| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
`SourceNote`s should not be stored as [Char] as this is highly wasteful
and in certain scenarios can be highly duplicated.
Metric Decrease:
hard_hole_fits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds eight new primops that fuse a multiplication and an
addition or subtraction:
- `{fmadd,fmsub,fnmadd,fnmsub}{Float,Double}#`
fmadd x y z is x * y + z, computed with a single rounding step.
This patch implements code generation for these primops in the following
backends:
- X86, AArch64 and PowerPC NCG,
- LLVM
- C
WASM uses the C implementation. The primops are unsupported in the
JavaScript backend.
The following constant folding rules are also provided:
- compute a * b + c when a, b, c are all literals,
- x * y + 0 ==> x * y,
- ±1 * y + z ==> z ± y and x * ±1 + z ==> z ± x.
NB: the constant folding rules incorrectly handle signed zero.
This is a known limitation with GHC's floating-point constant folding
rules (#21227), which we hope to resolve in the future.
|
|
|
|
|
|
| |
- Use dedicated list functions
- Make cloneBndrs and cloneRecIdBndrs monadic
- Fix invalid haddock comments in libraries/base
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch tracks the type of Cmm global registers. This is needed
in order to lint uses of polymorphic registers, such as SIMD vector
registers that can be used both for floating-point and integer values.
This changes allows us to refactor VanillaReg to not store VGcPtr,
as that information is instead stored in the type of the usage of the
register.
Fixes #22297
|
|
|
|
|
|
|
|
|
|
|
| |
In #22764 a user noticed that a program implementing a simple atomic
counter via an STRef regressed significantly due to the introduction of
necessary atomic operations in the MutVar# primops (#22468). This
regression was caused by a bug in the NCG, which emitted an unnecessary
MFENCE instruction for a release-ordered atomic write. MFENCE is rather
only needed to achieve sequentially consistent ordering.
Fixes #22764.
|
|
|
|
|
|
| |
This reverts commit 20457d775885d6c3df020d204da9a7acfb3c2e5a.
See #22666 and #21777
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The changes in `GHC.Utils.Outputable` are the bulk of the patch
and drive the rest.
The types `HLine` and `HDoc` in Outputable can be used instead of `SDoc`
and support printing directly to a handle with `bPutHDoc`.
See Note [SDoc versus HDoc] and Note [HLine versus HDoc].
The classes `IsLine` and `IsDoc` are used to make the existing code polymorphic
over `HLine`/`HDoc` and `SDoc`. This is done for X86, PPC, AArch64, DWARF
and dependencies (printing module names, labels etc.).
Co-authored-by: Alexis King <lexi.lambda@gmail.com>
Metric Decrease:
CoOpt_Read
ManyAlternatives
ManyConstructors
T10421
T12425
T12707
T13035
T13056
T13253
T13379
T18140
T18282
T18698a
T18698b
T1969
T20049
T21839c
T21839r
T3064
T3294
T4801
T5321FD
T5321Fun
T5631
T6048
T783
T9198
T9233
|
|
|
|
|
| |
This patch adds the blob length field to CmmFileEmbed. The wasm32 NCG
needs to know the precise size of each data segment.
|
|
|
|
|
|
|
| |
Pass FastStrings to functions directly, to make sure the rule
for fsLit "literal" fires.
Remove SDoc indirection in GHCi.UI.Tags and GHC.Unit.Module.Graph.
|
| |
|
|
|
|
| |
Lets us avoid some use of `head` and `tail`, and some panics.
|
|
|
|
| |
isInfoTableLabel does not take Cmm info table into account. This patch is required for data section layout of wasm32 NCG to work.
|
|
|
|
|
|
|
| |
This fixes various typos and spelling mistakes
in the compiler.
Fixes #21891
|
|
|
|
|
| |
Use 'text' instead of 'ppr'.
Using 'ppr' on the list "hello" rendered as "h,e,l,l,o".
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the SDocContext used for code generation contained
information whether the labels should use Asm or C style.
However, at every individual call site, this is known statically.
This removes the parameter to 'PprCode' and replaces every 'pdoc'
used to print a label in code style with 'pprCLabel' or 'pprAsmLabel'.
The OutputableP instance is now used only for dumps.
