| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
We were treating a type-family instance as a non-orphan if there
was a type constructor on its /right-hand side/ that was local. Boo!
Utterly wrong. With this patch, we correctly check the /left-hand side/
instead!
Fixes #22717
|
|
|
|
|
|
| |
See Note [Variables unbound on the LHS] in GHC.HsToCore.Binds.
Fixes #22471.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR adds the language extension -XDeepSubsumption, implementing
GHC proposal #511. This change mitigates the impact of GHC proposal
The changes are highly localised, by design. See Note [Deep subsumption]
in GHC.Tc.Utils.Unify.
The main changes are:
* Add -XDeepSubsumption, which is on by default in Haskell98 and Haskell2010,
but off in Haskell2021.
-XDeepSubsumption largely restores the behaviour before the "simple subsumption" change.
-XDeepSubsumpition has a similar flavour as -XNoMonoLocalBinds:
it makes type inference more complicated and less predictable, but it
may be convenient in practice.
* The main changes are in:
* GHC.Tc.Utils.Unify.tcSubType, which does deep susumption and eta-expanansion
* GHC.Tc.Utils.Unify.tcSkolemiseET, which does deep skolemisation
* In GHC.Tc.Gen.App.tcApp we call tcSubTypeNC to match the result
type. Without deep subsumption, unifyExpectedType would be sufficent.
See Note [Deep subsumption] in GHC.Tc.Utils.Unify.
* There are no changes to Quick Look at all.
* The type of `withDict` becomes ambiguous; so add -XAllowAmbiguousTypes to
GHC.Magic.Dict
* I fixed a small but egregious bug in GHC.Core.FVs.varTypeTyCoFVs, where
we'd forgotten to take the free vars of the multiplicity of an Id.
* I also had to fix tcSplitNestedSigmaTys
When I did the shallow-subsumption patch
commit 2b792facab46f7cdd09d12e79499f4e0dcd4293f
Date: Sun Feb 2 18:23:11 2020 +0000
Simple subsumption
I changed tcSplitNestedSigmaTys to not look through function arrows
any more. But that was actually an un-forced change. This function
is used only in
* Improving error messages in GHC.Tc.Gen.Head.addFunResCtxt
* Validity checking for default methods: GHC.Tc.TyCl.checkValidClass
* A couple of calls in the GHCi debugger: GHC.Runtime.Heap.Inspect
All to do with validity checking and error messages. Acutally its
fine to look under function arrows here, and quite useful a test
DeepSubsumption05 (a test motivated by a build failure in the
`lens` package) shows.
The fix is easy. I added Note [tcSplitNestedSigmaTys].
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no reason to use CPP. __LINE__ and __FILE__ macros are now
better replaced with GHC's CallStack. As a bonus, assert error messages
now contain more information (function name, column).
Here is the mapping table (HasCallStack omitted):
* ASSERT: assert :: Bool -> a -> a
* MASSERT: massert :: Bool -> m ()
* ASSERTM: assertM :: m Bool -> m ()
* ASSERT2: assertPpr :: Bool -> SDoc -> a -> a
* MASSERT2: massertPpr :: Bool -> SDoc -> m ()
* ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CorePrepProv is only created in CorePrep, so I thought it wouldn't be
needed in IfaceUnivCoProv. But actually IfaceSyn is used during
pretty-printing, and we can certainly pretty-print things after
CorePrep as #19768 showed.
So the simplest thing is to represent CorePrepProv in IfaceSyn.
To improve what Lint can do I also added a boolean to CorePrepProv, to
record whether it is homogeneously kinded or not. It is introduced in
two distinct ways (see Note [Unsafe coercions] in GHC.CoreToStg.Prep),
one of which may be hetero-kinded (e.g. Int ~ Int#) beause it is
casting a divergent expression; but the other is not. The boolean
keeps track.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main idea here is to avoid treating
* case e of {}
* case unsafeEqualityProof of UnsafeRefl co -> blah
specially in CoreToStg. Instead, nail them in CorePrep,
by converting
case e of {}
==> e |> unsafe-co
case unsafeEqualityProof of UnsafeRefl cv -> blah
==> blah[unsafe-co/cv]
in GHC.Core.Prep. Now expressions that we want to treat as trivial
really are trivial. We can get rid of cpExprIsTrivial.
