summaryrefslogtreecommitdiff
path: root/compiler
diff options
context:
space:
mode:
authorSylvain Henry <sylvain@haskus.fr>2021-05-31 15:47:56 +0200
committerMarge Bot <ben+marge-bot@smart-cactus.org>2021-08-09 15:11:23 -0400
commit748636388b052d22859b7265dec776edfa12a68c (patch)
tree3193ecc47420dbf522ce945f3c1d57254833aaeb /compiler
parentb128a880b225d3abc98f58a0426b58138aed5504 (diff)
downloadhaskell-748636388b052d22859b7265dec776edfa12a68c.tar.gz
Remove ad-hoc fromIntegral rules
fromIntegral is defined as: {-# NOINLINE [1] fromIntegral #-} fromIntegral :: (Integral a, Num b) => a -> b fromIntegral = fromInteger . toInteger Before this patch, we had a lot of rewrite rules for fromIntegral, to avoid passing through Integer when there is a faster way, e.g.: "fromIntegral/Int->Word" fromIntegral = \(I# x#) -> W# (int2Word# x#) "fromIntegral/Word->Int" fromIntegral = \(W# x#) -> I# (word2Int# x#) "fromIntegral/Word->Word" fromIntegral = id :: Word -> Word Since we have added sized types and primops (Word8#, Int16#, etc.) and Natural, this approach didn't really scale as there is a combinatorial explosion of types. In addition, we really want these conversions to be optimized for all these types and in every case (not only when fromIntegral is explicitly used). This patch removes all those ad-hoc fromIntegral rules. Instead we rely on inlining and built-in constant-folding rules. There are not too many native conversions between Integer/Natural and fixed size types, so we can handle them all explicitly. Foreign.C.Types was using rules to ensure that fromIntegral rules "sees" through the newtype wrappers,e.g.: {-# RULES "fromIntegral/a->CSize" fromIntegral = \x -> CSize (fromIntegral x) "fromIntegral/CSize->a" fromIntegral = \(CSize x) -> fromIntegral x #-} But they aren't necessary because coercions due to newtype deriving are pushed out of the way. So this patch removes these rules (as fromIntegral is now inlined, they won't match anymore anyway). Summary: * INLINE `fromIntegral` * Add some missing constant-folding rules * Remove every fromIntegral ad-hoc rules (fix #19907) Fix #20062 (missing fromIntegral rules for sized primitives) Performance: - T12545 wiggles (tracked by #19414) Metric Decrease: T12545 T10359 Metric Increase: T12545
Diffstat (limited to 'compiler')
-rw-r--r--compiler/GHC/Core/Opt/ConstantFold.hs289
1 files changed, 230 insertions, 59 deletions
diff --git a/compiler/GHC/Core/Opt/ConstantFold.hs b/compiler/GHC/Core/Opt/ConstantFold.hs
index f2c9e95253..2da7348d66 100644
--- a/compiler/GHC/Core/Opt/ConstantFold.hs
+++ b/compiler/GHC/Core/Opt/ConstantFold.hs
@@ -1431,10 +1431,13 @@ instance Alternative RuleM where
instance MonadPlus RuleM
getPlatform :: RuleM Platform
-getPlatform = roPlatform <$> getEnv
+getPlatform = roPlatform <$> getRuleOpts
-getEnv :: RuleM RuleOpts
-getEnv = RuleM $ \env _ _ _ -> Just env
+getRuleOpts :: RuleM RuleOpts
+getRuleOpts = RuleM $ \rule_opts _ _ _ -> Just rule_opts
+
+getEnv :: RuleM InScopeEnv
+getEnv = RuleM $ \_ env _ _ -> Just env
liftMaybe :: Maybe a -> RuleM a
liftMaybe Nothing = mzero
@@ -1468,6 +1471,20 @@ getInScopeEnv = RuleM $ \_ iu _ _ -> Just iu
getFunction :: RuleM Id
getFunction = RuleM $ \_ _ fn _ -> Just fn
+exprIsVarApp_maybe :: InScopeEnv -> CoreExpr -> Maybe (Id,CoreArg)
+exprIsVarApp_maybe env@(_, id_unf) e = case e of
+ App (Var f) a -> Just (f, a)
+ Var v
+ | Just rhs <- expandUnfolding_maybe (id_unf v)
