summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Opt/DmdAnal.hs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/GHC/Core/Opt/DmdAnal.hs')
-rw-r--r--compiler/GHC/Core/Opt/DmdAnal.hs374
1 files changed, 257 insertions, 117 deletions
diff --git a/compiler/GHC/Core/Opt/DmdAnal.hs b/compiler/GHC/Core/Opt/DmdAnal.hs
index 4869fb1fa9..6eb3c895e2 100644
--- a/compiler/GHC/Core/Opt/DmdAnal.hs
+++ b/compiler/GHC/Core/Opt/DmdAnal.hs
@@ -37,6 +37,7 @@ import GHC.Core.Type
import GHC.Core.FVs ( exprFreeIds, ruleRhsFreeIds )
import GHC.Core.Coercion ( Coercion, coVarsOfCo )
import GHC.Core.FamInstEnv
+import GHC.Core.Opt.Arity ( typeArity )
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Data.Maybe ( isJust )
@@ -64,28 +65,55 @@ data DmdAnalOpts = DmdAnalOpts
--
-- Note: use `seqBinds` on the result to avoid leaks due to lazyness (cf Note
-- [Stamp out space leaks in demand analysis])
-dmdAnalProgram :: DmdAnalOpts -> FamInstEnvs -> CoreProgram -> CoreProgram
-dmdAnalProgram opts fam_envs binds = binds_plus_dmds
- where
- env = emptyAnalEnv opts fam_envs
- binds_plus_dmds = snd $ mapAccumL dmdAnalTopBind env binds
-
--- Analyse a (group of) top-level binding(s)
-dmdAnalTopBind :: AnalEnv
- -> CoreBind
- -> (AnalEnv, CoreBind)
-dmdAnalTopBind env (NonRec id rhs)
- = ( extendAnalEnv TopLevel env id sig
- , NonRec (setIdStrictness id sig) rhs')
+dmdAnalProgram :: DmdAnalOpts -> FamInstEnvs -> [CoreRule] -> CoreProgram -> CoreProgram
+dmdAnalProgram opts fam_envs rules binds
+ = snd $ go (emptyAnalEnv opts fam_envs) binds
where
- ( _, sig, rhs') = dmdAnalRhsLetDown Nothing env topSubDmd id rhs
+ -- See Note [Analysing top-level bindings]
+ -- and Note [Why care for top-level demand annotations?]
+ go _ [] = (nopDmdType, [])
+ go env (b:bs) = cons_up $ dmdAnalBind TopLevel env topSubDmd b anal_body
+ where
+ anal_body env'
+ | (body_ty, bs') <- go env' bs
+ = (add_exported_uses env' body_ty (bindersOf b), bs')
+
+ cons_up :: (a, b, [b]) -> (a, [b])
+ cons_up (dmd_ty, b', bs') = (dmd_ty, b':bs')
+
+ add_exported_uses :: AnalEnv -> DmdType -> [Id] -> DmdType
+ add_exported_uses env = foldl' (add_exported_use env)
+
+ -- | If @e@ is denoted by @dmd_ty@, then @add_exported_use _ dmd_ty id@
+ -- corresponds to the demand type of @(id, e)@, but is a lot more direct.
+ -- See Note [Analysing top-level bindings].
+ add_exported_use :: AnalEnv -> DmdType -> Id -> DmdType
+ add_exported_use env dmd_ty id
+ | isExportedId id || elemVarSet id rule_fvs
+ -- See Note [Absence analysis for stable unfoldings and RULES]
+ = dmd_ty `plusDmdType` fst (dmdAnalStar env topDmd (Var id))
+ | otherwise
+ = dmd_ty
-dmdAnalTopBind env (Rec pairs)
- = (env', Rec pairs')
- where
- (env', _, pairs') = dmdFix TopLevel env topSubDmd pairs
- -- We get two iterations automatically
- -- c.f. the NonRec case above
+ rule_fvs :: IdSet
+ rule_fvs = foldr (unionVarSet . ruleRhsFreeIds) emptyVarSet rules
+
+-- | We attach useful (e.g. not 'topDmd') 'idDemandInfo' to top-level bindings
+-- that satisfy this function.
+--
+-- Basically, we want to know how top-level *functions* are *used*
+-- (e.g. called). The information will always be lazy.
+-- Any other top-level bindings are boring.
+--
+-- See also Note [Why care for top-level demand annotations?].
