summaryrefslogtreecommitdiff
path: root/gsk/gskroundedrect.c
blob: 7c0733fbe9a8984c84c201119409fd4ca85582e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/* GSK - The GTK Scene Kit
 *
 * Copyright 2016  Endless
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 */

/**
 * GskRoundedRect:
 * @bounds: the bounds of the rectangle
 * @corner: the size of the 4 rounded corners
 *
 * A rectangular region with rounded corners.
 *
 * Application code should normalize rectangles using
 * [method@Gsk.RoundedRect.normalize]; this function will ensure that
 * the bounds of the rectangle are normalized and ensure that the corner
 * values are positive and the corners do not overlap.
 *
 * All functions taking a `GskRoundedRect` as an argument will internally
 * operate on a normalized copy; all functions returning a `GskRoundedRect`
 * will always return a normalized one.
 *
 * The algorithm used for normalizing corner sizes is described in
 * [the CSS specification](https://drafts.csswg.org/css-backgrounds-3/#border-radius).
 */

#include "config.h"

#include "gskroundedrect.h"
#include "gskroundedrectprivate.h"

#include "gskdebugprivate.h"

#include <math.h>

static void
gsk_rounded_rect_normalize_in_place (GskRoundedRect *self)
{
  float factor = 1.0;
  float corners;
  guint i;

  graphene_rect_normalize (&self->bounds);

  for (i = 0; i < 4; i++)
    {
      self->corner[i].width = MAX (self->corner[i].width, 0);
      self->corner[i].height = MAX (self->corner[i].height, 0);
    }

  /* clamp border radius, following CSS specs */
  corners = self->corner[GSK_CORNER_TOP_LEFT].width + self->corner[GSK_CORNER_TOP_RIGHT].width;
  if (corners > self->bounds.size.width)
    factor = MIN (factor, self->bounds.size.width / corners);

  corners = self->corner[GSK_CORNER_TOP_RIGHT].height + self->corner[GSK_CORNER_BOTTOM_RIGHT].height;
  if (corners > self->bounds.size.height)
    factor = MIN (factor, self->bounds.size.height / corners);

  corners = self->corner[GSK_CORNER_BOTTOM_RIGHT].width + self->corner[GSK_CORNER_BOTTOM_LEFT].width;
  if (corners > self->bounds.size.width)
    factor = MIN (factor, self->bounds.size.width / corners);

  corners = self->corner[GSK_CORNER_TOP_LEFT].height + self->corner[GSK_CORNER_BOTTOM_LEFT].height;
  if (corners > self->bounds.size.height)
    factor = MIN (factor, self->bounds.size.height / corners);

  for (i = 0; i < 4; i++)
    graphene_size_scale (&self->corner[i], factor, &self->corner[i]);
}

/**
 * gsk_rounded_rect_init:
 * @self: The `GskRoundedRect` to initialize
 * @bounds: a `graphene_rect_t` describing the bounds
 * @top_left: the rounding radius of the top left corner
 * @top_right: the rounding radius of the top right corner
 * @bottom_right: the rounding radius of the bottom right corner
 * @bottom_left: the rounding radius of the bottom left corner
 *
 * Initializes the given `GskRoundedRect` with the given values.
 *
 * This function will implicitly normalize the `GskRoundedRect`
 * before returning.
 *
 * Returns: (transfer none): the initialized rectangle
 */
GskRoundedRect *
gsk_rounded_rect_init (GskRoundedRect        *self,
                       const graphene_rect_t *bounds,
                       const graphene_size_t *top_left,
                       const graphene_size_t *top_right,
                       const graphene_size_t *bottom_right,
                       const graphene_size_t *bottom_left)
{
  graphene_rect_init_from_rect (&self->bounds, bounds);
  graphene_size_init_from_size (&self->corner[GSK_CORNER_TOP_LEFT], top_left);
  graphene_size_init_from_size (&self->corner[GSK_CORNER_TOP_RIGHT], top_right);
  graphene_size_init_from_size (&self->corner[GSK_CORNER_BOTTOM_RIGHT], bottom_right);
  graphene_size_init_from_size (&self->corner[GSK_CORNER_BOTTOM_LEFT], bottom_left);

  gsk_rounded_rect_normalize_in_place (self);