+ -> exprIsVarApp_maybe env rhs
+ _ -> Nothing
+
+-- | Looks into the expression or its unfolding to find "App (Var f) x"
+isVarApp :: InScopeEnv -> CoreExpr -> RuleM (Id,CoreArg)
+isVarApp env e = case exprIsVarApp_maybe env e of
+ Nothing -> mzero
+ Just r -> pure r
+
isLiteral :: CoreExpr -> RuleM Literal
isLiteral e = do
env <- getInScopeEnv
@@ -1509,13 +1526,13 @@ getLiteral n = RuleM $ \_ _ _ exprs -> case drop n exprs of
unaryLit :: (RuleOpts -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
unaryLit op = do
- env <- getEnv
+ env <- getRuleOpts
[Lit l] <- getArgs
liftMaybe $ op env (convFloating env l)
binaryLit :: (RuleOpts -> Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
binaryLit op = do
- env <- getEnv
+ env <- getRuleOpts
[Lit l1, Lit l2] <- getArgs
liftMaybe $ op env (convFloating env l1) (convFloating env l2)
@@ -2048,64 +2065,91 @@ builtinBignumRules =
, bignum_popcount "integerPopCount" integerPopCountName mkLitIntWrap
, bignum_popcount "naturalPopCount" naturalPopCountName mkLitWordWrap
- -- identity passthrough
- , id_passthrough "Int# -> Integer -> Int#"
- integerToIntName integerISName
- , id_passthrough "Word# -> Integer -> Word#"
- integerToWordName integerFromWordName
- , id_passthrough "Int64# -> Integer -> Int64#"
- integerToInt64Name integerFromInt64Name
- , id_passthrough "Word64# -> Integer -> Word64#"
- integerToWord64Name integerFromWord64Name
- , id_passthrough "Natural -> Integer -> Natural (wrap)"
- integerToNaturalName integerFromNaturalName
- , id_passthrough "Natural -> Integer -> Natural (throw)"
- integerToNaturalThrowName integerFromNaturalName
- , id_passthrough "Natural -> Integer -> Natural (clamp)"
- integerToNaturalClampName integerFromNaturalName
- , id_passthrough "Word# -> Natural -> Word#"
- naturalToWordName naturalNSName
- , id_passthrough "Word# -> Natural -> Word# (clamp)"
- naturalToWordClampName naturalNSName
-
- -- passthrough bignum small constructors with a conversion that can be done
- -- directly instead
-
- , small_passthrough "Int# -> Integer -> Word#"
+ ------------------------------------------------------------
+ -- The following `small_passthough_*` rules are used to optimise conversions
+ -- between numeric types by avoiding passing through "small" constructors of
+ -- Integer and Natural.
+ --
+ -- See Note [Optimising conversions between numeric types]
+ --
+
+ , small_passthrough_id "Word# -> Natural -> Word#"
+ naturalNSName naturalToWordName
+ , small_passthrough_id "Word# -> Natural -> Word# (clamp)"
+ naturalNSName naturalToWordClampName
+
+ , small_passthrough_id "Int# -> Integer -> Int#"
+ integerISName integerToIntName
+ , small_passthrough_id "Word# -> Integer -> Word#"
+ integerFromWordName integerToWordName
+ , small_passthrough_id "Int64# -> Integer -> Int64#"
+ integerFromInt64Name integerToInt64Name
+ , small_passthrough_id "Word64# -> Integer -> Word64#"
+ integerFromWord64Name integerToWord64Name
+ , small_passthrough_id "Natural -> Integer -> Natural (wrap)"
+ integerFromNaturalName integerToNaturalName
+ , small_passthrough_id "Natural -> Integer -> Natural (throw)"
+ integerFromNaturalName integerToNaturalThrowName
+ , small_passthrough_id "Natural -> Integer -> Natural (clamp)"
+ integerFromNaturalName integerToNaturalClampName
+
+ , small_passthrough_app "Int# -> Integer -> Word#"
integerISName integerToWordName (mkPrimOpId IntToWordOp)
