summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEdward Z. Yang <ezyang@cs.stanford.edu>2015-03-06 13:43:31 -0800
committerEdward Z. Yang <ezyang@cs.stanford.edu>2015-03-09 14:21:45 -0700
commit6188d0ab4f5eaa85b5e5c743939b71f95ade688c (patch)
treee6ddc94e4389a207fca482621744e8217b7118b6
parentfe3cf4d277b55f99feb9e143705d414f8ca7133b (diff)
downloadhaskell-6188d0ab4f5eaa85b5e5c743939b71f95ade688c.tar.gz
Refactor Digraph to use Data.Graph when possible
Summary: This just rewrites the IntGraph data type. Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu> Test Plan: validate Reviewers: austin Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D708
-rw-r--r--compiler/utils/Digraph.hs308
-rw-r--r--compiler/utils/Outputable.hs5
2 files changed, 50 insertions, 263 deletions
diff --git a/compiler/utils/Digraph.hs b/compiler/utils/Digraph.hs
index 8f5df0ce05..3f6ee29443 100644
--- a/compiler/utils/Digraph.hs
+++ b/compiler/utils/Digraph.hs
@@ -1,6 +1,8 @@
-- (c) The University of Glasgow 2006
{-# LANGUAGE CPP, ScopedTypeVariables #-}
+-- For Functor SCC. ToDo: Remove me when 7.10 is released
+{-# OPTIONS_GHC -fno-warn-orphans #-}
module Digraph(
Graph, graphFromVerticesAndAdjacency, graphFromEdgedVertices,
@@ -17,13 +19,6 @@ module Digraph(
-- For backwards compatability with the simpler version of Digraph
stronglyConnCompFromEdgedVertices, stronglyConnCompFromEdgedVerticesR,
-
- -- No friendly interface yet, not used but exported to avoid warnings
- tabulate, preArr,
- components, undirected,
- back, cross, forward,
- path,
- bcc, do_label, bicomps, collect
) where
#include "HsVersions.h"
@@ -35,6 +30,11 @@ module Digraph(
-- by David King and John Launchbury
--
-- Also included is some additional code for printing tree structures ...
+--
+-- If you ever find yourself in need of algorithms for classifying edges,
+-- or finding connected/biconnected components, consult the history; Sigbjorn
+-- Finne contributed some implementations in 1997, although we've since
+-- removed them since they were not used anywhere in GHC.
------------------------------------------------------------------------------
@@ -56,6 +56,10 @@ import Data.Array.ST
import qualified Data.Map as Map
import qualified Data.Set as Set
+import qualified Data.Graph as G
+import Data.Graph hiding (Graph, Edge, transposeG, reachable)
+import Data.Tree
+
{-
************************************************************************
* *
@@ -209,32 +213,6 @@ findCycle graph
{-
************************************************************************
* *
-* SCC
-* *
-************************************************************************
--}
-
-data SCC vertex = AcyclicSCC vertex
- | CyclicSCC [vertex]
-
-instance Functor SCC where
- fmap f (AcyclicSCC v) = AcyclicSCC (f v)
- fmap f (CyclicSCC vs) = CyclicSCC (fmap f vs)
-
-flattenSCCs :: [SCC a] -> [a]
-flattenSCCs = concatMap flattenSCC
-
-flattenSCC :: SCC a -> [a]
-flattenSCC (AcyclicSCC v) = [v]
-flattenSCC (CyclicSCC vs) = vs
-
-instance Outputable a => Outputable (SCC a) where
- ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v))
- ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs)))
-
-{-