  return self;
}

/**
 * gsk_rounded_rect_init_copy:
 * @self: a `GskRoundedRect`
 * @src: a `GskRoundedRect`
 *
 * Initializes @self using the given @src rectangle.
 *
 * This function will not normalize the `GskRoundedRect`,
 * so make sure the source is normalized.
 *
 * Returns: (transfer none): the initialized rectangle
 */
GskRoundedRect *
gsk_rounded_rect_init_copy (GskRoundedRect       *self,
                            const GskRoundedRect *src)
{
  *self = *src;

  return self;
}

/**
 * gsk_rounded_rect_init_from_rect:
 * @self: a `GskRoundedRect`
 * @bounds: a `graphene_rect_t`
 * @radius: the border radius
 *
 * Initializes @self to the given @bounds and sets the radius
 * of all four corners to @radius.
 *
 * Returns: (transfer none): the initialized rectangle
 **/
GskRoundedRect *
gsk_rounded_rect_init_from_rect (GskRoundedRect        *self,
                                 const graphene_rect_t *bounds,
                                 float                  radius)
{
  graphene_size_t corner = GRAPHENE_SIZE_INIT(radius, radius);

  return gsk_rounded_rect_init (self, bounds, &corner, &corner, &corner, &corner);
}

/**
 * gsk_rounded_rect_normalize:
 * @self: a `GskRoundedRect`
 *
 * Normalizes the passed rectangle.
 *
 * This function will ensure that the bounds of the rectangle
 * are normalized and ensure that the corner values are positive
 * and the corners do not overlap.
 *
 * Returns: (transfer none): the normalized rectangle
 */
GskRoundedRect *
gsk_rounded_rect_normalize (GskRoundedRect *self)
{
  gsk_rounded_rect_normalize_in_place (self);

  return self;
}

/**
 * gsk_rounded_rect_offset:
 * @self: a `GskRoundedRect`
 * @dx: the horizontal offset
 * @dy: the vertical offset
 *
 * Offsets the bound's origin by @dx and @dy.
 *
 * The size and corners of the rectangle are unchanged.
 *
 * Returns: (transfer none): the offset rectangle
 */
GskRoundedRect *
gsk_rounded_rect_offset (GskRoundedRect *self,
                         float           dx,
                         float           dy)
{
  gsk_rounded_rect_normalize (self);

  self->bounds.origin.x += dx;
  self->bounds.origin.y += dy;

  return self;
}

static inline void
border_radius_shrink (graphene_size_t       *corner,
                      double                 width,
                      double                 height,
                      const graphene_size_t *max)
{
  if (corner->width > 0)
    corner->width -= width;
  if (corner->height > 0)
    corner->height -= height;

  if (corner->width <= 0 || corner->height <= 0)
    {
      corner->width = 0;
      corner->height = 0;
    }
  else
    {
      corner->width = MIN (corner->width, max->width);
      corner->height = MIN (corner->height, max->height);
    }
}

/**
 * gsk_rounded_rect_shrink:
 * @self: The `GskRoundedRect` to shrink or grow
 * @top: How far to move the top side downwards
 * @right: How far to move the right side to the left
 * @bottom: How far to move the bottom side upwards
 * @left: How far to move the left side to the right
 *
 * Shrinks (or grows) the given rectangle by moving the 4 sides
 * according to the offsets given.
 *
 * The corner radii will be changed in a way that tries to keep
 * the center of the corner circle intact. This emulates CSS behavior.
 *
 * This function also works for growing rectangles if you pass
 * negative values for the @top, @right, @bottom or @left.
 *
 * Returns: (transfer none): the resized `GskRoundedRect`
 **/
GskRoundedRect *
gsk_rounded_rect_shrink (GskRoundedRect *self,
                         float           top,
                         float           right,
                         float           bottom,
                         float           left)
{
  float width = left + right;
  float height = top + bottom;

  if (self->bounds.size.width - width < 0)
    {
      self->bounds.origin.x += left * self->bounds.size.width / width;
      self->bounds.size.width = 0;
    }
  else
    {
      self->bounds.origin.x += left;
      self->bounds.size.width -= width;
    }

  if (self->bounds.size.height - height < 0)
    {
      self->bounds.origin.y += top * self->bounds.size.height / height;
      self->bounds.size.height = 0;
    }
  else
    {
      self->bounds.origin.y += top;
      self->bounds.size.height -= height;
    }