- , small_passthrough "Int# -> Integer -> Float#"
+ , small_passthrough_app "Int# -> Integer -> Float#"
integerISName integerToFloatName (mkPrimOpId IntToFloatOp)
- , small_passthrough "Int# -> Integer -> Double#"
+ , small_passthrough_app "Int# -> Integer -> Double#"
integerISName integerToDoubleName (mkPrimOpId IntToDoubleOp)
- , small_passthrough "Word# -> Integer -> Float#"
+
+ , small_passthrough_app "Word# -> Integer -> Int#"
+ integerFromWordName integerToIntName (mkPrimOpId WordToIntOp)
+ , small_passthrough_app "Word# -> Integer -> Float#"
integerFromWordName integerToFloatName (mkPrimOpId WordToFloatOp)
- , small_passthrough "Word# -> Integer -> Double#"
+ , small_passthrough_app "Word# -> Integer -> Double#"
integerFromWordName integerToDoubleName (mkPrimOpId WordToDoubleOp)
-
- , small_passthrough "Word# -> Natural -> Float#"
+ , small_passthrough_app "Word# -> Integer -> Natural (wrap)"
+ integerFromWordName integerToNaturalName naturalNSId
+ , small_passthrough_app "Word# -> Integer -> Natural (throw)"
+ integerFromWordName integerToNaturalThrowName naturalNSId
+ , small_passthrough_app "Word# -> Integer -> Natural (clamp)"
+ integerFromWordName integerToNaturalClampName naturalNSId
+
+ , small_passthrough_app "Word# -> Natural -> Float#"
naturalNSName naturalToFloatName (mkPrimOpId WordToFloatOp)
- , small_passthrough "Word# -> Natural -> Double#"
+ , small_passthrough_app "Word# -> Natural -> Double#"
naturalNSName naturalToDoubleName (mkPrimOpId WordToDoubleOp)
#if WORD_SIZE_IN_BITS < 64
- , id_passthrough "Int64# -> Integer -> Int64#"
- integerToInt64Name integerFromInt64Name
- , id_passthrough "Word64# -> Integer -> Word64#"
- integerToWord64Name integerFromWord64Name
+ , small_passthrough_id "Int64# -> Integer -> Int64#"
+ integerFromInt64Name integerToInt64Name
+ , small_passthrough_id "Word64# -> Integer -> Word64#"
+ integerFromWord64Name integerToWord64Name
- , small_passthrough "Int64# -> Integer -> Word64#"
+ , small_passthrough_app "Int64# -> Integer -> Word64#"
integerFromInt64Name integerToWord64Name (mkPrimOpId Int64ToWord64Op)
- , small_passthrough "Word64# -> Integer -> Int64#"
+ , small_passthrough_app "Word64# -> Integer -> Int64#"
integerFromWord64Name integerToInt64Name (mkPrimOpId Word64ToInt64Op)
- , small_passthrough "Word# -> Integer -> Word64#"
+ , small_passthrough_app "Word# -> Integer -> Word64#"
integerFromWordName integerToWord64Name (mkPrimOpId WordToWord64Op)
- , small_passthrough "Word64# -> Integer -> Word#"
+ , small_passthrough_app "Word64# -> Integer -> Word#"
integerFromWord64Name integerToWordName (mkPrimOpId Word64ToWordOp)
- , small_passthrough "Int# -> Integer -> Int64#"
+ , small_passthrough_app "Int# -> Integer -> Int64#"
integerISName integerToInt64Name (mkPrimOpId IntToInt64Op)
- , small_passthrough "Int64# -> Integer -> Int#"
+ , small_passthrough_app "Int64# -> Integer -> Int#"
integerFromInt64Name integerToIntName (mkPrimOpId Int64ToIntOp)
+
+ , small_passthrough_custom "Int# -> Integer -> Word64#"
+ integerISName integerToWord64Name
+ (\x -> Var (mkPrimOpId Int64ToWord64Op) `App` (Var (mkPrimOpId IntToInt64Op) `App` x))
+ , small_passthrough_custom "Word64# -> Integer -> Int#"
+ integerFromWord64Name integerToIntName
+ (\x -> Var (mkPrimOpId WordToIntOp) `App` (Var (mkPrimOpId Word64ToWordOp) `App` x))
+ , small_passthrough_custom "Word# -> Integer -> Int64#"
