.0"). This is because the compiler needs
to refer to entities in the wired-in packages, and we didn't want to
bake the version of these packages into the comiler. It's conceivable
that someone might want to upgrade the base package independently of
GHC.
Internal changes:
- There are two module-related types:
ModuleName just a FastString, the name of a module
Module a pair of a PackageId and ModuleName
A mapping from ModuleName can be a UniqFM, but a mapping from Module
must be a FiniteMap (we provide it as ModuleEnv).
- The "HomeModules" type that was passed around the compiler is now
gone, replaced in most cases by the current package name which is
contained in DynFlags. We can tell whether a Module comes from the
current package by comparing its package name against the current
package.
- While I was here, I changed PrintUnqual to be a little more useful:
it now returns the ModuleName that the identifier should be qualified
with according to the current scope, rather than its original
module. Also, PrintUnqual tells whether to qualify module names with
package names (currently unused).
Docs to follow.
|
|
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|