And we fix #19700.
A downside is that, at least under unsafeEqualityProof, we substitute
in types and coercions, which is more work. But a big advantage is
that it's all very simple and principled: CorePrep really gets rid of
the unsafeCoerce stuff, as it does empty case, runRW#, lazyId etc.
I've updated the overview in GHC.Core.Prep, and added
Note [Unsafe coercions] in GHC.Core.Prep
Note [Implementing unsafeCoerce] in base:Unsafe.Coerce
We get 3% fewer bytes allocated when compiling perf/compiler/T5631,
which uses a lot of unsafeCoerces. (It's a happy-generated parser.)
Metric Decrease:
T5631
|
|
|
|
|
| |
Metric Increase:
MultiLayerModules
|
| |
|
|
|
|
|
| |
The 'id' type is now determined by the pass, using the XTickishId
type family.
|
|
|
|
|
|
|
|
| |
GHCi needs to know the types of all breakpoints, but it's
not possible to get the exprType of any expression in STG.
This is preparation for the upcoming change to make GHCi
bytecode from STG instead of Core.
|
|
|
|
|
|
| |
Alt, AnnAlt and IfaceAlt were using triples. This patch makes them use
dedicated types so that we can try to make some fields strict (for
example) in the future.
|
|
|
|
| |
I also took the liberty to refactor the logic around `ruleFVs`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's useful to annotate a non-exported top-level function like `g` in
```hs
module Lib (h) where
g :: Int -> Int -> (Int,Int)
g m 1 = (m, 0)
g m n = (2 * m, 2 `div` n)
{-# NOINLINE g #-}
h :: Int -> Int
h 1 = 0
h m
| odd m = snd (g m 2)
| otherwise = uncurry (+) (g 2 m)
```
with its demand `UCU(CS(P(1P(U),SP(U))`, which tells us that whenever `g` was
called, the second component of the returned pair was evaluated strictly.
Since #18903 we do so for local functions, where we can see all calls.
For top-level functions, we can assume that all *exported* functions are
demanded according to `topDmd` and thus get sound demands for
non-exported top-level functions.
The demand on `g` is crucial information for Nested CPR, which may the
go on and unbox `g` for the second pair component. That is true even if
that pair component may diverge, as is the case for the call site `g 13
0`, which throws a div-by-zero exception.
In `T18894b`, you can even see the new demand annotation enabling us to
eta-expand a function that we wouldn't be able to eta-expand without
Call Arity.
We only track bindings of function type in order not to risk huge compile-time
regressions, see `isInterestingTopLevelFn`.
There was a CoreLint check that rejected strict demand annotations on
recursive or top-level bindings, which seems completely unjustified.
All the cases I investigated were fine, so I removed it.
Fixes #18894.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ticket #18603 demonstrated that the occurrence analyser's
handling of
local RULES for imported Ids
(which I now call IMP-RULES) was inadequate. It led the simplifier
into an infnite loop by failing to label a binder as a loop breaker.
The main change in this commit is to treat IMP-RULES in a simple and
uniform way: as extra rules for the local binder. See
Note [IMP-RULES: local rules for imported functions]
This led to quite a bit of refactoring. The result is still tricky,
but it's much better than before, and better documented I think.
Oh, and it fixes the bug.
|
|
|
|
|
|
|
|
|
| |
Ticket #18638 showed that Very Bad Things happen if we fail
to do absence analysis on stable unfoldings. It's all described
in Note [Absence analysis for stable unfoldings and RULES].
I'm a bit surprised this hasn't bitten us before. Fortunately
the fix is pretty simple.
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates haddock comments only.
This patch focuses to update for hyperlinks in GHC API's haddock comments,
because broken links especially discourage newcomers.
