1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "zaexperiment.h"
#include "malloc.h"
#include "stack.h"
#include "race.h"
#include "type.h"
#include "mgc0.h"
#include "textflag.h"
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.
typedef struct Sched Sched;
struct Sched {
Mutex lock;
uint64 goidgen;
M* midle; // idle m's waiting for work
int32 nmidle; // number of idle m's waiting for work
int32 nmidlelocked; // number of locked m's waiting for work
int32 mcount; // number of m's that have been created
int32 maxmcount; // maximum number of m's allowed (or die)
P* pidle; // idle P's
uint32 npidle;
uint32 nmspinning;
// Global runnable queue.
G* runqhead;
G* runqtail;
int32 runqsize;
// Global cache of dead G's.
Mutex gflock;
G* gfree;
int32 ngfree;
uint32 gcwaiting; // gc is waiting to run
int32 stopwait;
Note stopnote;
uint32 sysmonwait;
Note sysmonnote;
uint64 lastpoll;
int32 profilehz; // cpu profiling rate
};
enum
{
// Number of goroutine ids to grab from runtime·sched.goidgen to local per-P cache at once.
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
GoidCacheBatch = 16,
};
Sched runtime·sched;
int32 runtime·gomaxprocs;
uint32 runtime·needextram;
bool runtime·iscgo;
M runtime·m0;
G runtime·g0; // idle goroutine for m0
G* runtime·lastg;
M* runtime·allm;
M* runtime·extram;
P* runtime·allp[MaxGomaxprocs+1];
int8* runtime·goos;
int32 runtime·ncpu;
static int32 newprocs;
static Mutex allglock; // the following vars are protected by this lock or by stoptheworld
G** runtime·allg;
Slice runtime·allgs;
uintptr runtime·allglen;
static uintptr allgcap;
ForceGCState runtime·forcegc;
void runtime·mstart(void);
static void runqput(P*, G*);
static G* runqget(P*);
static bool runqputslow(P*, G*, uint32, uint32);
static G* runqsteal(P*, P*);
static void mput(M*);
static M* mget(void);
static void mcommoninit(M*);
static void schedule(void);
static void procresize(int32);
static void acquirep(P*);
static P* releasep(void);
static void newm(void(*)(void), P*);
static void stopm(void);
static void startm(P*, bool);
static void handoffp(P*);
static void wakep(void);
static void stoplockedm(void);
static void startlockedm(G*);
static void sysmon(void);
static uint32 retake(int64);
static void incidlelocked(int32);
static void checkdead(void);
static void exitsyscall0(G*);
void runtime·park_m(G*);
static void goexit0(G*);
static void gfput(P*, G*);
static G* gfget(P*);
static void gfpurge(P*);
static void globrunqput(G*);
static void globrunqputbatch(G*, G*, int32);
static G* globrunqget(P*, int32);
static P* pidleget(void);
static void pidleput(P*);
static void injectglist(G*);
static bool preemptall(void);
static bool preemptone(P*);
static bool exitsyscallfast(void);
static bool haveexperiment(int8*);
static void allgadd(G*);
static void dropg(void);
extern String runtime·buildVersion;
// For cgo-using programs with external linking,
// export "main" (defined in assembly) so that libc can handle basic
// C runtime startup and call the Go program as if it were
// the C main function.
#pragma cgo_export_static main
// Filled in by dynamic linker when Cgo is available.
void* _cgo_init;
void* _cgo_malloc;
void* _cgo_free;
// Copy for Go code.
void* runtime·cgoMalloc;
void* runtime·cgoFree;
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
void
runtime·schedinit(void)
{
int32 n, procs;
byte *p;
Eface i;
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
if(raceenabled)
g->racectx = runtime·raceinit();
runtime·sched.maxmcount = 10000;
runtime·symtabinit();
runtime·stackinit();
runtime·mallocinit();
mcommoninit(g->m);
// Initialize the itable value for newErrorCString,
// so that the next time it gets called, possibly
// in a fault during a garbage collection, it will not
// need to allocated memory.
runtime·newErrorCString(0, &i);
runtime·goargs();
runtime·goenvs();
runtime·parsedebugvars();
runtime·gcinit();
runtime·sched.lastpoll = runtime·nanotime();
procs = 1;
p = runtime·getenv("GOMAXPROCS");
if(p != nil && (n = runtime·atoi(p)) > 0) {
if(n > MaxGomaxprocs)
n = MaxGomaxprocs;
procs = n;
}
procresize(procs);
if(runtime·buildVersion.str == nil) {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
runtime·buildVersion.str = (uint8*)"unknown";
runtime·buildVersion.len = 7;
}
runtime·cgoMalloc = _cgo_malloc;
runtime·cgoFree = _cgo_free;
}
void
runtime·newsysmon(void)
{
newm(sysmon, nil);
}
static void
dumpgstatus(G* gp)
{
runtime·printf("runtime: gp: gp=%p, goid=%D, gp->atomicstatus=%x\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·printf("runtime: g: g=%p, goid=%D, g->atomicstatus=%x\n", g, g->goid, runtime·readgstatus(g));
}
static void
checkmcount(void)
{
// sched lock is held
if(runtime·sched.mcount > runtime·sched.maxmcount){
runtime·printf("runtime: program exceeds %d-thread limit\n", runtime·sched.maxmcount);
runtime·throw("thread exhaustion");
}
}
static void
mcommoninit(M *mp)
{
// g0 stack won't make sense for user (and is not necessary unwindable).
if(g != g->m->g0)
runtime·callers(1, mp->createstack, nelem(mp->createstack));
mp->fastrand = 0x49f6428aUL + mp->id + runtime·cputicks();
runtime·lock(&runtime·sched.lock);
mp->id = runtime·sched.mcount++;
checkmcount();
runtime·mpreinit(mp);
if(mp->gsignal)
mp->gsignal->stackguard1 = mp->gsignal->stack.lo + StackGuard;
// Add to runtime·allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
mp->alllink = runtime·allm;
// runtime·NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
runtime·atomicstorep(&runtime·allm, mp);
runtime·unlock(&runtime·sched.lock);
}
// Mark gp ready to run.
void
runtime·ready(G *gp)
{
uint32 status;
status = runtime·readgstatus(gp);
// Mark runnable.
g->m->locks++; // disable preemption because it can be holding p in a local var
if((status&~Gscan) != Gwaiting){
dumpgstatus(gp);
runtime·throw("bad g->status in ready");
}
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
runtime·casgstatus(gp, Gwaiting, Grunnable);
runqput(g->m->p, gp);
if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0) // TODO: fast atomic
wakep();
g->m->locks--;
if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
}
void
runtime·ready_m(void)
{
G *gp;
gp = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
runtime·ready(gp);
}
int32
runtime·gcprocs(void)
{
int32 n;
// Figure out how many CPUs to use during GC.
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
runtime·lock(&runtime·sched.lock);
n = runtime·gomaxprocs;
if(n > runtime·ncpu)
n = runtime·ncpu;
if(n > MaxGcproc)
n = MaxGcproc;
if(n > runtime·sched.nmidle+1) // one M is currently running
n = runtime·sched.nmidle+1;
runtime·unlock(&runtime·sched.lock);
return n;
}
static bool
needaddgcproc(void)
{
int32 n;
runtime·lock(&runtime·sched.lock);
n = runtime·gomaxprocs;
if(n > runtime·ncpu)
n = runtime·ncpu;
if(n > MaxGcproc)
n = MaxGcproc;
n -= runtime·sched.nmidle+1; // one M is currently running
runtime·unlock(&runtime·sched.lock);
return n > 0;
}
void
runtime·helpgc(int32 nproc)
{
M *mp;
int32 n, pos;
runtime·lock(&runtime·sched.lock);
pos = 0;
for(n = 1; n < nproc; n++) { // one M is currently running
if(runtime·allp[pos]->mcache == g->m->mcache)
pos++;
mp = mget();
if(mp == nil)
runtime·throw("runtime·gcprocs inconsistency");
mp->helpgc = n;
mp->mcache = runtime·allp[pos]->mcache;
pos++;
runtime·notewakeup(&mp->park);
}
runtime·unlock(&runtime·sched.lock);
}
// Similar to stoptheworld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
void
runtime·freezetheworld(void)
{
int32 i;
if(runtime·gomaxprocs == 1)
return;
// stopwait and preemption requests can be lost
// due to races with concurrently executing threads,
// so try several times
for(i = 0; i < 5; i++) {
// this should tell the scheduler to not start any new goroutines
runtime·sched.stopwait = 0x7fffffff;
runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
// this should stop running goroutines
if(!preemptall())
break; // no running goroutines
runtime·usleep(1000);
}
// to be sure
runtime·usleep(1000);
preemptall();
runtime·usleep(1000);
}
static bool
isscanstatus(uint32 status)
{
if(status == Gscan)
runtime·throw("isscanstatus: Bad status Gscan");
return (status&Gscan) == Gscan;
}
// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfromgscanstatus.
#pragma textflag NOSPLIT
uint32
runtime·readgstatus(G *gp)
{
return runtime·atomicload(&gp->atomicstatus);
}
// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
void
runtime·casfromgscanstatus(G *gp, uint32 oldval, uint32 newval)
{
bool success = false;
// Check that transition is valid.
switch(oldval) {
case Gscanrunnable:
case Gscanwaiting:
case Gscanrunning:
case Gscansyscall:
if(newval == (oldval&~Gscan))
success = runtime·cas(&gp->atomicstatus, oldval, newval);
break;
case Gscanenqueue:
if(newval == Gwaiting)
success = runtime·cas(&gp->atomicstatus, oldval, newval);
break;
}
if(!success){
runtime·printf("runtime: casfromgscanstatus failed gp=%p, oldval=%d, newval=%d\n",
gp, oldval, newval);
dumpgstatus(gp);
runtime·throw("casfromgscanstatus: gp->status is not in scan state");
}
}
// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
bool
runtime·castogscanstatus(G *gp, uint32 oldval, uint32 newval)
{
switch(oldval) {
case Grunnable:
case Gwaiting:
case Gsyscall:
if(newval == (oldval|Gscan))
return runtime·cas(&gp->atomicstatus, oldval, newval);
break;
case Grunning:
if(newval == Gscanrunning || newval == Gscanenqueue)
return runtime·cas(&gp->atomicstatus, oldval, newval);
break;
}
runtime·printf("runtime: castogscanstatus oldval=%d newval=%d\n", oldval, newval);
runtime·throw("castogscanstatus");
return false; // not reached
}
static void badcasgstatus(void);
static void helpcasgstatus(void);
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfromgscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
#pragma textflag NOSPLIT
void
runtime·casgstatus(G *gp, uint32 oldval, uint32 newval)
{
void (*fn)(void);
if((oldval&Gscan) || (newval&Gscan) || oldval == newval) {
g->m->scalararg[0] = oldval;
g->m->scalararg[1] = newval;
fn = badcasgstatus;
runtime·onM(&fn);
}
// loop if gp->atomicstatus is in a scan state giving
// GC time to finish and change the state to oldval.
while(!runtime·cas(&gp->atomicstatus, oldval, newval)) {
// Help GC if needed.
if(gp->preemptscan && !gp->gcworkdone && (oldval == Grunning || oldval == Gsyscall)) {
gp->preemptscan = false;
g->m->ptrarg[0] = gp;
fn = helpcasgstatus;
runtime·onM(&fn);
}
}
}
static void
badcasgstatus(void)
{
uint32 oldval, newval;
oldval = g->m->scalararg[0];
newval = g->m->scalararg[1];
g->m->scalararg[0] = 0;
g->m->scalararg[1] = 0;
runtime·printf("casgstatus: oldval=%d, newval=%d\n", oldval, newval);
runtime·throw("casgstatus: bad incoming values");
}
static void
helpcasgstatus(void)
{
G *gp;
gp = g->m->ptrarg[0];
g->m->ptrarg[0] = 0;
runtime·gcphasework(gp);
}
// stopg ensures that gp is stopped at a GC safe point where its stack can be scanned
// or in the context of a moving collector the pointers can be flipped from pointing
// to old object to pointing to new objects.