  border_radius_shrink (&self->corner[GSK_CORNER_TOP_LEFT], left, top, &self->bounds.size);
  border_radius_shrink (&self->corner[GSK_CORNER_TOP_RIGHT], right, top, &self->bounds.size);
  border_radius_shrink (&self->corner[GSK_CORNER_BOTTOM_RIGHT], right, bottom, &self->bounds.size);
  border_radius_shrink (&self->corner[GSK_CORNER_BOTTOM_LEFT], left, bottom, &self->bounds.size);

  return self;
}

void
gsk_rounded_rect_scale_affine (GskRoundedRect       *dest,
                               const GskRoundedRect *src,
                               float                 scale_x,
                               float                 scale_y,
                               float                 dx,
                               float                 dy)
{
  guint flip = ((scale_x < 0) ? 1 : 0) + (scale_y < 0 ? 2 : 0);

  g_assert (dest != src);

  graphene_rect_scale (&src->bounds, scale_x, scale_y, &dest->bounds);
  graphene_rect_offset (&dest->bounds, dx, dy);

  scale_x = fabs (scale_x);
  scale_y = fabs (scale_y);

  for (guint i = 0; i < 4; i++)
    {
      dest->corner[i].width = src->corner[i ^ flip].width * scale_x;
      dest->corner[i].height = src->corner[i ^ flip].height * scale_y;
    }
}

/*<private>
 * gsk_rounded_rect_is_circular:
 * @self: the `GskRoundedRect` to check
 *
 * Checks if all corners of @self are quarter-circles (as
 * opposed to quarter-ellipses).
 *
 * Note that different corners can still have different radii.
 *
 * Returns: %TRUE if the rectangle is circular.
 */
gboolean
gsk_rounded_rect_is_circular (const GskRoundedRect *self)
{
  for (guint i = 0; i < 4; i++)
    {
      if (self->corner[i].width != self->corner[i].height)
        return FALSE;
    }

  return TRUE;
}

/**
 * gsk_rounded_rect_is_rectilinear:
 * @self: the `GskRoundedRect` to check
 *
 * Checks if all corners of @self are right angles and the
 * rectangle covers all of its bounds.
 *
 * This information can be used to decide if [ctor@Gsk.ClipNode.new]
 * or [ctor@Gsk.RoundedClipNode.new] should be called.
 *
 * Returns: %TRUE if the rectangle is rectilinear
 **/
gboolean
gsk_rounded_rect_is_rectilinear (const GskRoundedRect *self)
{
  for (guint i = 0; i < 4; i++)
    {
      if (self->corner[i].width > 0 ||
          self->corner[i].height > 0)
        return FALSE;
    }

  return TRUE;
}

static inline gboolean
ellipsis_contains_point (const graphene_size_t  *ellipsis,
                         const graphene_point_t *point)
{
  return (point->x * point->x) / (ellipsis->width * ellipsis->width)
       + (point->y * point->y) / (ellipsis->height * ellipsis->height) <= 1;
}

typedef enum
{
  INSIDE,
  OUTSIDE_TOP_LEFT,
  OUTSIDE_TOP_RIGHT,
  OUTSIDE_BOTTOM_LEFT,
  OUTSIDE_BOTTOM_RIGHT,
  OUTSIDE
} Location;

static Location
gsk_rounded_rect_locate_point (const GskRoundedRect   *self,
                               const graphene_point_t *point)
{
  float px, py;
  float ox, oy;

  ox = self->bounds.origin.x + self->bounds.size.width;
  oy = self->bounds.origin.y + self->bounds.size.height;

  if (point->x < self->bounds.origin.x ||
      point->y < self->bounds.origin.y ||
      point->x > ox ||
      point->y > oy)
    return OUTSIDE;

  px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - point->x;
  py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - point->y;
  if (px > 0 && py > 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_LEFT], &GRAPHENE_POINT_INIT (px, py)))
    return OUTSIDE_TOP_LEFT;

  px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - point->x;
  py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - point->y;
  if (px < 0 && py > 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_RIGHT], &GRAPHENE_POINT_INIT (px, py)))
    return OUTSIDE_TOP_RIGHT;

  px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - point->x;
  py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - point->y;
  if (px > 0 && py < 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_LEFT],
                                &GRAPHENE_POINT_INIT (px, py)))
    return OUTSIDE_BOTTOM_LEFT;

  px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - point->x;
  py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - point->y;
  if (px < 0 && py < 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_RIGHT],
                                &GRAPHENE_POINT_INIT (px, py)))
    return OUTSIDE_BOTTOM_RIGHT;

  return INSIDE;
}

/**
 * gsk_rounded_rect_contains_point:
 * @self: a `GskRoundedRect`
 * @point: the point to check
 *
 * Checks if the given @point is inside the rounded rectangle.
 *
 * Returns: %TRUE if the @point is inside the rounded rectangle
 **/
gboolean
gsk_rounded_rect_contains_point (const GskRoundedRect   *self,
                                 const graphene_point_t *point)
{
  return gsk_rounded_rect_locate_point (self, point) == INSIDE;
}