This includes the following hierarchies:
- GHC.Hs.*
- GHC.Core.*
- GHC.Stg.*
- GHC.Cmm.*
- GHC.Types.*
- GHC.Data.*
- GHC.Builtin.*
- GHC.Parser.*
- GHC.Driver.*
- GHC top
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements several general performance improvements to GHC,
to offset the effect of the linear types change.
General optimisations:
- Add a `coreFullView` function which iterates `coreView` on the
head. This avoids making function recursive solely because the
iterate `coreView` themselves. As a consequence, this functions can
be inlined, and trigger case-of-known constructor (_e.g._
`kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`,
`getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`,
`tyConAppTyCon_maybe`). The common pattern about all these functions
is that they are almost always used as views, and immediately
consumed by a case expression. This commit also mark them asx `INLINE`.
- In `subst_ty` add a special case for nullary `TyConApp`, which avoid
allocations altogether.
- Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This
required quite a bit of module shuffling.
case. `myTyConApp` enforces crucial sharing, which was lost during
substitution. See also !2952 .
- Make `subst_ty` stricter.
- In `eqType` (specifically, in `nonDetCmpType`), add a special case,
tested first, for the very common case of nullary `TyConApp`.
`nonDetCmpType` has been made `INLINE` otherwise it is actually a
regression. This is similar to the optimisations in !2952.
Linear-type specific optimisations:
- Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in
the definition of the pattern synonyms `One` and `Many`.
- Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`:
`Multiplicity` now import `Type` normally, rather than from the
`hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the
`One` and `Many` pattern synonyms.
- Make `updateIdTypeAndMult` strict in its type and multiplicity
- The `scaleIdBy` gets a specialised definition rather than being an
alias to `scaleVarBy`
- `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type,
Type)` instead of `Type -> Maybe (Scaled Type, Type)`
- Remove the `MultMul` pattern synonym in favour of a view `isMultMul`
because pattern synonyms appear not to inline well.
- in `eqType`, in a `FunTy`, compare multiplicities last: they are
almost always both `Many`, so it helps failing faster.
- Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the
instances of `TyConApp ManyDataConTy []` are physically the same.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Arnaud Spiwack
Metric Decrease:
haddock.base
T12227
T12545
T12990
T1969
T3064
T5030
T9872b
Metric Increase:
haddock.base
haddock.Cabal
haddock.compiler
T12150
T12234
T12425
T12707
T13035
T13056
T15164
T16190
T18304
T1969
T3064
T3294
T5631
T5642
T5837
T6048
T9020
T9233
T9675
T9872a
T9961
WWRec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates comments only.
This patch replaces leaf module names according to new module
hierarchy [1][2] as followings:
* Expand leaf names to easily find the module path:
for instance, `Id.hs` to `GHC.Types.Id`.
* Modify leaf names according to new module hierarchy:
for instance, `Convert.hs` to `GHC.ThToHs`.
* Fix typo:
for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep`
See also !3375
[1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular
[2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The binder-swap transformation is implemented by the occurrence
analyser -- see Note [Binder swap] in OccurAnal. However it had
a very nasty corner in it, for the case where the case scrutinee
was a GlobalId. This led to trouble and hacks, and ultimately
to #16296.
This patch re-engineers how the occurrence analyser implements
the binder-swap, by actually carrying out a substitution rather
than by adding a let-binding. It's all described in
Note [The binder-swap substitution].
I did a few other things along the way
* Fix a bug in StgCse, which could allow a loop breaker to be CSE'd
away. See Note [Care with loop breakers] in StgCse. I think it can
only show up if occurrence analyser sets up bad loop breakers, but
still.
* Better commenting in SimplUtils.prepareAlts
* A little refactoring in CoreUnfold; nothing significant
e.g. rename CoreUnfold.mkTopUnfolding to mkFinalUnfolding
* Renamed CoreSyn.isFragileUnfolding to hasCoreUnfolding
* Move mkRuleInfo to CoreFVs
We observed respectively 4.6% and 5.9% allocation decreases for the following
tests:
Metric Decrease:
T9961
haddock.base
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
| |
Update submodule: haddock
|
|
Update haddock submodule
|