-************************************************************************
-* *
* Strongly Connected Component wrappers for Graph
* *
************************************************************************
@@ -290,7 +268,7 @@ topologicalSortG graph = map (gr_vertex_to_node graph) result
dfsTopSortG :: Graph node -> [[node]]
dfsTopSortG graph =
- map (map (gr_vertex_to_node graph) . flattenTree) $ dfs g (topSort g)
+ map (map (gr_vertex_to_node graph) . flatten) $ dfs g (topSort g)
where
g = gr_int_graph graph
@@ -316,7 +294,9 @@ edgesG graph = map (\(v1, v2) -> Edge (v2n v1) (v2n v2)) $ edges (gr_int_graph g
where v2n = gr_vertex_to_node graph
transposeG :: Graph node -> Graph node
-transposeG graph = Graph (transpose (gr_int_graph graph)) (gr_vertex_to_node graph) (gr_node_to_vertex graph)
+transposeG graph = Graph (G.transposeG (gr_int_graph graph))
+ (gr_vertex_to_node graph)
+ (gr_node_to_vertex graph)
outdegreeG :: Graph node -> node -> Maybe Int
outdegreeG = degreeG outdegree
@@ -324,7 +304,7 @@ outdegreeG = degreeG outdegree
indegreeG :: Graph node -> node -> Maybe Int
indegreeG = degreeG indegree
-degreeG :: (IntGraph -> Table Int) -> Graph node -> node -> Maybe Int
+degreeG :: (G.Graph -> Table Int) -> Graph node -> node -> Maybe Int
degreeG degree graph node = let table = degree (gr_int_graph graph)
in fmap ((!) table) $ gr_node_to_vertex graph node
@@ -336,7 +316,8 @@ emptyG :: Graph node -> Bool
emptyG g = graphEmpty (gr_int_graph g)
componentsG :: Graph node -> [[node]]
-componentsG graph = map (map (gr_vertex_to_node graph) . flattenTree) $ components (gr_int_graph graph)
+componentsG graph = map (map (gr_vertex_to_node graph) . flatten)
+ $ components (gr_int_graph graph)
{-
************************************************************************
@@ -355,261 +336,51 @@ instance Outputable node => Outputable (Graph node) where
instance Outputable node => Outputable (Edge node) where
ppr (Edge from to) = ppr from <+> text "->" <+> ppr to
-{-
-************************************************************************
-* *
-* IntGraphs
-* *
-************************************************************************
--}
-
-type Vertex = Int
-type Table a = Array Vertex a
-type IntGraph = Table [Vertex]
-type Bounds = (Vertex, Vertex)
-type IntEdge = (Vertex, Vertex)
-
-vertices :: IntGraph -> [Vertex]
-vertices = indices
-
-edges :: IntGraph -> [IntEdge]
-edges g = [ (v, w) | v <- vertices g, w <- g!v ]
-
-mapT :: (Vertex -> a -> b) -> Table a -> Table b
-mapT f t = array (bounds t) [ (v, f v (t ! v)) | v <- indices t ]
-
-buildG :: Bounds -> [IntEdge] -> IntGraph
-buildG bounds edges = accumArray (flip (:)) [] bounds edges
-
-transpose :: IntGraph -> IntGraph
-transpose g = buildG (bounds g) (reverseE g)
-
-reverseE :: IntGraph -> [IntEdge]
-reverseE g = [ (w, v) | (v, w) <- edges g ]
-
-outdegree :: IntGraph -> Table Int
-outdegree = mapT numEdges
- where numEdges _ ws = length ws
-
-indegree :: IntGraph -> Table Int
-indegree = outdegree . transpose
-
-graphEmpty :: IntGraph -> Bool
+graphEmpty :: G.Graph -> Bool
graphEmpty g = lo > hi
where (lo, hi) = bounds g
{-
************************************************************************
* *