/**
 * gsk_rounded_rect_contains_rect:
 * @self: a `GskRoundedRect`
 * @rect: the rectangle to check
 *
 * Checks if the given @rect is contained inside the rounded rectangle.
 *
 * Returns: %TRUE if the @rect is fully contained inside the rounded rectangle
 **/
gboolean
gsk_rounded_rect_contains_rect (const GskRoundedRect  *self,
                                const graphene_rect_t *rect)
{
  float tx, ty;
  float px, py;
  float ox, oy;

  tx = rect->origin.x + rect->size.width;
  ty = rect->origin.y + rect->size.height;
  ox = self->bounds.origin.x + self->bounds.size.width;
  oy = self->bounds.origin.y + self->bounds.size.height;

  if (rect->origin.x < self->bounds.origin.x ||
      rect->origin.y < self->bounds.origin.y ||
      tx > ox ||
      ty > oy)
    return FALSE;

  px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - rect->origin.x;
  py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - rect->origin.y;
  if (px > 0 && py > 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_LEFT], &GRAPHENE_POINT_INIT (px, py)))
    return FALSE;

  px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - tx;
  py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - rect->origin.y;
  if (px < 0 && py > 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_RIGHT], &GRAPHENE_POINT_INIT (px, py)))
    return FALSE;

  px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - rect->origin.x;
  py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - ty;
  if (px > 0 && py < 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_LEFT],
                                &GRAPHENE_POINT_INIT (px, py)))
    return FALSE;

  px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - tx;
  py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - ty;
  if (px < 0 && py < 0 &&
      !ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_RIGHT],
                                &GRAPHENE_POINT_INIT (px, py)))
    return FALSE;

  return TRUE;
}

/**
 * gsk_rounded_rect_intersects_rect:
 * @self: a `GskRoundedRect`
 * @rect: the rectangle to check
 *
 * Checks if part of the given @rect is contained inside the rounded rectangle.
 *
 * Returns: %TRUE if the @rect intersects with the rounded rectangle
 */
gboolean
gsk_rounded_rect_intersects_rect (const GskRoundedRect  *self,
                                  const graphene_rect_t *rect)
{
  if (!graphene_rect_intersection (&self->bounds, rect, NULL))
    return FALSE;

  /* If the bounding boxes intersect but the rectangles don't,
   * one of the rect's corners must be in the opposite corner's
   * outside region
   */
  if (gsk_rounded_rect_locate_point (self, &rect->origin) == OUTSIDE_BOTTOM_RIGHT ||
      gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y)) == OUTSIDE_BOTTOM_LEFT ||
      gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_RIGHT ||
      gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_LEFT)
    return FALSE;
return TRUE;
}

#define rect_point0(r) ((r)->origin)
#define rect_point1(r) (GRAPHENE_POINT_INIT ((r)->origin.x + (r)->size.width, (r)->origin.y))
#define rect_point2(r) (GRAPHENE_POINT_INIT ((r)->origin.x + (r)->size.width, (r)->origin.y + (r)->size.height))
#define rect_point3(r) (GRAPHENE_POINT_INIT ((r)->origin.x, (r)->origin.y + (r)->size.height))

#define rounded_rect_corner0(r)                                                        \
  (GRAPHENE_RECT_INIT((r)->bounds.origin.x,                                               \
                      (r)->bounds.origin.y,                                               \
                      (r)->corner[0].width, (r)->corner[0].height))
#define rounded_rect_corner1(r) \
  (GRAPHENE_RECT_INIT((r)->bounds.origin.x + (r)->bounds.size.width - (r)->corner[1].width,   \
                      (r)->bounds.origin.y, \
                      (r)->corner[1].width, (r)->corner[1].height))
#define rounded_rect_corner2(r) \
  (GRAPHENE_RECT_INIT((r)->bounds.origin.x + (r)->bounds.size.width - (r)->corner[2].width,   \
                      (r)->bounds.origin.y + (r)->bounds.size.height - (r)->corner[2].height, \
                      (r)->corner[2].width, (r)->corner[2].height))
#define rounded_rect_corner3(r)                                                     \
  (GRAPHENE_RECT_INIT((r)->bounds.origin.x,                                               \
                      (r)->bounds.origin.y + (r)->bounds.size.height - (r)->corner[3].height, \
                      (r)->corner[3].width, (r)->corner[3].height))