// If stopg returns true, the caller knows gp is at a GC safe point and will remain there until
// the caller calls restartg.
// If stopg returns false, the caller is not responsible for calling restartg. This can happen
// if another thread, either the gp itself or another GC thread is taking the responsibility
// to do the GC work related to this thread.
bool
runtime·stopg(G *gp)
{
uint32 s;
for(;;) {
if(gp->gcworkdone)
return false;
s = runtime·readgstatus(gp);
switch(s) {
default:
dumpgstatus(gp);
runtime·throw("stopg: gp->atomicstatus is not valid");
case Gdead:
return false;
case Gcopystack:
// Loop until a new stack is in place.
break;
case Grunnable:
case Gsyscall:
case Gwaiting:
// Claim goroutine by setting scan bit.
if(!runtime·castogscanstatus(gp, s, s|Gscan))
break;
// In scan state, do work.
runtime·gcphasework(gp);
return true;
case Gscanrunnable:
case Gscanwaiting:
case Gscansyscall:
// Goroutine already claimed by another GC helper.
return false;
case Grunning:
// Claim goroutine, so we aren't racing with a status
// transition away from Grunning.
if(!runtime·castogscanstatus(gp, Grunning, Gscanrunning))
break;
// Mark gp for preemption.
if(!gp->gcworkdone) {
gp->preemptscan = true;
gp->preempt = true;
gp->stackguard0 = StackPreempt;
}
// Unclaim.
runtime·casfromgscanstatus(gp, Gscanrunning, Grunning);
return false;
}
}
// Should not be here....
}
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
void
runtime·restartg (G *gp)
{
uint32 s;
s = runtime·readgstatus(gp);
switch(s) {
default:
dumpgstatus(gp);
runtime·throw("restartg: unexpected status");
case Gdead:
break;
case Gscanrunnable:
case Gscanwaiting:
case Gscansyscall:
runtime·casfromgscanstatus(gp, s, s&~Gscan);
break;
case Gscanenqueue:
// Scan is now completed.
// Goroutine now needs to be made runnable.
// We put it on the global run queue; ready blocks on the global scheduler lock.
runtime·casfromgscanstatus(gp, Gscanenqueue, Gwaiting);
if(gp != g->m->curg)
runtime·throw("processing Gscanenqueue on wrong m");
dropg();
runtime·ready(gp);
break;
}
}
static void
stopscanstart(G* gp)
{
if(g == gp)
runtime·throw("GC not moved to G0");
if(runtime·stopg(gp)) {
if(!isscanstatus(runtime·readgstatus(gp))) {
dumpgstatus(gp);
runtime·throw("GC not in scan state");
}
runtime·restartg(gp);
}
}
// Runs on g0 and does the actual work after putting the g back on the run queue.
static void
mquiesce(G *gpmaster)
{
G* gp;
uint32 i;
uint32 status;
uint32 activeglen;
activeglen = runtime·allglen;
// enqueue the calling goroutine.
runtime·restartg(gpmaster);
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
if(runtime·readgstatus(gp) == Gdead)
gp->gcworkdone = true; // noop scan.
else
gp->gcworkdone = false;
stopscanstart(gp);
}
// Check that the G's gcwork (such as scanning) has been done. If not do it now.
// You can end up doing work here if the page trap on a Grunning Goroutine has
// not been sprung or in some race situations. For example a runnable goes dead
// and is started up again with a gp->gcworkdone set to false.
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
while (!gp->gcworkdone) {
status = runtime·readgstatus(gp);
if(status == Gdead) {
gp->gcworkdone = true; // scan is a noop
break;
//do nothing, scan not needed.
}
if(status == Grunning && gp->stackguard0 == (uintptr)StackPreempt && runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) // nanosecond arg
runtime·noteclear(&runtime·sched.stopnote);
else
stopscanstart(gp);
}
}
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
status = runtime·readgstatus(gp);
if(isscanstatus(status)) {
runtime·printf("mstopandscang:bottom: post scan bad status gp=%p has status %x\n", gp, status);
dumpgstatus(gp);
}
if(!gp->gcworkdone && status != Gdead) {
runtime·printf("mstopandscang:bottom: post scan gp=%p->gcworkdone still false\n", gp);
dumpgstatus(gp);
}
}
schedule(); // Never returns.
}
// quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point.
// If the global runtime·gcphase is GCmark quiesce will ensure that all of the goroutine's stacks
// have been scanned before it returns.
void
runtime·quiesce(G* mastergp)
{
void (*fn)(G*);
runtime·castogscanstatus(mastergp, Grunning, Gscanenqueue);
// Now move this to the g0 (aka m) stack.
// g0 will potentially scan this thread and put mastergp on the runqueue
fn = mquiesce;
runtime·mcall(&fn);
}
// This is used by the GC as well as the routines that do stack dumps. In the case
// of GC all the routines can be reliably stopped. This is not always the case
// when the system is in panic or being exited.
void
runtime·stoptheworld(void)
{
int32 i;
uint32 s;
P *p;
bool wait;
// If we hold a lock, then we won't be able to stop another M
// that is blocked trying to acquire the lock.
if(g->m->locks > 0)
runtime·throw("stoptheworld: holding locks");
runtime·lock(&runtime·sched.lock);
runtime·sched.stopwait = runtime·gomaxprocs;
runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
preemptall();
// stop current P
g->m->p->status = Pgcstop; // Pgcstop is only diagnostic.
runtime·sched.stopwait--;
// try to retake all P's in Psyscall status
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
s = p->status;
if(s == Psyscall && runtime·cas(&p->status, s, Pgcstop))
runtime·sched.stopwait--;
}
// stop idle P's
while(p = pidleget()) {
p->status = Pgcstop;
runtime·sched.stopwait--;
}
wait = runtime·sched.stopwait > 0;
runtime·unlock(&runtime·sched.lock);
// wait for remaining P's to stop voluntarily
if(wait) {
for(;;) {
// wait for 100us, then try to re-preempt in case of any races
if(runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) {
runtime·noteclear(&runtime·sched.stopnote);
break;
}
preemptall();
}
}
if(runtime·sched.stopwait)
runtime·throw("stoptheworld: not stopped");
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p->status != Pgcstop)
runtime·throw("stoptheworld: not stopped");
}
}
static void
mhelpgc(void)
{
g->m->helpgc = -1;
}
void
runtime·starttheworld(void)
{
P *p, *p1;
M *mp;
G *gp;
bool add;
g->m->locks++; // disable preemption because it can be holding p in a local var
gp = runtime·netpoll(false); // non-blocking
injectglist(gp);
add = needaddgcproc();
runtime·lock(&runtime·sched.lock);
if(newprocs) {
procresize(newprocs);
newprocs = 0;
} else
procresize(runtime·gomaxprocs);
runtime·sched.gcwaiting = 0;
p1 = nil;
while(p = pidleget()) {
// procresize() puts p's with work at the beginning of the list.
// Once we reach a p without a run queue, the rest don't have one either.
if(p->runqhead == p->runqtail) {
pidleput(p);
break;
}
p->m = mget();
p->link = p1;
p1 = p;
}
if(runtime·sched.sysmonwait) {
runtime·sched.sysmonwait = false;
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched.lock);
while(p1) {
p = p1;
p1 = p1->link;
if(p->m) {
mp = p->m;
p->m = nil;
if(mp->nextp)
runtime·throw("starttheworld: inconsistent mp->nextp");
mp->nextp = p;
runtime·notewakeup(&mp->park);
} else {
// Start M to run P. Do not start another M below.
newm(nil, p);
add = false;
}
}
if(add) {
// If GC could have used another helper proc, start one now,
// in the hope that it will be available next time.
// It would have been even better to start it before the collection,
// but doing so requires allocating memory, so it's tricky to
// coordinate. This lazy approach works out in practice:
// we don't mind if the first couple gc rounds don't have quite
// the maximum number of procs.
newm(mhelpgc, nil);
}
g->m->locks--;
if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
}
static void mstart(void);
// Called to start an M.
#pragma textflag NOSPLIT
void
runtime·mstart(void)
{
uintptr x, size;
if(g->stack.lo == 0) {
// Initialize stack bounds from system stack.
// Cgo may have left stack size in stack.hi.
size = g->stack.hi;
if(size == 0)
size = 8192;
g->stack.hi = (uintptr)&x;
g->stack.lo = g->stack.hi - size + 1024;
}
// Initialize stack guards so that we can start calling
// both Go and C functions with stack growth prologues.
g->stackguard0 = g->stack.lo + StackGuard;
g->stackguard1 = g->stackguard0;
mstart();
}
static void
mstart(void)
{
if(g != g->m->g0)
runtime·throw("bad runtime·mstart");
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
runtime·gosave(&g->m->g0->sched);
g->m->g0->sched.pc = (uintptr)-1; // make sure it is never used
runtime·asminit();
runtime·minit();
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if(g->m == &runtime·m0)
runtime·initsig();
if(g->m->mstartfn)
g->m->mstartfn();
if(g->m->helpgc) {
g->m->helpgc = 0;
stopm();
} else if(g->m != &runtime·m0) {
acquirep(g->m->nextp);
g->m->nextp = nil;
}
schedule();
// TODO(brainman): This point is never reached, because scheduler
// does not release os threads at the moment. But once this path
// is enabled, we must remove our seh here.
}
// When running with cgo, we call _cgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
void (*_cgo_thread_start)(void*);
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
G *g;
uintptr *tls;
void (*fn)(void);
};
// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
M*
runtime·allocm(P *p)
{
M *mp;
static Type *mtype; // The Go type M
g->m->locks++; // disable GC because it can be called from sysmon
if(g->m->p == nil)
acquirep(p); // temporarily borrow p for mallocs in this function
if(mtype == nil) {
Eface e;
runtime·gc_m_ptr(&e);
mtype = ((PtrType*)e.type)->elem;
}
mp = runtime·cnew(mtype);
mcommoninit(mp);
// In case of cgo or Solaris, pthread_create will make us a stack.
// Windows and Plan 9 will layout sched stack on OS stack.
if(runtime·iscgo || Solaris || Windows || Plan9)
mp->g0 = runtime·malg(-1);
else
mp->g0 = runtime·malg(8192);
mp->g0->m = mp;
if(p == g->m->p)
releasep();
g->m->locks--;
if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
return mp;
}
static G*
allocg(void)
{
G *gp;
static Type *gtype;
if(gtype == nil) {
Eface e;
runtime·gc_g_ptr(&e);
gtype = ((PtrType*)e.type)->elem;
}
gp = runtime·cnew(gtype);
return gp;
}
static M* lockextra(bool nilokay);
static void unlockextra(M*);
// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
#pragma textflag NOSPLIT
void
runtime·needm(byte x)
{
M *mp;
if(runtime·needextram) {
// Can happen if C/C++ code calls Go from a global ctor.