-* Trees and forests
-* *
-************************************************************************
--}
-
-data Tree a = Node a (Forest a)
-type Forest a = [Tree a]
-
-mapTree :: (a -> b) -> (Tree a -> Tree b)
-mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts)
-
-flattenTree :: Tree a -> [a]
-flattenTree (Node x ts) = x : concatMap flattenTree ts
-
-instance Show a => Show (Tree a) where
- showsPrec _ t s = showTree t ++ s
-
-showTree :: Show a => Tree a -> String
-showTree = drawTree . mapTree show
-
-drawTree :: Tree String -> String
-drawTree = unlines . draw
-
-draw :: Tree String -> [String]
-draw (Node x ts) = grp this (space (length this)) (stLoop ts)
- where this = s1 ++ x ++ " "
-
- space n = replicate n ' '
-
- stLoop [] = [""]
- stLoop [t] = grp s2 " " (draw t)
- stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts
-
- rsLoop [] = []
- rsLoop [t] = grp s5 " " (draw t)
- rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts
-
- grp fst rst = zipWith (++) (fst:repeat rst)
-
- [s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"]
-
-{-
-************************************************************************
-* *
-* Depth first search
+* IntGraphs
* *
************************************************************************
-}
-type Set s = STArray s Vertex Bool
-
-mkEmpty :: Bounds -> ST s (Set s)
-mkEmpty bnds = newArray bnds False
-
-contains :: Set s -> Vertex -> ST s Bool
-contains m v = readArray m v
-
-include :: Set s -> Vertex -> ST s ()
-include m v = writeArray m v True
-
-dff :: IntGraph -> Forest Vertex
-dff g = dfs g (vertices g)
-
-dfs :: IntGraph -> [Vertex] -> Forest Vertex
-dfs g vs = prune (bounds g) (map (generate g) vs)
-
-generate :: IntGraph -> Vertex -> Tree Vertex
-generate g v = Node v (map (generate g) (g!v))
+type IntGraph = G.Graph
-prune :: Bounds -> Forest Vertex -> Forest Vertex
-prune bnds ts = runST (mkEmpty bnds >>= \m ->
- chop m ts)
-
-chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
-chop _ [] = return []
-chop m (Node v ts : us)
- = contains m v >>= \visited ->
- if visited then
- chop m us
- else
- include m v >>= \_ ->
- chop m ts >>= \as ->
- chop m us >>= \bs ->
- return (Node v as : bs)
+-- Functor instance was added in 7.8, in containers 0.5.3.2 release
+-- ToDo: Drop me when 7.10 is released.
+#if __GLASGOW_HASKELL__ < 708
+instance Functor SCC where
+ fmap f (AcyclicSCC v) = AcyclicSCC (f v)
+ fmap f (CyclicSCC vs) = CyclicSCC (fmap f vs)
+#endif
{-
-************************************************************************
-* *
-* Algorithms
-* *
-************************************************************************
-
------------------------------------------------------------
--- Algorithm 1: depth first search numbering
+-- Depth first search numbering
------------------------------------------------------------
-}
-preorder :: Tree a -> [a]
-preorder (Node a ts) = a : preorderF ts
-
+-- Data.Tree has flatten for Tree, but nothing for Forest
preorderF :: Forest a -> [a]
-preorderF ts = concat (map preorder ts)
-
-tabulate :: Bounds -> [Vertex] -> Table Int
-tabulate bnds vs = array bnds (zip vs [1..])