enum {
  BELOW,
  INNER,
  ABOVE
};

static inline void
classify_point (const graphene_point_t *p, const graphene_rect_t *rect, int *px, int *py)
{
  if (p->x <= rect->origin.x)
    *px = BELOW;
  else if (p->x >= rect->origin.x + rect->size.width)
    *px = ABOVE;
  else
    *px = INNER;

  if (p->y <= rect->origin.y)
    *py = BELOW;
  else if (p->y >= rect->origin.y + rect->size.height)
    *py = ABOVE;
  else
    *py = INNER;
}

GskRoundedRectIntersection
gsk_rounded_rect_intersect_with_rect (const GskRoundedRect  *self,
                                      const graphene_rect_t *rect,
                                      GskRoundedRect        *result)
{
  int px, py, qx, qy;

  if (!graphene_rect_intersection (&self->bounds, rect, &result->bounds))
    return GSK_INTERSECTION_EMPTY;

  classify_point (&rect_point0 (rect), &rounded_rect_corner0 (self), &px, &py);

  if (px == BELOW && py == BELOW)
    {
      classify_point (&rect_point2 (rect), &rounded_rect_corner0 (self), &qx, &qy);

      if (qx == BELOW || qy == BELOW)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == INNER && qy == INNER &&
               gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) != INSIDE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == ABOVE && qy == ABOVE)
        result->corner[0] = self->corner[0];
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else if ((px == INNER || py == INNER) &&
           gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) != INSIDE)
    {
      if (gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) == OUTSIDE_TOP_LEFT)
        return GSK_INTERSECTION_EMPTY;
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else
    result->corner[0].width = result->corner[0].height = 0;

  classify_point (&rect_point1 (rect), &rounded_rect_corner1 (self), &px, &py);

  if (px == ABOVE && py == BELOW)
    {
      classify_point (&rect_point3 (rect), &rounded_rect_corner1 (self), &qx, &qy);

      if (qx == ABOVE || qy == BELOW)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == INNER && qy == INNER &&
               gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) != INSIDE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == BELOW && qy == ABOVE)
        result->corner[1] = self->corner[1];
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else if ((px == INNER || py == INNER) &&
           gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) != INSIDE)
    {
      if (gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) == OUTSIDE_TOP_RIGHT)
        return GSK_INTERSECTION_EMPTY;
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else
    result->corner[1].width = result->corner[1].height = 0;

  classify_point (&rect_point2 (rect), &rounded_rect_corner2 (self), &px, &py);

  if (px == ABOVE && py == ABOVE)
    {
      classify_point (&rect_point0 (rect), &rounded_rect_corner2 (self), &qx, &qy);

      if (qx == ABOVE || qy == ABOVE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == INNER && qy == INNER &&
               gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) != INSIDE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == BELOW && qy == BELOW)
        result->corner[2] = self->corner[2];
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else if ((px == INNER || py == INNER) &&
           gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) != INSIDE)
    {
      if (gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) == OUTSIDE_BOTTOM_RIGHT)
        return GSK_INTERSECTION_EMPTY;
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else
    result->corner[2].width = result->corner[2].height = 0;

  classify_point (&rect_point3 (rect), &rounded_rect_corner3 (self), &px, &py);

  if (px == BELOW && py == ABOVE)
    {
      classify_point (&rect_point1 (rect), &rounded_rect_corner3 (self), &qx, &qy);

      if (qx == BELOW || qy == ABOVE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == INNER && qy == INNER &&
               gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) != INSIDE)
        return GSK_INTERSECTION_EMPTY;
      else if (qx == ABOVE && qy == BELOW)
        result->corner[3] = self->corner[3];
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else if ((px == INNER || py == INNER) &&
           gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) != INSIDE)
    {
      if (gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) == OUTSIDE_BOTTOM_LEFT)
        return GSK_INTERSECTION_EMPTY;
      else
        return GSK_INTERSECTION_NOT_REPRESENTABLE;
    }
  else
    result->corner[3].width = result->corner[3].height = 0;