// Can not throw, because scheduler is not initialized yet.
runtime·write(2, "fatal error: cgo callback before cgo call\n",
sizeof("fatal error: cgo callback before cgo call\n")-1);
runtime·exit(1);
}
// Lock extra list, take head, unlock popped list.
// nilokay=false is safe here because of the invariant above,
// that the extra list always contains or will soon contain
// at least one m.
mp = lockextra(false);
// Set needextram when we've just emptied the list,
// so that the eventual call into cgocallbackg will
// allocate a new m for the extra list. We delay the
// allocation until then so that it can be done
// after exitsyscall makes sure it is okay to be
// running at all (that is, there's no garbage collection
// running right now).
mp->needextram = mp->schedlink == nil;
unlockextra(mp->schedlink);
// Install g (= m->g0) and set the stack bounds
// to match the current stack. We don't actually know
// how big the stack is, like we don't know how big any
// scheduling stack is, but we assume there's at least 32 kB,
// which is more than enough for us.
runtime·setg(mp->g0);
g->stack.hi = (uintptr)(&x + 1024);
g->stack.lo = (uintptr)(&x - 32*1024);
g->stackguard0 = g->stack.lo + StackGuard;
// Initialize this thread to use the m.
runtime·asminit();
runtime·minit();
}
// newextram allocates an m and puts it on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
void
runtime·newextram(void)
{
M *mp, *mnext;
G *gp;
// Create extra goroutine locked to extra m.
// The goroutine is the context in which the cgo callback will run.
// The sched.pc will never be returned to, but setting it to
// runtime.goexit makes clear to the traceback routines where
// the goroutine stack ends.
mp = runtime·allocm(nil);
gp = runtime·malg(4096);
gp->sched.pc = (uintptr)runtime·goexit;
gp->sched.sp = gp->stack.hi;
gp->sched.sp -= 4*sizeof(uintreg); // extra space in case of reads slightly beyond frame
gp->sched.lr = 0;
gp->sched.g = gp;
gp->syscallpc = gp->sched.pc;
gp->syscallsp = gp->sched.sp;
// malg returns status as Gidle, change to Gsyscall before adding to allg
// where GC will see it.
runtime·casgstatus(gp, Gidle, Gsyscall);
gp->m = mp;
mp->curg = gp;
mp->locked = LockInternal;
mp->lockedg = gp;
gp->lockedm = mp;
gp->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
if(raceenabled)
gp->racectx = runtime·racegostart(runtime·newextram);
// put on allg for garbage collector
allgadd(gp);
// Add m to the extra list.
mnext = lockextra(true);
mp->schedlink = mnext;
unlockextra(mp);
}
// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
void
runtime·dropm(void)
{
M *mp, *mnext;
// Undo whatever initialization minit did during needm.
runtime·unminit();
// Clear m and g, and return m to the extra list.
// After the call to setmg we can only call nosplit functions.
mp = g->m;
runtime·setg(nil);
mnext = lockextra(true);
mp->schedlink = mnext;
unlockextra(mp);
}
#define MLOCKED ((M*)1)
// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to runtime.extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
#pragma textflag NOSPLIT
static M*
lockextra(bool nilokay)
{
M *mp;
void (*yield)(void);
for(;;) {
mp = runtime·atomicloadp(&runtime·extram);
if(mp == MLOCKED) {
yield = runtime·osyield;
yield();
continue;
}
if(mp == nil && !nilokay) {
runtime·usleep(1);
continue;
}
if(!runtime·casp(&runtime·extram, mp, MLOCKED)) {
yield = runtime·osyield;
yield();
continue;
}
break;
}
return mp;
}
#pragma textflag NOSPLIT
static void
unlockextra(M *mp)
{
runtime·atomicstorep(&runtime·extram, mp);
}
// Create a new m. It will start off with a call to fn, or else the scheduler.
static void
newm(void(*fn)(void), P *p)
{
M *mp;
mp = runtime·allocm(p);
mp->nextp = p;
mp->mstartfn = fn;
if(runtime·iscgo) {
CgoThreadStart ts;
if(_cgo_thread_start == nil)
runtime·throw("_cgo_thread_start missing");
ts.g = mp->g0;
ts.tls = mp->tls;
ts.fn = runtime·mstart;
runtime·asmcgocall(_cgo_thread_start, &ts);
return;
}
runtime·newosproc(mp, (byte*)mp->g0->stack.hi);
}
// Stops execution of the current m until new work is available.
// Returns with acquired P.
static void
stopm(void)
{
if(g->m->locks)
runtime·throw("stopm holding locks");
if(g->m->p)
runtime·throw("stopm holding p");
if(g->m->spinning) {
g->m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
retry:
runtime·lock(&runtime·sched.lock);
mput(g->m);
runtime·unlock(&runtime·sched.lock);
runtime·notesleep(&g->m->park);
runtime·noteclear(&g->m->park);
if(g->m->helpgc) {
runtime·gchelper();
g->m->helpgc = 0;
g->m->mcache = nil;
goto retry;
}
acquirep(g->m->nextp);
g->m->nextp = nil;
}
static void
mspinning(void)
{
g->m->spinning = true;
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
static void
startm(P *p, bool spinning)
{
M *mp;
void (*fn)(void);
runtime·lock(&runtime·sched.lock);
if(p == nil) {
p = pidleget();
if(p == nil) {
runtime·unlock(&runtime·sched.lock);
if(spinning)
runtime·xadd(&runtime·sched.nmspinning, -1);
return;
}
}
mp = mget();
runtime·unlock(&runtime·sched.lock);
if(mp == nil) {
fn = nil;
if(spinning)
fn = mspinning;
newm(fn, p);
return;
}
if(mp->spinning)
runtime·throw("startm: m is spinning");
if(mp->nextp)
runtime·throw("startm: m has p");
mp->spinning = spinning;
mp->nextp = p;
runtime·notewakeup(&mp->park);
}
// Hands off P from syscall or locked M.
static void
handoffp(P *p)
{
// if it has local work, start it straight away
if(p->runqhead != p->runqtail || runtime·sched.runqsize) {
startm(p, false);
return;
}
// no local work, check that there are no spinning/idle M's,
// otherwise our help is not required
if(runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) == 0 && // TODO: fast atomic
runtime·cas(&runtime·sched.nmspinning, 0, 1)){
startm(p, true);
return;
}
runtime·lock(&runtime·sched.lock);
if(runtime·sched.gcwaiting) {
p->status = Pgcstop;
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
runtime·unlock(&runtime·sched.lock);
return;
}
if(runtime·sched.runqsize) {
runtime·unlock(&runtime·sched.lock);
startm(p, false);
return;
}
// If this is the last running P and nobody is polling network,
// need to wakeup another M to poll network.
if(runtime·sched.npidle == runtime·gomaxprocs-1 && runtime·atomicload64(&runtime·sched.lastpoll) != 0) {
runtime·unlock(&runtime·sched.lock);
startm(p, false);
return;
}
pidleput(p);
runtime·unlock(&runtime·sched.lock);
}
// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
static void
wakep(void)
{
// be conservative about spinning threads
if(!runtime·cas(&runtime·sched.nmspinning, 0, 1))
return;
startm(nil, true);
}
// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
static void
stoplockedm(void)
{
P *p;
uint32 status;
if(g->m->lockedg == nil || g->m->lockedg->lockedm != g->m)
runtime·throw("stoplockedm: inconsistent locking");
if(g->m->p) {
// Schedule another M to run this p.
p = releasep();
handoffp(p);
}
incidlelocked(1);
// Wait until another thread schedules lockedg again.
runtime·notesleep(&g->m->park);
runtime·noteclear(&g->m->park);
status = runtime·readgstatus(g->m->lockedg);
if((status&~Gscan) != Grunnable){
runtime·printf("runtime:stoplockedm: g is not Grunnable or Gscanrunnable");
dumpgstatus(g);
runtime·throw("stoplockedm: not runnable");
}
acquirep(g->m->nextp);
g->m->nextp = nil;
}
// Schedules the locked m to run the locked gp.
static void
startlockedm(G *gp)
{
M *mp;
P *p;
mp = gp->lockedm;
if(mp == g->m)
runtime·throw("startlockedm: locked to me");
if(mp->nextp)
runtime·throw("startlockedm: m has p");
// directly handoff current P to the locked m
incidlelocked(-1);
p = releasep();
mp->nextp = p;
runtime·notewakeup(&mp->park);
stopm();
}
// Stops the current m for stoptheworld.
// Returns when the world is restarted.
static void
gcstopm(void)
{
P *p;
if(!runtime·sched.gcwaiting)
runtime·throw("gcstopm: not waiting for gc");
if(g->m->spinning) {
g->m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
p = releasep();
runtime·lock(&runtime·sched.lock);
p->status = Pgcstop;
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
runtime·unlock(&runtime·sched.lock);
stopm();
}
// Schedules gp to run on the current M.
// Never returns.
static void
execute(G *gp)
{
int32 hz;
runtime·casgstatus(gp, Grunnable, Grunning);
gp->waitsince = 0;
gp->preempt = false;
gp->stackguard0 = gp->stack.lo + StackGuard;
g->m->p->schedtick++;
g->m->curg = gp;
gp->m = g->m;
// Check whether the profiler needs to be turned on or off.