+isInterestingTopLevelFn :: Id -> Bool
+-- SG tried to set this to True and got a +2% ghc/alloc regression in T5642
+-- (which is dominated by the Simplifier) at no gain in analysis precision.
+-- If there was a gain, that regression might be acceptable.
+-- Plus, we could use LetUp for thunks and share some code with local let
+-- bindings.
+isInterestingTopLevelFn id =
+ typeArity (idType id) `lengthExceeds` 0
{- Note [Stamp out space leaks in demand analysis]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -105,8 +133,80 @@ generation would hold on to an extra copy of the Core program, via
unforced thunks in demand or strictness information; and it is the
most memory-intensive part of the compilation process, so this added
seqBinds makes a big difference in peak memory usage.
--}
+Note [Analysing top-level bindings]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider a CoreProgram like
+ e1 = ...
+ n1 = ...
+ e2 = \a b -> ... fst (n1 a b) ...
+ n2 = \c d -> ... snd (e2 c d) ...
+ ...
+where e* are exported, but n* are not.
+Intuitively, we can see that @n1@ is only ever called with two arguments
+and in every call site, the first component of the result of the call
+is evaluated. Thus, we'd like it to have idDemandInfo @UCU(C1(P(SU,A))@.
+NB: We may *not* give e2 a similar annotation, because it is exported and
+external callers might use it in arbitrary ways, expressed by 'topDmd'.
+This can then be exploited by Nested CPR and eta-expansion,
+see Note [Why care for top-level demand annotations?].
+
+How do we get this result? Answer: By analysing the program as if it was a let
+expression of this form:
+ let e1 = ... in
+ let n1 = ... in
+ let e2 = ... in
+ let n2 = ... in
+ (e1,e2, ...)
+E.g. putting all bindings in nested lets and returning all exported binders in a tuple.
+Of course, we will not actually build that CoreExpr! Instead we faithfully
+simulate analysis of said expression by adding the free variable 'DmdEnv'
+of @e*@'s strictness signatures to the 'DmdType' we get from analysing the
+nested bindings.
+
+And even then the above form blows up analysis performance in T10370:
+If @e1@ uses many free variables, we'll unnecessarily carry their demands around
+with us from the moment we analyse the pair to the moment we bubble back up to
+the binding for @e1@. So instead we analyse as if we had
+ let e1 = ... in
+ (e1, let n1 = ... in
+ ( let e2 = ... in
+ (e2, let n2 = ... in
+ ( ...))))
+That is, a series of right-nested pairs, where the @fst@ are the exported
+binders of the last enclosing let binding and @snd@ continues the nested
+lets.
+
+Variables occuring free in RULE RHSs are to be handled the same as exported Ids.
+See also Note [Absence analysis for stable unfoldings and RULES].
+
+Note [Why care for top-level demand annotations?]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Reading Note [Analysing top-level bindings], you might think that we go through
+quite some trouble to get useful demands for top-level bindings. They can never
+be strict, for example, so why bother?
+
+First, we get to eta-expand top-level bindings that we weren't able to
+eta-expand before without Call Arity. From T18894b:
+ module T18894b (f) where
+ eta :: Int -> Int -> Int
+ eta x = if fst (expensive x) == 13 then \y -> ... else \y -> ...
+ f m = ... eta m 2 ... eta 2 m ...
+Since only @f@ is exported, we see all call sites of @eta@ and can eta-expand to
+arity 2.
+
+The call demands we get for some top-level bindings will also allow Nested CPR
+to unbox deeper. From T18894:
+ module T18894 (h) where
+ g m n = (2 * m, 2 `div` n)
+ {-# NOINLINE g #-}
+ h :: Int -> Int
+ h m = ... snd (g m 2) ... uncurry (+) (g 2 m) ...
+Only @h@ is exported, hence we see that @g@ is always called in contexts were we
+also force the division in the second component of the pair returned by @g@.
+This allows Nested CPR to evalute the division eagerly and return an I# in its
+position.
+-}
{-
************************************************************************
@@ -114,7 +214,103 @@ seqBinds makes a big difference in peak memory usage.
\subsection{The analyser itself}
* *
************************************************************************
+-}
+
+-- | Analyse a binding group and its \"body\", e.g. where it is in scope.