-
-preArr :: Bounds -> Forest Vertex -> Table Int
-preArr bnds = tabulate bnds . preorderF
-
-{-
-------------------------------------------------------------
--- Algorithm 2: topological sorting
-------------------------------------------------------------
--}
-
-postorder :: Tree a -> [a] -> [a]
-postorder (Node a ts) = postorderF ts . (a :)
-
-postorderF :: Forest a -> [a] -> [a]
-postorderF ts = foldr (.) id $ map postorder ts
-
-postOrd :: IntGraph -> [Vertex]
-postOrd g = postorderF (dff g) []
-
-topSort :: IntGraph -> [Vertex]
-topSort = reverse . postOrd
-
-{-
-------------------------------------------------------------
--- Algorithm 3: connected components
-------------------------------------------------------------
--}
-
-components :: IntGraph -> Forest Vertex
-components = dff . undirected
-
-undirected :: IntGraph -> IntGraph
-undirected g = buildG (bounds g) (edges g ++ reverseE g)
-
-{-
-------------------------------------------------------------
--- Algorithm 4: strongly connected components
-------------------------------------------------------------
--}
-
-scc :: IntGraph -> Forest Vertex
-scc g = dfs g (reverse (postOrd (transpose g)))
+preorderF ts = concat (map flatten ts)
{-
------------------------------------------------------------
--- Algorithm 5: Classifying edges
-------------------------------------------------------------
--}
-
-back :: IntGraph -> Table Int -> IntGraph
-back g post = mapT select g
- where select v ws = [ w | w <- ws, post!v < post!w ]
-
-cross :: IntGraph -> Table Int -> Table Int -> IntGraph
-cross g pre post = mapT select g
- where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ]
-
-forward :: IntGraph -> IntGraph -> Table Int -> IntGraph
-forward g tree pre = mapT select g
- where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v
-
-{-
-------------------------------------------------------------
--- Algorithm 6: Finding reachable vertices
+-- Finding reachable vertices
------------------------------------------------------------
-}
+-- This generalizes reachable which was found in Data.Graph
reachable :: IntGraph -> [Vertex] -> [Vertex]
reachable g vs = preorderF (dfs g vs)
-path :: IntGraph -> Vertex -> Vertex -> Bool
-path g v w = w `elem` (reachable g [v])
-
{-
------------------------------------------------------------
--- Algorithm 7: Biconnected components
-------------------------------------------------------------
--}
-
-bcc :: IntGraph -> Forest [Vertex]
-bcc g = (concat . map bicomps . map (do_label g dnum)) forest
- where forest = dff g
- dnum = preArr (bounds g) forest
-
-do_label :: IntGraph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)
-do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us
- where us = map (do_label g dnum) ts
- lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v]
- ++ [lu | Node (_,_,lu) _ <- us])
-
-bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex]
-bicomps (Node (v,_,_) ts)
- = [ Node (v:vs) us | (_,Node vs us) <- map collect ts]
-
-collect :: Tree (Vertex, Int, Int) -> (Int, Tree [Vertex])
-collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)
- where collected = map collect ts
- vs = concat [ ws | (lw, Node ws _) <- collected, lw<dv]
- cs = concat [ if lw<dv then us else [Node (v:ws) us]
- | (lw, Node ws us) <- collected ]
-
-{-
-------------------------------------------------------------
--- Algorithm 8: Total ordering on groups of vertices
+-- Total ordering on groups of vertices
------------------------------------------------------------
The plan here is to extract a list of groups of elements of the graph
@@ -625,6 +396,17 @@ and their associated edges from the graph.
This probably isn't very efficient and certainly isn't very clever.
-}
+type Set s = STArray s Vertex Bool
+
+mkEmpty :: Bounds -> ST s (Set s)
+mkEmpty bnds = newArray bnds False
+
+contains :: Set s -> Vertex -> ST s Bool
+contains m v = readArray m v
+
+include :: Set s -> Vertex -> ST s ()
+include m v = writeArray m v True
+
vertexGroups :: IntGraph -> [[Vertex]]
vertexGroups g = runST (mkEmpty (bounds g) >>= \provided -> vertexGroupsS provided g next_vertices)
where next_vertices = noOutEdges g
diff --git a/compiler/utils/Outputable.hs b/compiler/utils/Outputable.hs
index 6c7ae08379..c557224fc1 100644
--- a/compiler/utils/Outputable.hs
+++ b/compiler/utils/Outputable.hs
@@ -105,6 +105,7 @@ import Data.Word
import System.IO ( Handle )
import System.FilePath
import Text.Printf
+import Data.Graph (SCC(..))
import GHC.Fingerprint
import GHC.Show ( showMultiLineString )
@@ -769,6 +770,10 @@ instance (Outputable elt) => Outputable (IM.IntMap elt) where
instance Outputable Fingerprint where
ppr (Fingerprint w1 w2) = text (printf "%016x%016x" w1 w2)
+instance Outputable a => Outputable (SCC a) where
+ ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v))
+ ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs)))
+
{-
************************************************************************
* *