  return GSK_INTERSECTION_NONEMPTY;
}

static void
append_arc (cairo_t *cr, double angle1, double angle2, gboolean negative)
{
  if (negative)
    cairo_arc_negative (cr, 0.0, 0.0, 1.0, angle1, angle2);
  else
    cairo_arc (cr, 0.0, 0.0, 1.0, angle1, angle2);
}

static void
_cairo_ellipsis (cairo_t *cr,
	         double xc, double yc,
	         double xradius, double yradius,
	         double angle1, double angle2)
{
  cairo_matrix_t save;

  if (xradius <= 0.0 || yradius <= 0.0)
    {
      cairo_line_to (cr, xc, yc);
      return;
    }

  cairo_get_matrix (cr, &save);
  cairo_translate (cr, xc, yc);
  cairo_scale (cr, xradius, yradius);
  append_arc (cr, angle1, angle2, FALSE);
  cairo_set_matrix (cr, &save);
}

void
gsk_rounded_rect_path (const GskRoundedRect *self,
                       cairo_t              *cr)
{
  cairo_new_sub_path (cr);

  _cairo_ellipsis (cr,
                   self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width,
                   self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height,
                   self->corner[GSK_CORNER_TOP_LEFT].width,
                   self->corner[GSK_CORNER_TOP_LEFT].height,
                   G_PI, 3 * G_PI_2);
  _cairo_ellipsis (cr,
                   self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_TOP_RIGHT].width,
                   self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height,
                   self->corner[GSK_CORNER_TOP_RIGHT].width,
                   self->corner[GSK_CORNER_TOP_RIGHT].height,
                   - G_PI_2, 0);
  _cairo_ellipsis (cr,
                   self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_BOTTOM_RIGHT].width,
                   self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_RIGHT].height,
                   self->corner[GSK_CORNER_BOTTOM_RIGHT].width,
                   self->corner[GSK_CORNER_BOTTOM_RIGHT].height,
                   0, G_PI_2);
  _cairo_ellipsis (cr,
                   self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width,
                   self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_LEFT].height,
                   self->corner[GSK_CORNER_BOTTOM_LEFT].width,
                   self->corner[GSK_CORNER_BOTTOM_LEFT].height,
                   G_PI_2, G_PI);

  cairo_close_path (cr);
}

/*< private >
 * Converts to the format we use in our shaders:
 * vec4 rect;
 * vec4 corner_widths;
 * vec4 corner_heights;
 * rect is (x, y, width, height), the corners are the same
 * order as in the rounded rect.
 *
 * This is so that shaders can use just the first vec4 for
 * rectilinear rects, the 2nd vec4 for circular rects and
 * only look at the last vec4 if they have to.
 */
void
gsk_rounded_rect_to_float (const GskRoundedRect *self,
                           float                 rect[12])
{
  guint i;

  rect[0] = self->bounds.origin.x;
  rect[1] = self->bounds.origin.y;
  rect[2] = self->bounds.size.width;
  rect[3] = self->bounds.size.height;

  for (i = 0; i < 4; i++)
    {
      rect[4 + i] = self->corner[i].width;
      rect[8 + i] = self->corner[i].height;
    }
}

gboolean
gsk_rounded_rect_equal (gconstpointer rect1,
                        gconstpointer rect2)
{
  const GskRoundedRect *self1 = rect1;
  const GskRoundedRect *self2 = rect2;

  return graphene_rect_equal (&self1->bounds, &self2->bounds)
      && graphene_size_equal (&self1->corner[0], &self2->corner[0])
      && graphene_size_equal (&self1->corner[1], &self2->corner[1])
      && graphene_size_equal (&self1->corner[2], &self2->corner[2])
      && graphene_size_equal (&self1->corner[3], &self2->corner[3]);
}

char *
gsk_rounded_rect_to_string (const GskRoundedRect *self)
{
  return g_strdup_printf ("GskRoundedRect %p: Bounds: (%f, %f, %f, %f)"
                          " Corners: (%f, %f) (%f, %f) (%f, %f) (%f, %f)",
                          self,
                          self->bounds.origin.x,
                          self->bounds.origin.y,
                          self->bounds.size.width,
                          self->bounds.size.height,
                          self->corner[0].width,
                          self->corner[0].height,
                          self->corner[1].width,
                          self->corner[1].height,
                          self->corner[2].width,
                          self->corner[2].height,
                          self->corner[3].width,
                          self->corner[3].height);
}