+--
+-- It calls a function that knows how to analyse this \"body\" given
+-- an 'AnalEnv' with updated demand signatures for the binding group
+-- (reflecting their 'idStrictnessInfo') and expects to receive a
+-- 'DmdType' in return, which it uses to annotate the binding group with their
+-- 'idDemandInfo'.
+dmdAnalBind
+ :: TopLevelFlag
+ -> AnalEnv
+ -> SubDemand -- ^ Demand put on the "body"
+ -- (important for join points)
+ -> CoreBind
+ -> (AnalEnv -> (DmdType, a)) -- ^ How to analyse the "body", e.g.
+ -- where the binding is in scope
+ -> (DmdType, CoreBind, a)
+dmdAnalBind top_lvl env dmd bind anal_body = case bind of
+ NonRec id rhs
+ | useLetUp top_lvl id
+ -> dmdAnalBindLetUp top_lvl env id rhs anal_body
+ _ -> dmdAnalBindLetDown top_lvl env dmd bind anal_body
+
+-- | Annotates uninteresting top level functions ('isInterestingTopLevelFn')
+-- with 'topDmd', the rest with the given demand.
+setBindIdDemandInfo :: TopLevelFlag -> Id -> Demand -> Id
+setBindIdDemandInfo top_lvl id dmd = setIdDemandInfo id $ case top_lvl of
+ TopLevel | not (isInterestingTopLevelFn id) -> topDmd
+ _ -> dmd
+
+-- | Let bindings can be processed in two ways:
+-- Down (RHS before body) or Up (body before RHS).
+-- This function handles the up variant.
+--
+-- It is very simple. For let x = rhs in body
+-- * Demand-analyse 'body' in the current environment
+-- * Find the demand, 'rhs_dmd' placed on 'x' by 'body'
+-- * Demand-analyse 'rhs' in 'rhs_dmd'
+--
+-- This is used for a non-recursive local let without manifest lambdas (see
+-- 'useLetUp').
+--
+-- This is the LetUp rule in the paper “Higher-Order Cardinality Analysis”.
+dmdAnalBindLetUp :: TopLevelFlag -> AnalEnv -> Id -> CoreExpr -> (AnalEnv -> (DmdType, a)) -> (DmdType, CoreBind, a)
+dmdAnalBindLetUp top_lvl env id rhs anal_body = (final_ty, NonRec id' rhs', body')
+ where
+ (body_ty, body') = anal_body env
+ (body_ty', id_dmd) = findBndrDmd env notArgOfDfun body_ty id
+ id' = setBindIdDemandInfo top_lvl id id_dmd
+ (rhs_ty, rhs') = dmdAnalStar env (dmdTransformThunkDmd rhs id_dmd) rhs
+ final_ty = body_ty' `plusDmdType` rhs_ty
+
+-- | Let bindings can be processed in two ways:
+-- Down (RHS before body) or Up (body before RHS).
+-- This function handles the down variant.
+--
+-- It computes a demand signature (by means of 'dmdAnalRhsSig') and uses
+-- that at call sites in the body.
+--
+-- It is used for toplevel definitions, recursive definitions and local
+-- non-recursive definitions that have manifest lambdas (cf. 'useLetUp').
+-- Local non-recursive definitions without a lambda are handled with LetUp.
+--
+-- This is the LetDown rule in the paper “Higher-Order Cardinality Analysis”.
+dmdAnalBindLetDown :: TopLevelFlag -> AnalEnv -> SubDemand -> CoreBind -> (AnalEnv -> (DmdType, a)) -> (DmdType, CoreBind, a)
+dmdAnalBindLetDown top_lvl env dmd bind anal_body = case bind of
+ NonRec id rhs
+ | (env', lazy_fv, id1, rhs1) <-
+ dmdAnalRhsSig top_lvl NonRecursive env dmd id rhs
+ -> do_rest env' lazy_fv [(id1, rhs1)] (uncurry NonRec . only)
+ Rec pairs
+ | (env', lazy_fv, pairs') <- dmdFix top_lvl env dmd pairs
+ -> do_rest env' lazy_fv pairs' Rec
+ where
+ do_rest env' lazy_fv pairs1 build_bind = (final_ty, build_bind pairs2, body')
+ where
+ (body_ty, body') = anal_body env'
+ -- see Note [Lazy and unleashable free variables]
+ dmd_ty = addLazyFVs body_ty lazy_fv
+ (!final_ty, id_dmds) = findBndrsDmds env' dmd_ty (map fst pairs1)
+ pairs2 = zipWith do_one pairs1 id_dmds
+ do_one (id', rhs') dmd = (setBindIdDemandInfo top_lvl id' dmd, rhs')
+ -- If the actual demand is better than the vanilla call
+ -- demand, you might think that we might do better to re-analyse
+ -- the RHS with the stronger demand.