hz = runtime·sched.profilehz;
if(g->m->profilehz != hz)
runtime·resetcpuprofiler(hz);
runtime·gogo(&gp->sched);
}
// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
static G*
findrunnable(void)
{
G *gp;
P *p;
int32 i;
top:
if(runtime·sched.gcwaiting) {
gcstopm();
goto top;
}
if(runtime·fingwait && runtime·fingwake && (gp = runtime·wakefing()) != nil)
runtime·ready(gp);
// local runq
gp = runqget(g->m->p);
if(gp)
return gp;
// global runq
if(runtime·sched.runqsize) {
runtime·lock(&runtime·sched.lock);
gp = globrunqget(g->m->p, 0);
runtime·unlock(&runtime·sched.lock);
if(gp)
return gp;
}
// poll network
gp = runtime·netpoll(false); // non-blocking
if(gp) {
injectglist(gp->schedlink);
runtime·casgstatus(gp, Gwaiting, Grunnable);
return gp;
}
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
if(!g->m->spinning && 2 * runtime·atomicload(&runtime·sched.nmspinning) >= runtime·gomaxprocs - runtime·atomicload(&runtime·sched.npidle)) // TODO: fast atomic
goto stop;
if(!g->m->spinning) {
g->m->spinning = true;
runtime·xadd(&runtime·sched.nmspinning, 1);
}
// random steal from other P's
for(i = 0; i < 2*runtime·gomaxprocs; i++) {
if(runtime·sched.gcwaiting)
goto top;
p = runtime·allp[runtime·fastrand1()%runtime·gomaxprocs];
if(p == g->m->p)
gp = runqget(p);
else
gp = runqsteal(g->m->p, p);
if(gp)
return gp;
}
stop:
// return P and block
runtime·lock(&runtime·sched.lock);
if(runtime·sched.gcwaiting) {
runtime·unlock(&runtime·sched.lock);
goto top;
}
if(runtime·sched.runqsize) {
gp = globrunqget(g->m->p, 0);
runtime·unlock(&runtime·sched.lock);
return gp;
}
p = releasep();
pidleput(p);
runtime·unlock(&runtime·sched.lock);
if(g->m->spinning) {
g->m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
// check all runqueues once again
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p && p->runqhead != p->runqtail) {
runtime·lock(&runtime·sched.lock);
p = pidleget();
runtime·unlock(&runtime·sched.lock);
if(p) {
acquirep(p);
goto top;
}
break;
}
}
// poll network
if(runtime·xchg64(&runtime·sched.lastpoll, 0) != 0) {
if(g->m->p)
runtime·throw("findrunnable: netpoll with p");
if(g->m->spinning)
runtime·throw("findrunnable: netpoll with spinning");
gp = runtime·netpoll(true); // block until new work is available
runtime·atomicstore64(&runtime·sched.lastpoll, runtime·nanotime());
if(gp) {
runtime·lock(&runtime·sched.lock);
p = pidleget();
runtime·unlock(&runtime·sched.lock);
if(p) {
acquirep(p);
injectglist(gp->schedlink);
runtime·casgstatus(gp, Gwaiting, Grunnable);
return gp;
}
injectglist(gp);
}
}
stopm();
goto top;
}
static void
resetspinning(void)
{
int32 nmspinning;
if(g->m->spinning) {
g->m->spinning = false;
nmspinning = runtime·xadd(&runtime·sched.nmspinning, -1);
if(nmspinning < 0)
runtime·throw("findrunnable: negative nmspinning");
} else
nmspinning = runtime·atomicload(&runtime·sched.nmspinning);
// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
// so see if we need to wakeup another P here.
if (nmspinning == 0 && runtime·atomicload(&runtime·sched.npidle) > 0)
wakep();
}
// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
static void
injectglist(G *glist)
{
int32 n;
G *gp;
if(glist == nil)
return;
runtime·lock(&runtime·sched.lock);
for(n = 0; glist; n++) {
gp = glist;
glist = gp->schedlink;
runtime·casgstatus(gp, Gwaiting, Grunnable);
globrunqput(gp);
}
runtime·unlock(&runtime·sched.lock);
for(; n && runtime·sched.npidle; n--)
startm(nil, false);
}
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
static void
schedule(void)
{
G *gp;
uint32 tick;
if(g->m->locks)
runtime·throw("schedule: holding locks");
if(g->m->lockedg) {
stoplockedm();
execute(g->m->lockedg); // Never returns.
}
top:
if(runtime·sched.gcwaiting) {
gcstopm();
goto top;
}
gp = nil;
// Check the global runnable queue once in a while to ensure fairness.
// Otherwise two goroutines can completely occupy the local runqueue
// by constantly respawning each other.
tick = g->m->p->schedtick;
// This is a fancy way to say tick%61==0,
// it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime·sched.runqsize > 0) {
runtime·lock(&runtime·sched.lock);
gp = globrunqget(g->m->p, 1);
runtime·unlock(&runtime·sched.lock);
if(gp)
resetspinning();
}
if(gp == nil) {
gp = runqget(g->m->p);
if(gp && g->m->spinning)
runtime·throw("schedule: spinning with local work");
}
if(gp == nil) {
gp = findrunnable(); // blocks until work is available
resetspinning();
}
if(gp->lockedm) {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
startlockedm(gp);
goto top;
}
execute(gp);
}
// dropg removes the association between m and the current goroutine m->curg (gp for short).
// Typically a caller sets gp's status away from Grunning and then
// immediately calls dropg to finish the job. The caller is also responsible
// for arranging that gp will be restarted using runtime·ready at an
// appropriate time. After calling dropg and arranging for gp to be
// readied later, the caller can do other work but eventually should
// call schedule to restart the scheduling of goroutines on this m.
static void
dropg(void)
{
if(g->m->lockedg == nil) {
g->m->curg->m = nil;
g->m->curg = nil;
}
}
// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
void
runtime·park(bool(*unlockf)(G*, void*), void *lock, String reason)
{
void (*fn)(G*);
g->m->waitlock = lock;
g->m->waitunlockf = unlockf;
g->waitreason = reason;
fn = runtime·park_m;
runtime·mcall(&fn);
}
bool
runtime·parkunlock_c(G *gp, void *lock)
{
USED(gp);
runtime·unlock(lock);
return true;
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling runtime·ready(gp).
void
runtime·parkunlock(Mutex *lock, String reason)
{
runtime·park(runtime·parkunlock_c, lock, reason);
}
// runtime·park continuation on g0.
void
runtime·park_m(G *gp)
{
bool ok;
runtime·casgstatus(gp, Grunning, Gwaiting);
dropg();
if(g->m->waitunlockf) {
ok = g->m->waitunlockf(gp, g->m->waitlock);
g->m->waitunlockf = nil;
g->m->waitlock = nil;
if(!ok) {
runtime·casgstatus(gp, Gwaiting, Grunnable);
execute(gp); // Schedule it back, never returns.
}
}
schedule();
}
// Scheduler yield.
#pragma textflag NOSPLIT
void
runtime·gosched(void)
{
void (*fn)(G*);
fn = runtime·gosched_m;
runtime·mcall(&fn);
}
// runtime·gosched continuation on g0.
void
runtime·gosched_m(G *gp)
{
uint32 status;
status = runtime·readgstatus(gp);
if((status&~Gscan) != Grunning){
dumpgstatus(gp);
runtime·throw("bad g status");
}
runtime·casgstatus(gp, Grunning, Grunnable);
dropg();
runtime·lock(&runtime·sched.lock);
globrunqput(gp);
runtime·unlock(&runtime·sched.lock);
schedule();
}
// Finishes execution of the current goroutine.
// Need to mark it as nosplit, because it runs with sp > stackbase.
// Since it does not return it does not matter. But if it is preempted
// at the split stack check, GC will complain about inconsistent sp.
#pragma textflag NOSPLIT
void
runtime·goexit(void)
{
void (*fn)(G*);
if(raceenabled)
runtime·racegoend();
fn = goexit0;
runtime·mcall(&fn);
}
// runtime·goexit continuation on g0.
static void
goexit0(G *gp)
{
runtime·casgstatus(gp, Grunning, Gdead);
gp->m = nil;
gp->lockedm = nil;
g->m->lockedg = nil;
gp->paniconfault = 0;
gp->defer = nil; // should be true already but just in case.
gp->panic = nil; // non-nil for Goexit during panic. points at stack-allocated data.
gp->writebuf.array = nil;
gp->writebuf.len = 0;
gp->writebuf.cap = 0;
gp->waitreason.str = nil;
gp->waitreason.len = 0;
gp->param = nil;
dropg();
if(g->m->locked & ~LockExternal) {
runtime·printf("invalid m->locked = %d\n", g->m->locked);
runtime·throw("internal lockOSThread error");
}
g->m->locked = 0;
gfput(g->m->p, gp);
schedule();
}
#pragma textflag NOSPLIT
static void
save(void *pc, uintptr sp)
{
g->sched.pc = (uintptr)pc;
g->sched.sp = sp;
g->sched.lr = 0;
g->sched.ret = 0;
g->sched.ctxt = 0;
g->sched.g = g;
}
static void entersyscall_bad(void);
static void entersyscall_sysmon(void);
static void entersyscall_gcwait(void);
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime·gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
//
// Nothing entersyscall calls can split the stack either.
// We cannot safely move the stack during an active call to syscall,
// because we do not know which of the uintptr arguments are
// really pointers (back into the stack).
// In practice, this means that we make the fast path run through
// entersyscall doing no-split things, and the slow path has to use onM
// to run bigger things on the m stack.
#pragma textflag NOSPLIT
void
·entersyscall(int32 dummy)
{
void (*fn)(void);
// Disable preemption because during this function g is in Gsyscall status,
// but can have inconsistent g->sched, do not let GC observe it.
g->m->locks++;
// Entersyscall must not call any function that might split/grow the stack.
// (See details in comment above.)
// Catch calls that might, by replacing the stack guard with something that
// will trip any stack check and leaving a flag to tell newstack to die.
g->stackguard0 = StackPreempt;
g->throwsplit = 1;
// Leave SP around for GC and traceback.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
g->syscallsp = g->sched.sp;
g->syscallpc = g->sched.pc;
runtime·casgstatus(g, Grunning, Gsyscall);
if(g->syscallsp < g->stack.lo || g->stack.hi < g->syscallsp) {
fn = entersyscall_bad;
runtime·onM(&fn);
}
if(runtime·atomicload(&runtime·sched.sysmonwait)) { // TODO: fast atomic
fn = entersyscall_sysmon;
runtime·onM(&fn);
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
}
g->m->mcache = nil;
g->m->p->m = nil;
runtime·atomicstore(&g->m->p->status, Psyscall);
if(runtime·sched.gcwaiting) {
fn = entersyscall_gcwait;
runtime·onM(&fn);
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
}
// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
// We set stackguard to StackPreempt so that first split stack check calls morestack.
// Morestack detects this case and throws.
g->stackguard0 = StackPreempt;
g->m->locks--;
}
static void
entersyscall_bad(void)
{
G *gp;
gp = g->m->curg;
runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
gp->syscallsp, gp->stack.lo, gp->stack.hi);
runtime·throw("entersyscall");
}
static void
entersyscall_sysmon(void)
{
runtime·lock(&runtime·sched.lock);
if(runtime·atomicload(&runtime·sched.sysmonwait)) {
runtime·atomicstore(&runtime·sched.sysmonwait, 0);
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched.lock);
}
static void
entersyscall_gcwait(void)
{
runtime·lock(&runtime·sched.lock);
if (runtime·sched.stopwait > 0 && runtime·cas(&g->m->p->status, Psyscall, Pgcstop)) {
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
}
runtime·unlock(&runtime·sched.lock);
}
static void entersyscallblock_handoff(void);
// The same as runtime·entersyscall(), but with a hint that the syscall is blocking.
#pragma textflag NOSPLIT
void
·entersyscallblock(int32 dummy)
{
void (*fn)(void);
g->m->locks++; // see comment in entersyscall
g->throwsplit = 1;
g->stackguard0 = StackPreempt; // see comment in entersyscall
// Leave SP around for GC and traceback.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
g->syscallsp = g->sched.sp;
g->syscallpc = g->sched.pc;
runtime·casgstatus(g, Grunning, Gsyscall);
if(g->syscallsp < g->stack.lo || g->stack.hi < g->syscallsp) {
fn = entersyscall_bad;
runtime·onM(&fn);
}
fn = entersyscallblock_handoff;
runtime·onM(&fn);
// Resave for traceback during blocked call.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
g->m->locks--;
}
static void
entersyscallblock_handoff(void)
{
handoffp(releasep());
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
#pragma textflag NOSPLIT
void
runtime·exitsyscall(void)
{
void (*fn)(G*);
g->m->locks++; // see comment in entersyscall
g->waitsince = 0;
if(exitsyscallfast()) {
// There's a cpu for us, so we can run.
g->m->p->syscalltick++;
// We need to cas the status and scan before resuming...
runtime·casgstatus(g, Gsyscall, Grunning);
// Garbage collector isn't running (since we are),
// so okay to clear syscallsp.
g->syscallsp = (uintptr)nil;
g->m->locks--;
if(g->preempt) {
// restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
} else {
// otherwise restore the real stackguard, we've spoiled it in entersyscall/entersyscallblock
g->stackguard0 = g->stack.lo + StackGuard;
}
g->throwsplit = 0;
return;
}
g->m->locks--;
// Call the scheduler.
fn = exitsyscall0;
runtime·mcall(&fn);
// Scheduler returned, so we're allowed to run now.