The output of T15155 changes, it now uses the Asm style
(which is faithful to what actually happens).
|
|
|
|
|
|
|
|
|
|
| |
* Remove hack when printing OccNames. No longer needed since e3dcc0d5
* Remove unused `pprCmms` and `instance Outputable Instr`
* Simplify `pprCLabel` (no need to pass platform)
* Remove evil `Show`/`Eq` instances for `SDoc`. They were needed by
ImmLit, but that can take just a String instead.
* Remove instance `Outputable CLabel` - proper output of labels
needs a platform, and is done by the `OutputableP` instance
|
| |
|
|
|
|
|
|
|
|
|
| |
Previously ce8745952f99174ad9d3bdc7697fd086b47cdfb5 assumed that it was
safe to clobber the switch variable when generating code for a jump
table since we were at the end of a block. However, this assumption is
wrong; the register could be live in the jump target.
Fixes #21968.
|
|
|
|
| |
We don't actually emit rodata16 sections anywhere.
|
|
|
|
|
|
|
|
| |
Previously we only preserved the bottom 64-bits of the callee-saved
128-bit XMM registers, in violation of the Win64 calling convention.
Fix this.
Fixes #21465.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
On Windows with high-entropy ASLR we must use %rip-relative addressing
to avoid overflowing the signed 32-bit immediate size of x86-64.
Since %rip-relative addressing comes essentially for free and can make
linking significantly easier, we use it on all platforms.
|
|
|
|
|
|
|
|
|
|
| |
Previously while constructing the jump table index we would
zero-extend the discriminant before subtracting the start of the
jump-table. This goes subtly wrong in the case of a sub-word, signed
discriminant, as described in the included Note. Fix this in both the
PPC and X86 NCGs.
Fixes #21186.
|
|
|
|
|
|
|
|
| |
Several 64-bit operation were implemented with FFI calls on 32-bit
architectures but we can easily implement them with inline assembly
code.
Also remove unused hs_int64ToWord64 and hs_word64ToInt64 C functions.
|
|
|
|
|
|
|
|
|
|
|
|
| |
* add getLocalRegReg to avoid allocating a CmmLocal just to call
getRegisterReg
* 64-bit registers: in the general case we must always use the virtual
higher part of the register, so we might as well always return it with
the lower part. The only exception is to implement 64-bit to 32-bit
conversions. We now have to explicitly discard the higher part when
matching on Reg64/RegCode64 datatypes instead of explicitly fetching
the higher part from the lower part: much safer default.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Preliminary work done to make working on #5444 easier.
Mostly make make control-flow easier to follow:
* renamed genCCall into genForeignCall
* split genForeignCall into the part dispatching on PrimTarget (genPrim) and
the one really generating code for a C call (cf ForeignTarget and genCCall)
* made genPrim/genSimplePrim only dispatch on MachOp: each MachOp now
has its own code generation function.
* out-of-line primops are not handled in a partial `outOfLineCmmOp`
anymore but in the code generation functions directly. Helper
functions have been introduced (e.g. genLibCCall) for code sharing.
* the latter two bullets make code generated for primops that are only
sometimes out-of-line (e.g. Pdep or Memcpy) and the logic to select
between inline/out-of-line much more localized
* avoided passing is32bit as an argument as we can easily get it from NatM
state when we really need it
* changed genCCall type to avoid it being partial (it can't handle
PrimTarget)
* globally removed 12 calls to `panic` thanks to better control flow and
types ("parse, don't validate" ftw!).
|
|
|
|
|
| |
`DynFlags` is gone, but let's move a few trivial things around to get
rid of its module too.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
This was achieved with
git ls-tree --name-only HEAD -r | xargs sed -i -e 's/note \[/Note \[/g'
|
|
|
|
| |
SPARC was its last and only user.
|
| |
|
|
|
|
| |
Extracted from !6622
|
|
|
|
|
|
|
|
|
|
|
| |
Handle the case of a shift larger than the width of the shifted value.
This is necessary since x86 applies a mask of 0x1f to the shift amount,
meaning that, e.g., `shr 47, $eax` will actually shift by
47 & 0x1f == 15.
See #20626.
(cherry picked from commit 31370f1afe1e2f071b3569fb5ed4a115096127ca)
|
| |
|
|
|
|
| |
and exhibit similar behaviors. Issue 20400
|
|
|
|
|
|
| |
As noted in #18183, these cases were previously incorrect and unused.