+ -- But (a) That seldom happens, because it means that *every* path in
+ -- the body of the let has to use that stronger demand
+ -- (b) It often happens temporarily in when fixpointing, because
+ -- the recursive function at first seems to place a massive demand.
+ -- But we don't want to go to extra work when the function will
+ -- probably iterate to something less demanding.
+ -- In practice, all the times the actual demand on id2 is more than
+ -- the vanilla call demand seem to be due to (b). So we don't
+ -- bother to re-analyse the RHS.
+{-
Note [Ensure demand is strict]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important not to analyse e with a lazy demand because
@@ -295,60 +491,11 @@ dmdAnal' env dmd (Case scrut case_bndr ty alts)
-- , text "res_ty" <+> ppr res_ty ]) $
(res_ty, Case scrut' case_bndr' ty alts')
--- Let bindings can be processed in two ways:
--- Down (RHS before body) or Up (body before RHS).
--- The following case handle the up variant.
---
--- It is very simple. For let x = rhs in body
--- * Demand-analyse 'body' in the current environment
--- * Find the demand, 'rhs_dmd' placed on 'x' by 'body'
--- * Demand-analyse 'rhs' in 'rhs_dmd'
---
--- This is used for a non-recursive local let without manifest lambdas.
--- This is the LetUp rule in the paper “Higher-Order Cardinality Analysis”.
-dmdAnal' env dmd (Let (NonRec id rhs) body)
- | useLetUp id
- = (final_ty, Let (NonRec id' rhs') body')
- where
- (body_ty, body') = dmdAnal env dmd body
- (body_ty', id_dmd) = findBndrDmd env notArgOfDfun body_ty id
- id' = setIdDemandInfo id id_dmd
-
- (rhs_ty, rhs') = dmdAnalStar env (dmdTransformThunkDmd rhs id_dmd) rhs
- final_ty = body_ty' `plusDmdType` rhs_ty
-
-dmdAnal' env dmd (Let (NonRec id rhs) body)
- = (body_ty2, Let (NonRec id2 rhs') body')
+dmdAnal' env dmd (Let bind body)
+ = (final_ty, Let bind' body')
where
- (lazy_fv, sig, rhs') = dmdAnalRhsLetDown Nothing env dmd id rhs
- id1 = setIdStrictness id sig
- env1 = extendAnalEnv NotTopLevel env id sig
- (body_ty, body') = dmdAnal env1 dmd body
- (body_ty1, id2) = annotateBndr env body_ty id1
- body_ty2 = addLazyFVs body_ty1 lazy_fv -- see Note [Lazy and unleashable free variables]
-
- -- If the actual demand is better than the vanilla call
- -- demand, you might think that we might do better to re-analyse
- -- the RHS with the stronger demand.
- -- But (a) That seldom happens, because it means that *every* path in
- -- the body of the let has to use that stronger demand
- -- (b) It often happens temporarily in when fixpointing, because
- -- the recursive function at first seems to place a massive demand.
- -- But we don't want to go to extra work when the function will
- -- probably iterate to something less demanding.
- -- In practice, all the times the actual demand on id2 is more than
- -- the vanilla call demand seem to be due to (b). So we don't
- -- bother to re-analyse the RHS.
-
-dmdAnal' env dmd (Let (Rec pairs) body)
- = let
- (env', lazy_fv, pairs') = dmdFix NotTopLevel env dmd pairs
- (body_ty, body') = dmdAnal env' dmd body
- body_ty1 = deleteFVs body_ty (map fst pairs)
- body_ty2 = addLazyFVs body_ty1 lazy_fv -- see Note [Lazy and unleashable free variables]
- in
- body_ty2 `seq`
- (body_ty2, Let (Rec pairs') body')
+ (final_ty, bind', body') = dmdAnalBind NotTopLevel env dmd bind go'
+ go' env' = dmdAnal env' dmd body
-- | A simple, syntactic analysis of whether an expression MAY throw a precise
-- exception when evaluated. It's always sound to return 'True'.