// Delete the syscallsp information that we left for
// the garbage collector during the system call.
// Must wait until now because until gosched returns
// we don't know for sure that the garbage collector
// is not running.
g->syscallsp = (uintptr)nil;
g->m->p->syscalltick++;
g->throwsplit = 0;
}
static void exitsyscallfast_pidle(void);
#pragma textflag NOSPLIT
static bool
exitsyscallfast(void)
{
void (*fn)(void);
// Freezetheworld sets stopwait but does not retake P's.
if(runtime·sched.stopwait) {
g->m->p = nil;
return false;
}
// Try to re-acquire the last P.
if(g->m->p && g->m->p->status == Psyscall && runtime·cas(&g->m->p->status, Psyscall, Prunning)) {
// There's a cpu for us, so we can run.
g->m->mcache = g->m->p->mcache;
g->m->p->m = g->m;
return true;
}
// Try to get any other idle P.
g->m->p = nil;
if(runtime·sched.pidle) {
fn = exitsyscallfast_pidle;
runtime·onM(&fn);
if(g->m->scalararg[0]) {
g->m->scalararg[0] = 0;
return true;
}
}
return false;
}
static void
exitsyscallfast_pidle(void)
{
P *p;
runtime·lock(&runtime·sched.lock);
p = pidleget();
if(p && runtime·atomicload(&runtime·sched.sysmonwait)) {
runtime·atomicstore(&runtime·sched.sysmonwait, 0);
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched.lock);
if(p) {
acquirep(p);
g->m->scalararg[0] = 1;
} else
g->m->scalararg[0] = 0;
}
// runtime·exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
static void
exitsyscall0(G *gp)
{
P *p;
runtime·casgstatus(gp, Gsyscall, Grunnable);
dropg();
runtime·lock(&runtime·sched.lock);
p = pidleget();
if(p == nil)
globrunqput(gp);
else if(runtime·atomicload(&runtime·sched.sysmonwait)) {
runtime·atomicstore(&runtime·sched.sysmonwait, 0);
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched.lock);
if(p) {
acquirep(p);
execute(gp); // Never returns.
}
if(g->m->lockedg) {
// Wait until another thread schedules gp and so m again.
stoplockedm();
execute(gp); // Never returns.
}
stopm();
schedule(); // Never returns.
}
static void
beforefork(void)
{
G *gp;
gp = g->m->curg;
// Fork can hang if preempted with signals frequently enough (see issue 5517).
// Ensure that we stay on the same M where we disable profiling.
gp->m->locks++;
if(gp->m->profilehz != 0)
runtime·resetcpuprofiler(0);
// This function is called before fork in syscall package.
// Code between fork and exec must not allocate memory nor even try to grow stack.
// Here we spoil g->stackguard to reliably detect any attempts to grow stack.
// runtime_AfterFork will undo this in parent process, but not in child.
gp->stackguard0 = StackFork;
}
// Called from syscall package before fork.
#pragma textflag NOSPLIT
void
syscall·runtime_BeforeFork(void)
{
void (*fn)(void);
fn = beforefork;
runtime·onM(&fn);
}
static void
afterfork(void)
{
int32 hz;
G *gp;
gp = g->m->curg;
// See the comment in runtime_BeforeFork.
gp->stackguard0 = gp->stack.lo + StackGuard;
hz = runtime·sched.profilehz;
if(hz != 0)
runtime·resetcpuprofiler(hz);
gp->m->locks--;
}
// Called from syscall package after fork in parent.
#pragma textflag NOSPLIT
void
syscall·runtime_AfterFork(void)
{
void (*fn)(void);
fn = afterfork;
runtime·onM(&fn);
}
// Hook used by runtime·malg to call runtime·stackalloc on the
// scheduler stack. This exists because runtime·stackalloc insists
// on being called on the scheduler stack, to avoid trying to grow
// the stack while allocating a new stack segment.
static void
mstackalloc(G *gp)
{
G *newg;
uintptr size;
newg = g->m->ptrarg[0];
size = g->m->scalararg[0];
newg->stack = runtime·stackalloc(size);
runtime·gogo(&gp->sched);
}
// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime·malg(int32 stacksize)
{
G *newg;
void (*fn)(G*);
newg = allocg();
if(stacksize >= 0) {
stacksize = runtime·round2(StackSystem + stacksize);
if(g == g->m->g0) {
// running on scheduler stack already.
newg->stack = runtime·stackalloc(stacksize);
} else {
// have to call stackalloc on scheduler stack.
g->m->scalararg[0] = stacksize;
g->m->ptrarg[0] = newg;
fn = mstackalloc;
runtime·mcall(&fn);
g->m->ptrarg[0] = nil;
}
newg->stackguard0 = newg->stack.lo + StackGuard;
newg->stackguard1 = ~(uintptr)0;
}
return newg;
}
static void
newproc_m(void)
{
byte *argp;
void *callerpc;
FuncVal *fn;
int32 siz;
siz = g->m->scalararg[0];
callerpc = (void*)g->m->scalararg[1];
argp = g->m->ptrarg[0];
fn = (FuncVal*)g->m->ptrarg[1];
runtime·newproc1(fn, argp, siz, 0, callerpc);
g->m->ptrarg[0] = nil;
g->m->ptrarg[1] = nil;
}
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.
#pragma textflag NOSPLIT
void
runtime·newproc(int32 siz, FuncVal* fn, ...)
{
byte *argp;
void (*mfn)(void);
if(thechar == '5')
argp = (byte*)(&fn+2); // skip caller's saved LR
else
argp = (byte*)(&fn+1);
g->m->locks++;
g->m->scalararg[0] = siz;
g->m->scalararg[1] = (uintptr)runtime·getcallerpc(&siz);
g->m->ptrarg[0] = argp;
g->m->ptrarg[1] = fn;
mfn = newproc_m;
runtime·onM(&mfn);
g->m->locks--;
}
void runtime·main(void);
// Create a new g running fn with narg bytes of arguments starting
// at argp and returning nret bytes of results. callerpc is the
// address of the go statement that created this. The new g is put
// on the queue of g's waiting to run.
G*
runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
{
byte *sp;
G *newg;
P *p;
int32 siz;
if(fn == nil) {
g->m->throwing = -1; // do not dump full stacks
runtime·throw("go of nil func value");
}
g->m->locks++; // disable preemption because it can be holding p in a local var
siz = narg + nret;
siz = (siz+7) & ~7;
// We could instead create a secondary stack frame
// and make it look like goexit was on the original but
// the call to the actual goroutine function was split.
// Not worth it: this is almost always an error.
if(siz > StackMin - 1024)
runtime·throw("runtime.newproc: function arguments too large for new goroutine");
p = g->m->p;
if((newg = gfget(p)) == nil) {
newg = runtime·malg(StackMin);
runtime·casgstatus(newg, Gidle, Gdead);
allgadd(newg); // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
if(newg->stack.hi == 0)
runtime·throw("newproc1: newg missing stack");
if(runtime·readgstatus(newg) != Gdead)
runtime·throw("newproc1: new g is not Gdead");
sp = (byte*)newg->stack.hi;
sp -= 4*sizeof(uintreg); // extra space in case of reads slightly beyond frame
sp -= siz;
runtime·memmove(sp, argp, narg);
if(thechar == '5') {
// caller's LR
sp -= sizeof(void*);
*(void**)sp = nil;
}
runtime·memclr((byte*)&newg->sched, sizeof newg->sched);
newg->sched.sp = (uintptr)sp;
newg->sched.pc = (uintptr)runtime·goexit;
newg->sched.g = newg;
runtime·gostartcallfn(&newg->sched, fn);
newg->gopc = (uintptr)callerpc;
runtime·casgstatus(newg, Gdead, Grunnable);
if(p->goidcache == p->goidcacheend) {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
p->goidcache = runtime·xadd64(&runtime·sched.goidgen, GoidCacheBatch);
p->goidcache -= GoidCacheBatch - 1;
p->goidcacheend = p->goidcache + GoidCacheBatch;
}
newg->goid = p->goidcache++;
if(raceenabled)
newg->racectx = runtime·racegostart((void*)callerpc);
runqput(p, newg);
if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0 && fn->fn != runtime·main) // TODO: fast atomic
wakep();
g->m->locks--;
if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
return newg;
}
static void
allgadd(G *gp)
{
G **new;
uintptr cap;
if(runtime·readgstatus(gp) == Gidle)
runtime·throw("allgadd: bad status Gidle");
runtime·lock(&allglock);
if(runtime·allglen >= allgcap) {
cap = 4096/sizeof(new[0]);
if(cap < 2*allgcap)
cap = 2*allgcap;
new = runtime·mallocgc(cap*sizeof(new[0]), runtime·conservative, 0);
if(new == nil)
runtime·throw("runtime: cannot allocate memory");
if(runtime·allg != nil)
runtime·memmove(new, runtime·allg, runtime·allglen*sizeof(new[0]));
runtime·allg = new;
runtime·allgs.array = (void*)runtime·allg;
allgcap = cap;
runtime·allgs.cap = allgcap;
}
runtime·allg[runtime·allglen++] = gp;
runtime·allgs.len = runtime·allglen;
runtime·unlock(&allglock);
}
// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
static void
gfput(P *p, G *gp)
{
uintptr stksize;
if(runtime·readgstatus(gp) != Gdead)
runtime·throw("gfput: bad status (not Gdead)");
stksize = gp->stack.hi - gp->stack.lo;
if(stksize != FixedStack) {
// non-standard stack size - free it.
runtime·stackfree(gp->stack);
gp->stack.lo = 0;
gp->stack.hi = 0;
gp->stackguard0 = 0;
}
gp->schedlink = p->gfree;
p->gfree = gp;
p->gfreecnt++;
if(p->gfreecnt >= 64) {
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt >= 32) {
p->gfreecnt--;
gp = p->gfree;
p->gfree = gp->schedlink;
gp->schedlink = runtime·sched.gfree;
runtime·sched.gfree = gp;
runtime·sched.ngfree++;
}
runtime·unlock(&runtime·sched.gflock);
}
}
// Get from gfree list.