Closes #18183.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to make the packages in this repo "reinstallable", we need to
associate source code with a specific packages. Having a top level
`/includes` dir that mixes concerns (which packages' includes?) gets in
the way of this.
To start, I have moved everything to `rts/`, which is mostly correct.
There are a few things however that really don't belong in the rts (like
the generated constants haskell type, `CodeGen.Platform.h`). Those
needed to be manually adjusted.
Things of note:
- No symlinking for sake of windows, so we hard-link at configure time.
- `CodeGen.Platform.h` no longer as `.hs` extension (in addition to
being moved to `compiler/`) so as not to confuse anyone, since it is
next to Haskell files.
- Blanket `-Iincludes` is gone in both build systems, include paths now
more strictly respect per-package dependencies.
- `deriveConstants` has been taught to not require a `--target-os` flag
when generating the platform-agnostic Haskell type. Make takes
advantage of this, but Hadrian has yet to.
|
|
|
|
|
|
|
|
|
|
|
| |
PPC NCG: Implement CAS inline for 32 and 64 bit
testsuite: Add tests for smaller atomic CAS
X86 NCG: Catch calls to CAS C fallback
Primops: Add atomicCasWord[8|16|32|64]Addr#
Add tests for atomicCasWord[8|16|32|64]Addr#
Add changelog entry for new primops
X86 NCG: Fix MO-Cmpxchg W64 on 32-bit arch
ghc-prim: 64-bit CAS C fallback on all archs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The issue was the renderer for x86 addressing modes assumes native size
registers, but we were passing in a possibly-smaller index in
conjunction with a native-sized base pointer.
The easist thing to do is just extend the register first.
I also changed the other NGC backends implementing jump tables
accordingly. On one hand, I think PowerPC and Sparc don't have the small
sub-registers anyways so there is less to worry about. On the other
hand, to the extent that's true the zero extension can become a no-op.
I should give credit where it's due: @hsyl20 really did all the work for
me in
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/4717#note_355874,
but I was daft and missed the "Oops" and so ended up spending a silly
amount of time putting it all back together myself.
The unregisterised backend change is a bit different, because here we
are translating the actual case not a jump table, and the fix is to
handle right-sized literals not addressing modes. But it makes sense to
include here too because it's the same change in the subsequent commit
that exposes both bugs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Word64#/Int64# are only used on 32-bit architectures. Before this patch,
operations on these types were directly using the FFI. Now we use real
primops that are then lowered into ccalls.
The advantage of doing this is that we can now perform constant folding on
Word64#/Int64# (#19024).
Most of this work was done by John Ericson in !3658. However this patch
doesn't go as far as e.g. changing Word64 to always be using Word64#.
Noticeable performance improvements
T9203(normal) run/alloc 89870808.0 66662456.0 -25.8% GOOD
haddock.Cabal(normal) run/alloc 14215777340.8 12780374172.0 -10.1% GOOD
haddock.base(normal) run/alloc 15420020877.6 13643834480.0 -11.5% GOOD
Metric Decrease:
T9203
haddock.Cabal
haddock.base
|
|
|
|
|
| |
When arguments are 8 *or 16* bits wide, then truncate before/after
and use the 32bit operation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In which we add a new code generator to the Glasgow Haskell
Compiler. This codegen supports ELF and Mach-O targets, thus covering
Linux, macOS, and BSDs in principle. It was tested only on macOS and
Linux. The NCG follows a similar structure as the other native code
generators we already have, and should therfore be realtively easy to
follow.
It supports most of the features required for a proper native code
generator, but does not claim to be perfect or fully optimised. There
are still opportunities for optimisations.
Metric Decrease:
ManyAlternatives
ManyConstructors
MultiLayerModules
PmSeriesG
PmSeriesS
PmSeriesT
PmSeriesV
T10421
T10421a
T10858
T11195
T11276
T11303b
T11374
T11822
T12227
T12545
T12707
T13035
T13253
T13253-spj
T13379
T13701
T13719
T14683
T14697
T15164
T15630
T16577
T17096
T17516
T17836
T17836b
T17977
T17977b
T18140
T18282
T18304
T18478
T18698a
T18698b
T18923
T1969
T3064
T5030
T5321FD
T5321Fun
T5631
T5642
T5837
T783
T9198
T9233
T9630
T9872d
T9961
WWRec
Metric Increase:
T4801
|