+ integerFromWordName integerToInt64Name
+ (\x -> Var (mkPrimOpId Word64ToInt64Op) `App` (Var (mkPrimOpId WordToWord64Op) `App` x))
+ , small_passthrough_custom "Int64# -> Integer -> Word#"
+ integerFromInt64Name integerToWordName
+ (\x -> Var (mkPrimOpId IntToWordOp) `App` (Var (mkPrimOpId Int64ToIntOp) `App` x))
#endif
-- Bits.bit
@@ -2159,15 +2203,17 @@ builtinBignumRules =
-- The data constructor may or may not have a wrapper, but if not
-- dataConWrapId will return the worker
--
- integerISName = idName (dataConWrapId integerISDataCon)
- naturalNSName = idName (dataConWrapId naturalNSDataCon)
+ integerISId = dataConWrapId integerISDataCon
+ naturalNSId = dataConWrapId naturalNSDataCon
+ integerISName = idName integerISId
+ naturalNSName = idName naturalNSId
mkRule str name nargs f = BuiltinRule
{ ru_name = fsLit str
, ru_fn = name
, ru_nargs = nargs
, ru_try = runRuleM $ do
- env <- getEnv
+ env <- getRuleOpts
guard (roBignumRules env)
f
}
@@ -2269,15 +2315,18 @@ builtinBignumRules =
x <- isNumberLiteral a0
pure $ Lit (mk_lit platform (fromIntegral (popCount x)))
- id_passthrough str to_x from_x = mkRule str to_x 1 $ do
- [App (Var f) x] <- getArgs
- guard (idName f == from_x)
- pure x
+ small_passthrough_id str from_x to_x =
+ small_passthrough_custom str from_x to_x id
+
+ small_passthrough_app str from_x to_y x_to_y =
+ small_passthrough_custom str from_x to_y (App (Var x_to_y))
- small_passthrough str from_x to_y x_to_y = mkRule str to_y 1 $ do
- [App (Var f) x] <- getArgs
+ small_passthrough_custom str from_x to_y x_to_y = mkRule str to_y 1 $ do
+ [a0] <- getArgs
+ env <- getEnv
+ (f,x) <- isVarApp env a0
guard (idName f == from_x)
- pure $ App (Var x_to_y) x
+ pure $ x_to_y x
bignum_bit str name mk_lit = mkRule str name 1 $ do
[a0] <- getArgs
@@ -2640,7 +2689,7 @@ match_inline _ = Nothing
addFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
addFoldingRules op num_ops = do
massert (op == numAdd num_ops)
- env <- getEnv
+ env <- getRuleOpts
guard (roNumConstantFolding env)
[arg1,arg2] <- getArgs
platform <- getPlatform
@@ -2652,7 +2701,7 @@ addFoldingRules op num_ops = do
subFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
subFoldingRules op num_ops = do
massert (op == numSub num_ops)
- env <- getEnv
+ env <- getRuleOpts
guard (roNumConstantFolding env)
[arg1,arg2] <- getArgs
platform <- getPlatform
@@ -2661,7 +2710,7 @@ subFoldingRules op num_ops = do
mulFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
mulFoldingRules op num_ops = do
massert (op == numMul num_ops)
- env <- getEnv
+ env <- getRuleOpts
guard (roNumConstantFolding env)
[arg1,arg2] <- getArgs
platform <- getPlatform
@@ -3245,4 +3294,126 @@ Hence caseRules returns (AltCon -> Maybe AltCon), with Nothing indicating
an alternative that is unreachable.
You may wonder how this can happen: check out #15436.
+
+
+Note [Optimising conversions between numeric types]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Converting between numeric types is very common in Haskell codes. Suppose that
+we have N inter-convertible numeric types (Word, Word8, Int, Integer, etc.).
+
+- We don't want to have to use one conversion function per pair of types as that
+would require N^2 functions: wordToWord8, wordToInt, wordToInteger...
+
+- The following kind of class would allow us to have a single conversion
+function at the price of N^2 instances and of the use of MultiParamTypeClasses
+extension.