// If local list is empty, grab a batch from global list.
static G*
gfget(P *p)
{
G *gp;
void (*fn)(G*);
retry:
gp = p->gfree;
if(gp == nil && runtime·sched.gfree) {
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt < 32 && runtime·sched.gfree != nil) {
p->gfreecnt++;
gp = runtime·sched.gfree;
runtime·sched.gfree = gp->schedlink;
runtime·sched.ngfree--;
gp->schedlink = p->gfree;
p->gfree = gp;
}
runtime·unlock(&runtime·sched.gflock);
goto retry;
}
if(gp) {
p->gfree = gp->schedlink;
p->gfreecnt--;
if(gp->stack.lo == 0) {
// Stack was deallocated in gfput. Allocate a new one.
if(g == g->m->g0) {
gp->stack = runtime·stackalloc(FixedStack);
} else {
g->m->scalararg[0] = FixedStack;
g->m->ptrarg[0] = gp;
fn = mstackalloc;
runtime·mcall(&fn);
g->m->ptrarg[0] = nil;
}
gp->stackguard0 = gp->stack.lo + StackGuard;
} else {
if(raceenabled)
runtime·racemalloc((void*)gp->stack.lo, gp->stack.hi - gp->stack.lo);
}
}
return gp;
}
// Purge all cached G's from gfree list to the global list.
static void
gfpurge(P *p)
{
G *gp;
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt != 0) {
p->gfreecnt--;
gp = p->gfree;
p->gfree = gp->schedlink;
gp->schedlink = runtime·sched.gfree;
runtime·sched.gfree = gp;
runtime·sched.ngfree++;
}
runtime·unlock(&runtime·sched.gflock);
}
#pragma textflag NOSPLIT
void
runtime·Breakpoint(void)
{
runtime·breakpoint();
}
// Implementation of runtime.GOMAXPROCS.
// delete when scheduler is even stronger
void
runtime·gomaxprocs_m(void)
{
int32 n, ret;
n = g->m->scalararg[0];
g->m->scalararg[0] = 0;
if(n > MaxGomaxprocs)
n = MaxGomaxprocs;
runtime·lock(&runtime·sched.lock);
ret = runtime·gomaxprocs;
if(n <= 0 || n == ret) {
runtime·unlock(&runtime·sched.lock);
g->m->scalararg[0] = ret;
return;
}
runtime·unlock(&runtime·sched.lock);
runtime·semacquire(&runtime·worldsema, false);
g->m->gcing = 1;
runtime·stoptheworld();
newprocs = n;
g->m->gcing = 0;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
g->m->scalararg[0] = ret;
return;
}
// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below
// after they modify m->locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
#pragma textflag NOSPLIT
static void
lockOSThread(void)
{
g->m->lockedg = g;
g->lockedm = g->m;
}
#pragma textflag NOSPLIT
void
runtime·LockOSThread(void)
{
g->m->locked |= LockExternal;
lockOSThread();
}
#pragma textflag NOSPLIT
void
runtime·lockOSThread(void)
{
g->m->locked += LockInternal;
lockOSThread();
}
// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
#pragma textflag NOSPLIT
static void
unlockOSThread(void)
{
if(g->m->locked != 0)
return;
g->m->lockedg = nil;
g->lockedm = nil;
}
#pragma textflag NOSPLIT
void
runtime·UnlockOSThread(void)
{
g->m->locked &= ~LockExternal;
unlockOSThread();
}
static void badunlockOSThread(void);
#pragma textflag NOSPLIT
void
runtime·unlockOSThread(void)
{
void (*fn)(void);
if(g->m->locked < LockInternal) {
fn = badunlockOSThread;
runtime·onM(&fn);
}
g->m->locked -= LockInternal;
unlockOSThread();
}
static void
badunlockOSThread(void)
{
runtime·throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
}
#pragma textflag NOSPLIT
int32
runtime·gcount(void)
{
P *p, **pp;
int32 n;
n = runtime·allglen - runtime·sched.ngfree;
for(pp=runtime·allp; p=*pp; pp++)
n -= p->gfreecnt;
// All these variables can be changed concurrently, so the result can be inconsistent.
// But at least the current goroutine is running.
if(n < 1)
n = 1;
return n;
}
int32
runtime·mcount(void)
{
return runtime·sched.mcount;
}
static struct {
uint32 lock;
int32 hz;
} prof;
static void System(void) {}
static void ExternalCode(void) {}
static void GC(void) {}
extern void runtime·cpuproftick(uintptr*, int32);
extern byte runtime·etext[];
// Called if we receive a SIGPROF signal.
void
runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp, M *mp)
{
int32 n;
bool traceback;
// Do not use global m in this function, use mp instead.
// On windows one m is sending reports about all the g's, so m means a wrong thing.
byte m;
uintptr stk[100];
m = 0;
USED(m);
if(prof.hz == 0)
return;
// Profiling runs concurrently with GC, so it must not allocate.
mp->mallocing++;
// Define that a "user g" is a user-created goroutine, and a "system g"
// is one that is m->g0 or m->gsignal. We've only made sure that we
// can unwind user g's, so exclude the system g's.
//
// It is not quite as easy as testing gp == m->curg (the current user g)
// because we might be interrupted for profiling halfway through a
// goroutine switch. The switch involves updating three (or four) values:
// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
// because once it gets updated the new g is running.
//
// When switching from a user g to a system g, LR is not considered live,
// so the update only affects g, SP, and PC. Since PC must be last, there
// the possible partial transitions in ordinary execution are (1) g alone is updated,
// (2) both g and SP are updated, and (3) SP alone is updated.
// If g is updated, we'll see a system g and not look closer.
// If SP alone is updated, we can detect the partial transition by checking
// whether the SP is within g's stack bounds. (We could also require that SP
// be changed only after g, but the stack bounds check is needed by other
// cases, so there is no need to impose an additional requirement.)
//
// There is one exceptional transition to a system g, not in ordinary execution.
// When a signal arrives, the operating system starts the signal handler running
// with an updated PC and SP. The g is updated last, at the beginning of the
// handler. There are two reasons this is okay. First, until g is updated the
// g and SP do not match, so the stack bounds check detects the partial transition.
// Second, signal handlers currently run with signals disabled, so a profiling
// signal cannot arrive during the handler.
//
// When switching from a system g to a user g, there are three possibilities.
//
// First, it may be that the g switch has no PC update, because the SP
// either corresponds to a user g throughout (as in runtime.asmcgocall)
// or because it has been arranged to look like a user g frame
// (as in runtime.cgocallback_gofunc). In this case, since the entire
// transition is a g+SP update, a partial transition updating just one of
// those will be detected by the stack bounds check.
//
// Second, when returning from a signal handler, the PC and SP updates
// are performed by the operating system in an atomic update, so the g
// update must be done before them. The stack bounds check detects
// the partial transition here, and (again) signal handlers run with signals
// disabled, so a profiling signal cannot arrive then anyway.
//
// Third, the common case: it may be that the switch updates g, SP, and PC
// separately, as in runtime.gogo.
//
// Because runtime.gogo is the only instance, we check whether the PC lies
// within that function, and if so, not ask for a traceback. This approach
// requires knowing the size of the runtime.gogo function, which we
// record in arch_*.h and check in runtime_test.go.
//
// There is another apparently viable approach, recorded here in case
// the "PC within runtime.gogo" check turns out not to be usable.
// It would be possible to delay the update of either g or SP until immediately
// before the PC update instruction. Then, because of the stack bounds check,
// the only problematic interrupt point is just before that PC update instruction,
// and the sigprof handler can detect that instruction and simulate stepping past
// it in order to reach a consistent state. On ARM, the update of g must be made
// in two places (in R10 and also in a TLS slot), so the delayed update would
// need to be the SP update. The sigprof handler must read the instruction at
// the current PC and if it was the known instruction (for example, JMP BX or
// MOV R2, PC), use that other register in place of the PC value.
// The biggest drawback to this solution is that it requires that we can tell
// whether it's safe to read from the memory pointed at by PC.
// In a correct program, we can test PC == nil and otherwise read,
// but if a profiling signal happens at the instant that a program executes
// a bad jump (before the program manages to handle the resulting fault)
// the profiling handler could fault trying to read nonexistent memory.
//
// To recap, there are no constraints on the assembly being used for the
// transition. We simply require that g and SP match and that the PC is not
// in runtime.gogo.
traceback = true;
if(gp == nil || gp != mp->curg ||
(uintptr)sp < gp->stack.lo || gp->stack.hi < (uintptr)sp ||
((uint8*)runtime·gogo <= pc && pc < (uint8*)runtime·gogo + RuntimeGogoBytes))
traceback = false;
n = 0;
if(traceback)
n = runtime·gentraceback((uintptr)pc, (uintptr)sp, (uintptr)lr, gp, 0, stk, nelem(stk), nil, nil, false);
if(!traceback || n <= 0) {
// Normal traceback is impossible or has failed.
// See if it falls into several common cases.
n = 0;
if(mp->ncgo > 0 && mp->curg != nil &&
mp->curg->syscallpc != 0 && mp->curg->syscallsp != 0) {
// Cgo, we can't unwind and symbolize arbitrary C code,
// so instead collect Go stack that leads to the cgo call.
// This is especially important on windows, since all syscalls are cgo calls.
n = runtime·gentraceback(mp->curg->syscallpc, mp->curg->syscallsp, 0, mp->curg, 0, stk, nelem(stk), nil, nil, false);
}
#ifdef GOOS_windows
if(n == 0 && mp->libcallg != nil && mp->libcallpc != 0 && mp->libcallsp != 0) {
// Libcall, i.e. runtime syscall on windows.
// Collect Go stack that leads to the call.
n = runtime·gentraceback(mp->libcallpc, mp->libcallsp, 0, mp->libcallg, 0, stk, nelem(stk), nil, nil, false);
}
#endif
if(n == 0) {
// If all of the above has failed, account it against abstract "System" or "GC".
n = 2;
// "ExternalCode" is better than "etext".
if((uintptr)pc > (uintptr)runtime·etext)
pc = (byte*)ExternalCode + PCQuantum;
stk[0] = (uintptr)pc;
if(mp->gcing || mp->helpgc)
stk[1] = (uintptr)GC + PCQuantum;
else
stk[1] = (uintptr)System + PCQuantum;
}
}
if(prof.hz != 0) {
// Simple cas-lock to coordinate with setcpuprofilerate.
while(!runtime·cas(&prof.lock, 0, 1))
runtime·osyield();
if(prof.hz != 0)
runtime·cpuproftick(stk, n);
runtime·atomicstore(&prof.lock, 0);
}
mp->mallocing--;
}
// Arrange to call fn with a traceback hz times a second.
void
runtime·setcpuprofilerate_m(void)
{
int32 hz;
hz = g->m->scalararg[0];
g->m->scalararg[0] = 0;
// Force sane arguments.
if(hz < 0)
hz = 0;
// Disable preemption, otherwise we can be rescheduled to another thread
// that has profiling enabled.
g->m->locks++;
// Stop profiler on this thread so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
runtime·resetcpuprofiler(0);
while(!runtime·cas(&prof.lock, 0, 1))
runtime·osyield();
prof.hz = hz;
runtime·atomicstore(&prof.lock, 0);
runtime·lock(&runtime·sched.lock);
runtime·sched.profilehz = hz;
runtime·unlock(&runtime·sched.lock);
if(hz != 0)
runtime·resetcpuprofiler(hz);
g->m->locks--;
}
// Change number of processors. The world is stopped, sched is locked.