@@ -582,9 +729,17 @@ dmdTransform env var dmd
| Just (sig, top_lvl) <- lookupSigEnv env var
, let fn_ty = dmdTransformSig sig dmd
= -- pprTrace "dmdTransform:LetDown" (vcat [ppr var, ppr sig, ppr dmd, ppr fn_ty]) $
- if isTopLevel top_lvl
- then fn_ty -- Don't record demand on top-level things
- else addVarDmd fn_ty var (C_11 :* dmd)
+ case top_lvl of
+ NotTopLevel -> addVarDmd fn_ty var (C_11 :* dmd)
+ TopLevel
+ | isInterestingTopLevelFn var
+ -- Top-level things will be used multiple times or not at
+ -- all anyway, hence the multDmd below: It means we don't
+ -- have to track whether @var@ is used strictly or at most
+ -- once, because ultimately it never will.
+ -> addVarDmd fn_ty var (C_0N `multDmd` (C_11 :* dmd)) -- discard strictness
+ | otherwise
+ -> fn_ty -- don't bother tracking; just annotate with 'topDmd' later
-- Everything else:
-- * Local let binders for which we use LetUp (cf. 'useLetUp')
-- * Lambda binders
@@ -599,46 +754,46 @@ dmdTransform env var dmd
* *
********************************************************************* -}
--- Let bindings can be processed in two ways:
--- Down (RHS before body) or Up (body before RHS).
--- dmdAnalRhsLetDown implements the Down variant:
--- * assuming a demand of <L,U>
+-- | @dmdAnalRhsSig@ analyses the given RHS to compute a demand signature
+-- for the LetDown rule. It works as follows:
+--
+-- * assuming a demand of <U>
-- * looking at the definition
-- * determining a strictness signature
--
--- It is used for toplevel definition, recursive definitions and local
--- non-recursive definitions that have manifest lambdas.
--- Local non-recursive definitions without a lambda are handled with LetUp.
---
--- This is the LetDown rule in the paper “Higher-Order Cardinality Analysis”.
-dmdAnalRhsLetDown
- :: Maybe [Id] -- Just bs <=> recursive, Nothing <=> non-recursive
+-- Since it assumed a demand of <U>, the resulting signature is applicable at
+-- any call site.
+dmdAnalRhsSig
+ :: TopLevelFlag
+ -> RecFlag
-> AnalEnv -> SubDemand
-> Id -> CoreExpr
- -> (DmdEnv, StrictSig, CoreExpr)
+ -> (AnalEnv, DmdEnv, Id, CoreExpr)
-- Process the RHS of the binding, add the strictness signature
-- to the Id, and augment the environment with the signature as well.
-- See Note [NOINLINE and strictness]
-dmdAnalRhsLetDown rec_flag env let_dmd id rhs
- = -- pprTrace "dmdAnalRhsLetDown" (ppr id $$ ppr let_dmd $$ ppr sig $$ ppr lazy_fv) $
- (lazy_fv, sig, rhs')
+dmdAnalRhsSig top_lvl rec_flag env let_dmd id rhs
+ = -- pprTrace "dmdAnalRhsSig" (ppr id $$ ppr let_dmd $$ ppr sig $$ ppr lazy_fv) $
+ (env', lazy_fv, id', rhs')
where
rhs_arity = idArity id
+ -- See Note [Demand signatures are computed for a threshold demand based on idArity]
rhs_dmd -- See Note [Demand analysis for join points]
-- See Note [Invariants on join points] invariant 2b, in GHC.Core
-- rhs_arity matches the join arity of the join point
| isJoinId id
= mkCallDmds rhs_arity let_dmd
| otherwise
- -- NB: rhs_arity
- -- See Note [Demand signatures are computed for a threshold demand based on idArity]
- = mkRhsDmd env rhs_arity rhs
+ = mkCallDmds rhs_arity topSubDmd
(rhs_dmd_ty, rhs') = dmdAnal env rhs_dmd rhs
DmdType rhs_fv rhs_dmds rhs_div = rhs_dmd_ty
sig = mkStrictSigForArity rhs_arity (DmdType sig_fv rhs_dmds rhs_div)
+ id' = id `setIdStrictness` sig
+ env' = extendAnalEnv top_lvl env id' sig
+
-- See Note [Aggregated demand for cardinality]
-- FIXME: That Note doesn't explain the following lines at all. The reason
-- is really much different: When we have a recursive function, we'd
@@ -651,8 +806,8 @@ dmdAnalRhsLetDown rec_flag env let_dmd id rhs
-- we'd have to do an additional iteration. reuseEnv makes sure that
-- we never get used-once info for FVs of recursive functions.