+
+ class Convert a b where
+ convert :: a -> b
+
+What we do instead is that we use the Integer type (signed, unbounded) as a
+passthrough type to perform every conversion. Hence we only need to define two
+functions per numeric type:
+
+ class Integral a where
+ toInteger :: a -> Integer
+
+ class Num a where
+ fromInteger :: Integer -> a
+
+These classes have a single parameter and can be derived automatically (e.g. for
+newtypes). So we don't even have to define 2*N instances.
+
+fromIntegral
+------------
+
+We can now define a generic conversion function:
+
+ -- in the Prelude
+ fromIntegral :: (Integral a, Num b) => a -> b
+ fromIntegral = fromInteger . toInteger
+
+The trouble with this approach is that performance might be terrible. E.g.
+converting an Int into a Word, which is a no-op at the machine level, becomes
+costly when performed via `fromIntegral` because an Integer has to be allocated.
+
+To alleviate this:
+
+- first `fromIntegral` was specialized (SPECIALIZE pragma). However it would
+need N^2 pragmas to cover every case and it wouldn't cover user defined numeric
+types which don't belong to base.
+
+- while writing this note I discovered that we have a `-fwarn-identities` warning
+to detect useless conversions (since 0656c72a8f):
+
+ > fromIntegral (1 :: Int) :: Int
+
+ <interactive>:3:21: warning: [-Widentities]
+ Call of fromIntegral :: Int -> Int
+ can probably be omitted
+
+- but more importantly, many rules were added (e.g. in e0c787c10f):
+
+ "fromIntegral/Int8->Int8" fromIntegral = id :: Int8 -> Int8
+ "fromIntegral/a->Int8" fromIntegral = \x -> case fromIntegral x of I# x# -> I8# (intToInt8# x#)
+ "fromIntegral/Int8->a" fromIntegral = \(I8# x#) -> fromIntegral (I# x#)
+
+ The idea was to ensure that only cheap conversions ended up being used. E.g.:
+
+ foo :: Int8 --> {- Integer -> -} -> Word8
+ foo = fromIntegral
+
+ ====> {Some fromIntegral rule for Int8}
+
+ foo :: Int8 -> {- Int -> Integer -} -> Word8
+ foo = fromIntegral . int8ToInt
+
+ ====> {Some fromIntegral rule for Word8}
+
+ foo :: Int8 -> {- Int -> Integer -> Word -} -> Word8
+ foo = wordToWord8 . fromIntegral . int8ToInt
+
+ ====> {Some fromIntegral rule for Int/Word}
+
+ foo :: Int8 -> {- Int -> Word -} -> Word8
+ foo = wordToWord8 . intToWord . int8ToInt
+ -- not passing through Integer anymore!
+
+
+It worked but there were still some issues with this approach:
+
+1. These rules only work for `fromIntegral`. If we wanted to define our own
+ similar function (e.g. using other type-classes), we would also have to redefine
+ all the rules to get similar performance.
+
+2. `fromIntegral` had to be marked `NOINLINE [1]`:
+ - NOINLINE to allow rules to match
+ - [1] to allow inlining in later phases to avoid incurring a function call
+ overhead for such a trivial operation
+
+ Users of the function had to be careful because a simple helper without an
+ INLINE pragma like:
+
+ toInt :: Integral a => a -> Int
+ toInt = fromIntegral
+
+ has the following unfolding:
+
+ toInt = integerToInt . toInteger
+
+ which doesn't mention `fromIntegral` anymore. Hence `fromIntegral` rules
+ wouldn't be triggered for any user of `toInt`. For this reason, we also have
+ a bunch of rules for bignum primitives such as `integerToInt`.
+
+3. These rewrite rules are tedious to write and error-prone (cf #19345).
+
+
+For these reasons, it is simpler to only rely on built-in rewrite rules for
+bignum primitives. There aren't so many conversion primitives:
+ - Natural <-> Word
+ - Integer <-> Int/Word/Natural (+ Int64/Word64 on 32-bit arch)
+
+All the built-in "small_passthrough_*" rules are used to avoid passing through
+Integer/Natural. We now always inline `fromIntegral`.
+
-}