static void
procresize(int32 new)
{
int32 i, old;
bool empty;
G *gp;
P *p;
old = runtime·gomaxprocs;
if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs)
runtime·throw("procresize: invalid arg");
// initialize new P's
for(i = 0; i < new; i++) {
p = runtime·allp[i];
if(p == nil) {
p = (P*)runtime·mallocgc(sizeof(*p), runtime·conservative, 0);
p->id = i;
p->status = Pgcstop;
runtime·atomicstorep(&runtime·allp[i], p);
}
if(p->mcache == nil) {
if(old==0 && i==0)
p->mcache = g->m->mcache; // bootstrap
else
p->mcache = runtime·allocmcache();
}
}
// redistribute runnable G's evenly
// collect all runnable goroutines in global queue preserving FIFO order
// FIFO order is required to ensure fairness even during frequent GCs
// see http://golang.org/issue/7126
empty = false;
while(!empty) {
empty = true;
for(i = 0; i < old; i++) {
p = runtime·allp[i];
if(p->runqhead == p->runqtail)
continue;
empty = false;
// pop from tail of local queue
p->runqtail--;
gp = p->runq[p->runqtail%nelem(p->runq)];
// push onto head of global queue
gp->schedlink = runtime·sched.runqhead;
runtime·sched.runqhead = gp;
if(runtime·sched.runqtail == nil)
runtime·sched.runqtail = gp;
runtime·sched.runqsize++;
}
}
// fill local queues with at most nelem(p->runq)/2 goroutines
// start at 1 because current M already executes some G and will acquire allp[0] below,
// so if we have a spare G we want to put it into allp[1].
for(i = 1; i < new * nelem(p->runq)/2 && runtime·sched.runqsize > 0; i++) {
gp = runtime·sched.runqhead;
runtime·sched.runqhead = gp->schedlink;
if(runtime·sched.runqhead == nil)
runtime·sched.runqtail = nil;
runtime·sched.runqsize--;
runqput(runtime·allp[i%new], gp);
}
// free unused P's
for(i = new; i < old; i++) {
p = runtime·allp[i];
runtime·freemcache(p->mcache);
p->mcache = nil;
gfpurge(p);
p->status = Pdead;
// can't free P itself because it can be referenced by an M in syscall
}
if(g->m->p)
g->m->p->m = nil;
g->m->p = nil;
g->m->mcache = nil;
p = runtime·allp[0];
p->m = nil;
p->status = Pidle;
acquirep(p);
for(i = new-1; i > 0; i--) {
p = runtime·allp[i];
p->status = Pidle;
pidleput(p);
}
runtime·atomicstore((uint32*)&runtime·gomaxprocs, new);
}
// Associate p and the current m.
static void
acquirep(P *p)
{
if(g->m->p || g->m->mcache)
runtime·throw("acquirep: already in go");
if(p->m || p->status != Pidle) {
runtime·printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status);
runtime·throw("acquirep: invalid p state");
}
g->m->mcache = p->mcache;
g->m->p = p;
p->m = g->m;
p->status = Prunning;
}
// Disassociate p and the current m.
static P*
releasep(void)
{
P *p;
if(g->m->p == nil || g->m->mcache == nil)
runtime·throw("releasep: invalid arg");
p = g->m->p;
if(p->m != g->m || p->mcache != g->m->mcache || p->status != Prunning) {
runtime·printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
g->m, g->m->p, p->m, g->m->mcache, p->mcache, p->status);
runtime·throw("releasep: invalid p state");
}
g->m->p = nil;
g->m->mcache = nil;
p->m = nil;
p->status = Pidle;
return p;
}
static void
incidlelocked(int32 v)
{
runtime·lock(&runtime·sched.lock);
runtime·sched.nmidlelocked += v;
if(v > 0)
checkdead();
runtime·unlock(&runtime·sched.lock);
}
// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
static void
checkdead(void)
{
G *gp;
int32 run, grunning, s;
uintptr i;
// -1 for sysmon
run = runtime·sched.mcount - runtime·sched.nmidle - runtime·sched.nmidlelocked - 1;
if(run > 0)
return;
// If we are dying because of a signal caught on an already idle thread,
// freezetheworld will cause all running threads to block.
// And runtime will essentially enter into deadlock state,
// except that there is a thread that will call runtime·exit soon.
if(runtime·panicking > 0)
return;
if(run < 0) {
runtime·printf("runtime: checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n",
runtime·sched.nmidle, runtime·sched.nmidlelocked, runtime·sched.mcount);
runtime·throw("checkdead: inconsistent counts");
}
grunning = 0;
runtime·lock(&allglock);
for(i = 0; i < runtime·allglen; i++) {
gp = runtime·allg[i];
if(gp->issystem)
continue;
s = runtime·readgstatus(gp);
switch(s&~Gscan) {
case Gwaiting:
grunning++;
break;
case Grunnable:
case Grunning:
case Gsyscall:
runtime·unlock(&allglock);
runtime·printf("runtime: checkdead: find g %D in status %d\n", gp->goid, s);
runtime·throw("checkdead: runnable g");
break;
}
}
runtime·unlock(&allglock);
if(grunning == 0) // possible if main goroutine calls runtime·Goexit()
runtime·throw("no goroutines (main called runtime.Goexit) - deadlock!");
g->m->throwing = -1; // do not dump full stacks
runtime·throw("all goroutines are asleep - deadlock!");
}
static void
sysmon(void)
{
uint32 idle, delay, nscavenge;
int64 now, unixnow, lastpoll, lasttrace, lastgc;
int64 forcegcperiod, scavengelimit, lastscavenge, maxsleep;
G *gp;
// If we go two minutes without a garbage collection, force one to run.
forcegcperiod = 2*60*1e9;
// If a heap span goes unused for 5 minutes after a garbage collection,
// we hand it back to the operating system.
scavengelimit = 5*60*1e9;
if(runtime·debug.scavenge > 0) {
// Scavenge-a-lot for testing.
forcegcperiod = 10*1e6;
scavengelimit = 20*1e6;
}
lastscavenge = runtime·nanotime();
nscavenge = 0;
// Make wake-up period small enough for the sampling to be correct.
maxsleep = forcegcperiod/2;
if(scavengelimit < forcegcperiod)
maxsleep = scavengelimit/2;
lasttrace = 0;
idle = 0; // how many cycles in succession we had not wokeup somebody
delay = 0;
for(;;) {
if(idle == 0) // start with 20us sleep...
delay = 20;
else if(idle > 50) // start doubling the sleep after 1ms...
delay *= 2;
if(delay > 10*1000) // up to 10ms
delay = 10*1000;
runtime·usleep(delay);
if(runtime·debug.schedtrace <= 0 &&
(runtime·sched.gcwaiting || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs)) { // TODO: fast atomic
runtime·lock(&runtime·sched.lock);
if(runtime·atomicload(&runtime·sched.gcwaiting) || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) {
runtime·atomicstore(&runtime·sched.sysmonwait, 1);
runtime·unlock(&runtime·sched.lock);
runtime·notetsleep(&runtime·sched.sysmonnote, maxsleep);
runtime·lock(&runtime·sched.lock);
runtime·atomicstore(&runtime·sched.sysmonwait, 0);
runtime·noteclear(&runtime·sched.sysmonnote);
idle = 0;
delay = 20;
}
runtime·unlock(&runtime·sched.lock);
}
// poll network if not polled for more than 10ms
lastpoll = runtime·atomicload64(&runtime·sched.lastpoll);
now = runtime·nanotime();
unixnow = runtime·unixnanotime();
if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) {
runtime·cas64(&runtime·sched.lastpoll, lastpoll, now);
gp = runtime·netpoll(false); // non-blocking
if(gp) {
// Need to decrement number of idle locked M's
// (pretending that one more is running) before injectglist.
// Otherwise it can lead to the following situation:
// injectglist grabs all P's but before it starts M's to run the P's,
// another M returns from syscall, finishes running its G,
// observes that there is no work to do and no other running M's
// and reports deadlock.
incidlelocked(-1);
injectglist(gp);
incidlelocked(1);
}
}
// retake P's blocked in syscalls
// and preempt long running G's
if(retake(now))
idle = 0;
else
idle++;
// check if we need to force a GC
lastgc = runtime·atomicload64(&mstats.last_gc);
if(lastgc != 0 && unixnow - lastgc > forcegcperiod && runtime·atomicload(&runtime·forcegc.idle)) {
runtime·lock(&runtime·forcegc.lock);
runtime·forcegc.idle = 0;
runtime·forcegc.g->schedlink = nil;
injectglist(runtime·forcegc.g);
runtime·unlock(&runtime·forcegc.lock);
}
// scavenge heap once in a while
if(lastscavenge + scavengelimit/2 < now) {
runtime·MHeap_Scavenge(nscavenge, now, scavengelimit);
lastscavenge = now;
nscavenge++;
}
if(runtime·debug.schedtrace > 0 && lasttrace + runtime·debug.schedtrace*1000000ll <= now) {
lasttrace = now;
runtime·schedtrace(runtime·debug.scheddetail);
}
}
}
typedef struct Pdesc Pdesc;
struct Pdesc
{
uint32 schedtick;
int64 schedwhen;
uint32 syscalltick;
int64 syscallwhen;
};
#pragma dataflag NOPTR
static Pdesc pdesc[MaxGomaxprocs];
static uint32
retake(int64 now)
{
uint32 i, s, n;
int64 t;
P *p;
Pdesc *pd;
n = 0;
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p==nil)
continue;
pd = &pdesc[i];
s = p->status;
if(s == Psyscall) {
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
t = p->syscalltick;
if(pd->syscalltick != t) {
pd->syscalltick = t;
pd->syscallwhen = now;
continue;
}
// On the one hand we don't want to retake Ps if there is no other work to do,
// but on the other hand we want to retake them eventually
// because they can prevent the sysmon thread from deep sleep.
if(p->runqhead == p->runqtail &&
runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) > 0 &&
pd->syscallwhen + 10*1000*1000 > now)
continue;
// Need to decrement number of idle locked M's
// (pretending that one more is running) before the CAS.
// Otherwise the M from which we retake can exit the syscall,
// increment nmidle and report deadlock.
incidlelocked(-1);
if(runtime·cas(&p->status, s, Pidle)) {
n++;
handoffp(p);
}
incidlelocked(1);
} else if(s == Prunning) {
// Preempt G if it's running for more than 10ms.
t = p->schedtick;
if(pd->schedtick != t) {
pd->schedtick = t;
pd->schedwhen = now;
continue;
}
if(pd->schedwhen + 10*1000*1000 > now)
continue;
preemptone(p);
}
}
return n;
}
// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
static bool
preemptall(void)
{
P *p;
int32 i;
bool res;
res = false;
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p == nil || p->status != Prunning)
continue;
res |= preemptone(p);
}
return res;
}
// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing runtime·newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
// The actual preemption will happen at some point in the future
// and will be indicated by the gp->status no longer being
// Grunning
static bool
preemptone(P *p)
{
M *mp;
G *gp;
mp = p->m;
if(mp == nil || mp == g->m)
return false;
gp = mp->curg;
if(gp == nil || gp == mp->g0)
return false;
gp->preempt = true;
// Every call in a go routine checks for stack overflow by
// comparing the current stack pointer to gp->stackguard0.