rhs_fv1 = case rec_flag of
- Just bs -> reuseEnv (delVarEnvList rhs_fv bs)
- Nothing -> rhs_fv
+ Recursive -> reuseEnv rhs_fv
+ NonRecursive -> rhs_fv
rhs_fv2 = rhs_fv1 `keepAliveDmdEnv` extra_fvs
-- Find the RHS free vars of the unfoldings and RULES
@@ -669,13 +824,6 @@ dmdAnalRhsLetDown rec_flag env let_dmd id rhs
= exprFreeIds unf_body
| otherwise = emptyVarSet
--- | @mkRhsDmd env rhs_arity rhs@ creates a 'SubDemand' for
--- unleashing on the given function's @rhs@, by creating
--- a call demand of @rhs_arity@
--- See Historical Note [Product demands for function body]
-mkRhsDmd :: AnalEnv -> Arity -> CoreExpr -> SubDemand
-mkRhsDmd _env rhs_arity _rhs = mkCallDmds rhs_arity topSubDmd
-
-- | If given the (local, non-recursive) let-bound 'Id', 'useLetUp' determines
-- whether we should process the binding up (body before rhs) or down (rhs
-- before body).
@@ -720,8 +868,8 @@ mkRhsDmd _env rhs_arity _rhs = mkCallDmds rhs_arity topSubDmd
-- * For a more convincing example with join points, see Note [Demand analysis
-- for join points].
--
-useLetUp :: Var -> Bool
-useLetUp f = idArity f == 0 && not (isJoinId f)
+useLetUp :: TopLevelFlag -> Var -> Bool
+useLetUp top_lvl f = isNotTopLevel top_lvl && idArity f == 0 && not (isJoinId f)
{- Note [Demand analysis for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -939,8 +1087,6 @@ dmdFix :: TopLevelFlag
dmdFix top_lvl env let_dmd orig_pairs
= loop 1 initial_pairs
where
- bndrs = map fst orig_pairs
-
-- See Note [Initialising strictness]
initial_pairs | ae_virgin env = [(setIdStrictness id botSig, rhs) | (id, rhs) <- orig_pairs ]
| otherwise = orig_pairs
@@ -990,10 +1136,8 @@ dmdFix top_lvl env let_dmd orig_pairs
= -- pprTrace "my_downRhs" (ppr id $$ ppr (idStrictness id) $$ ppr sig) $
((env', lazy_fv'), (id', rhs'))
where
- (lazy_fv1, sig, rhs') = dmdAnalRhsLetDown (Just bndrs) env let_dmd id rhs
- lazy_fv' = plusVarEnv_C plusDmd lazy_fv lazy_fv1
- env' = extendAnalEnv top_lvl env id sig
- id' = setIdStrictness id sig
+ (env', lazy_fv1, id', rhs') = dmdAnalRhsSig top_lvl Recursive env let_dmd id rhs
+ lazy_fv' = plusVarEnv_C plusDmd lazy_fv lazy_fv1
zapIdStrictness :: [(Id, CoreExpr)] -> [(Id, CoreExpr)]
zapIdStrictness pairs = [(setIdStrictness id nopSig, rhs) | (id, rhs) <- pairs ]
@@ -1090,7 +1234,7 @@ addLazyFVs dmd_ty lazy_fvs
-- demand with the bottom coming up from 'error'
--
-- I got a loop in the fixpointer without this, due to an interaction
- -- with the lazy_fv filtering in dmdAnalRhsLetDown. Roughly, it was
+ -- with the lazy_fv filtering in dmdAnalRhsSig. Roughly, it was
-- letrec f n x
-- = letrec g y = x `fatbar`
-- letrec h z = z + ...g...
@@ -1156,10 +1300,6 @@ annotateLamIdBndr env arg_of_dfun dmd_ty id
main_ty = addDemand dmd dmd_ty'
(dmd_ty', dmd) = findBndrDmd env arg_of_dfun dmd_ty id
-deleteFVs :: DmdType -> [Var] -> DmdType
-deleteFVs (DmdType fvs dmds res) bndrs
- = DmdType (delVarEnvList fvs bndrs) dmds res
-
{-
Note [NOINLINE and strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~