// Setting gp->stackguard0 to StackPreempt folds
// preemption into the normal stack overflow check.
gp->stackguard0 = StackPreempt;
return true;
}
void
runtime·schedtrace(bool detailed)
{
static int64 starttime;
int64 now;
int64 id1, id2, id3;
int32 i, t, h;
uintptr gi;
int8 *fmt;
M *mp, *lockedm;
G *gp, *lockedg;
P *p;
now = runtime·nanotime();
if(starttime == 0)
starttime = now;
runtime·lock(&runtime·sched.lock);
runtime·printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d spinningthreads=%d idlethreads=%d runqueue=%d",
(now-starttime)/1000000, runtime·gomaxprocs, runtime·sched.npidle, runtime·sched.mcount,
runtime·sched.nmspinning, runtime·sched.nmidle, runtime·sched.runqsize);
if(detailed) {
runtime·printf(" gcwaiting=%d nmidlelocked=%d stopwait=%d sysmonwait=%d\n",
runtime·sched.gcwaiting, runtime·sched.nmidlelocked,
runtime·sched.stopwait, runtime·sched.sysmonwait);
}
// We must be careful while reading data from P's, M's and G's.
// Even if we hold schedlock, most data can be changed concurrently.
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p == nil)
continue;
mp = p->m;
h = runtime·atomicload(&p->runqhead);
t = runtime·atomicload(&p->runqtail);
if(detailed)
runtime·printf(" P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n",
i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt);
else {
// In non-detailed mode format lengths of per-P run queues as:
// [len1 len2 len3 len4]
fmt = " %d";
if(runtime·gomaxprocs == 1)
fmt = " [%d]\n";
else if(i == 0)
fmt = " [%d";
else if(i == runtime·gomaxprocs-1)
fmt = " %d]\n";
runtime·printf(fmt, t-h);
}
}
if(!detailed) {
runtime·unlock(&runtime·sched.lock);
return;
}
for(mp = runtime·allm; mp; mp = mp->alllink) {
p = mp->p;
gp = mp->curg;
lockedg = mp->lockedg;
id1 = -1;
if(p)
id1 = p->id;
id2 = -1;
if(gp)
id2 = gp->goid;
id3 = -1;
if(lockedg)
id3 = lockedg->goid;
runtime·printf(" M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d"
" locks=%d dying=%d helpgc=%d spinning=%d blocked=%d lockedg=%D\n",
mp->id, id1, id2,
mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc,
mp->spinning, g->m->blocked, id3);
}
runtime·lock(&allglock);
for(gi = 0; gi < runtime·allglen; gi++) {
gp = runtime·allg[gi];
mp = gp->m;
lockedm = gp->lockedm;
runtime·printf(" G%D: status=%d(%S) m=%d lockedm=%d\n",
gp->goid, runtime·readgstatus(gp), gp->waitreason, mp ? mp->id : -1,
lockedm ? lockedm->id : -1);
}
runtime·unlock(&allglock);
runtime·unlock(&runtime·sched.lock);
}
// Put mp on midle list.
// Sched must be locked.
static void
mput(M *mp)
{
mp->schedlink = runtime·sched.midle;
runtime·sched.midle = mp;
runtime·sched.nmidle++;
checkdead();
}
// Try to get an m from midle list.
// Sched must be locked.
static M*
mget(void)
{
M *mp;
if((mp = runtime·sched.midle) != nil){
runtime·sched.midle = mp->schedlink;
runtime·sched.nmidle--;
}
return mp;
}
// Put gp on the global runnable queue.
// Sched must be locked.
static void
globrunqput(G *gp)
{
gp->schedlink = nil;
if(runtime·sched.runqtail)
runtime·sched.runqtail->schedlink = gp;
else
runtime·sched.runqhead = gp;
runtime·sched.runqtail = gp;
runtime·sched.runqsize++;
}
// Put a batch of runnable goroutines on the global runnable queue.
// Sched must be locked.
static void
globrunqputbatch(G *ghead, G *gtail, int32 n)
{
gtail->schedlink = nil;
if(runtime·sched.runqtail)
runtime·sched.runqtail->schedlink = ghead;
else
runtime·sched.runqhead = ghead;
runtime·sched.runqtail = gtail;
runtime·sched.runqsize += n;
}
// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
static G*
globrunqget(P *p, int32 max)
{
G *gp, *gp1;
int32 n;
if(runtime·sched.runqsize == 0)
return nil;
n = runtime·sched.runqsize/runtime·gomaxprocs+1;
if(n > runtime·sched.runqsize)
n = runtime·sched.runqsize;
if(max > 0 && n > max)
n = max;
if(n > nelem(p->runq)/2)
n = nelem(p->runq)/2;
runtime·sched.runqsize -= n;
if(runtime·sched.runqsize == 0)
runtime·sched.runqtail = nil;
gp = runtime·sched.runqhead;
runtime·sched.runqhead = gp->schedlink;
n--;
while(n--) {
gp1 = runtime·sched.runqhead;
runtime·sched.runqhead = gp1->schedlink;
runqput(p, gp1);
}
return gp;
}
// Put p to on pidle list.
// Sched must be locked.
static void
pidleput(P *p)
{
p->link = runtime·sched.pidle;
runtime·sched.pidle = p;
runtime·xadd(&runtime·sched.npidle, 1); // TODO: fast atomic
}
// Try get a p from pidle list.
// Sched must be locked.
static P*
pidleget(void)
{
P *p;
p = runtime·sched.pidle;
if(p) {
runtime·sched.pidle = p->link;
runtime·xadd(&runtime·sched.npidle, -1); // TODO: fast atomic
}
return p;
}
// Try to put g on local runnable queue.
// If it's full, put onto global queue.
// Executed only by the owner P.
static void
runqput(P *p, G *gp)
{
uint32 h, t;
retry:
h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers
t = p->runqtail;
if(t - h < nelem(p->runq)) {
p->runq[t%nelem(p->runq)] = gp;
runtime·atomicstore(&p->runqtail, t+1); // store-release, makes the item available for consumption
return;
}
if(runqputslow(p, gp, h, t))
return;
// the queue is not full, now the put above must suceed
goto retry;
}
// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
static bool
runqputslow(P *p, G *gp, uint32 h, uint32 t)
{
G *batch[nelem(p->runq)/2+1];
uint32 n, i;
// First, grab a batch from local queue.
n = t-h;
n = n/2;
if(n != nelem(p->runq)/2)
runtime·throw("runqputslow: queue is not full");
for(i=0; i<n; i++)
batch[i] = p->runq[(h+i)%nelem(p->runq)];
if(!runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume
return false;
batch[n] = gp;
// Link the goroutines.
for(i=0; i<n; i++)
batch[i]->schedlink = batch[i+1];
// Now put the batch on global queue.
runtime·lock(&runtime·sched.lock);
globrunqputbatch(batch[0], batch[n], n+1);
runtime·unlock(&runtime·sched.lock);
return true;
}
// Get g from local runnable queue.
// Executed only by the owner P.
static G*
runqget(P *p)
{
G *gp;
uint32 t, h;
for(;;) {
h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
t = p->runqtail;
if(t == h)
return nil;
gp = p->runq[h%nelem(p->runq)];
if(runtime·cas(&p->runqhead, h, h+1)) // cas-release, commits consume
return gp;
}
}
// Grabs a batch of goroutines from local runnable queue.
// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines.
// Can be executed by any P.
static uint32
runqgrab(P *p, G **batch)
{
uint32 t, h, n, i;
for(;;) {
h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
t = runtime·atomicload(&p->runqtail); // load-acquire, synchronize with the producer
n = t-h;
n = n - n/2;
if(n == 0)
break;
if(n > nelem(p->runq)/2) // read inconsistent h and t
continue;
for(i=0; i<n; i++)
batch[i] = p->runq[(h+i)%nelem(p->runq)];
if(runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume
break;
}
return n;
}
// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
static G*
runqsteal(P *p, P *p2)
{
G *gp;
G *batch[nelem(p->runq)/2];
uint32 t, h, n, i;
n = runqgrab(p2, batch);
if(n == 0)
return nil;
n--;
gp = batch[n];
if(n == 0)
return gp;
h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers
t = p->runqtail;
if(t - h + n >= nelem(p->runq))
runtime·throw("runqsteal: runq overflow");
for(i=0; i<n; i++, t++)
p->runq[t%nelem(p->runq)] = batch[i];
runtime·atomicstore(&p->runqtail, t); // store-release, makes the item available for consumption
return gp;
}
void
runtime·testSchedLocalQueue(void)
{
P *p;
G *gs;
int32 i, j;
p = (P*)runtime·mallocgc(sizeof(*p), nil, FlagNoScan);
gs = (G*)runtime·mallocgc(nelem(p->runq)*sizeof(*gs), nil, FlagNoScan);
for(i = 0; i < nelem(p->runq); i++) {
if(runqget(p) != nil)
runtime·throw("runq is not empty initially");
for(j = 0; j < i; j++)
runqput(p, &gs[i]);
for(j = 0; j < i; j++) {
if(runqget(p) != &gs[i]) {
runtime·printf("bad element at iter %d/%d\n", i, j);
runtime·throw("bad element");
}
}
if(runqget(p) != nil)
runtime·throw("runq is not empty afterwards");
}
}
void
runtime·testSchedLocalQueueSteal(void)
{
P *p1, *p2;
G *gs, *gp;
int32 i, j, s;
p1 = (P*)runtime·mallocgc(sizeof(*p1), nil, FlagNoScan);
p2 = (P*)runtime·mallocgc(sizeof(*p2), nil, FlagNoScan);
gs = (G*)runtime·mallocgc(nelem(p1->runq)*sizeof(*gs), nil, FlagNoScan);
for(i = 0; i < nelem(p1->runq); i++) {
for(j = 0; j < i; j++) {
gs[j].sig = 0;
runqput(p1, &gs[j]);
}
gp = runqsteal(p2, p1);
s = 0;
if(gp) {
s++;
gp->sig++;
}
while(gp = runqget(p2)) {
s++;
gp->sig++;
}
while(gp = runqget(p1))
gp->sig++;
for(j = 0; j < i; j++) {
if(gs[j].sig != 1) {
runtime·printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
runtime·throw("bad element");
}
}
if(s != i/2 && s != i/2+1) {
runtime·printf("bad steal %d, want %d or %d, iter %d\n",
s, i/2, i/2+1, i);
runtime·throw("bad steal");
}
}
}
void
runtime·setmaxthreads_m(void)
{
int32 in;
int32 out;
in = g->m->scalararg[0];
runtime·lock(&runtime·sched.lock);
out = runtime·sched.maxmcount;
runtime·sched.maxmcount = in;
checkmcount();
runtime·unlock(&runtime·sched.lock);
g->m->scalararg[0] = out;
}
static int8 experiment[] = GOEXPERIMENT; // defined in zaexperiment.h
static bool
haveexperiment(int8 *name)
{
int32 i, j;
for(i=0; i<sizeof(experiment); i++) {
if((i == 0 || experiment[i-1] == ',') && experiment[i] == name[0]) {
for(j=0; name[j]; j++)
if(experiment[i+j] != name[j])
goto nomatch;
if(experiment[i+j] != '\0' && experiment[i+j] != ',')
goto nomatch;
return 1;
}
nomatch:;
}
return 0;
}
#pragma textflag NOSPLIT
void
sync·runtime_procPin(intptr p)
{
M *mp;
mp = g->m;
// Disable preemption.
mp->locks++;
p = mp->p->id;
FLUSH(&p);
}
#pragma textflag NOSPLIT
void
sync·runtime_procUnpin()
{
g->m->locks--;
}
|