1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
// It has gotten completely out of control.
// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple GC
// thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978), 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
// 0. Set phase = GCscan from GCoff.
// 1. Wait for all P's to acknowledge phase change.
// At this point all goroutines have passed through a GC safepoint and
// know we are in the GCscan phase.
// 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
// (marking avoids most duplicate enqueuing but races may produce duplication which is benign).
// Preempted goroutines are scanned before P schedules next goroutine.
// 3. Set phase = GCmark.
// 4. Wait for all P's to acknowledge phase change.
// 5. Now write barrier marks and enqueues black, grey, or white to white pointers.
// Malloc still allocates white (non-marked) objects.
// 6. Meanwhile GC transitively walks the heap marking reachable objects.
// 7. When GC finishes marking heap, it preempts P's one-by-one and
// retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
// currently scheduled on the P).
// 8. Once the GC has exhausted all available marking work it sets phase = marktermination.
// 9. Wait for all P's to acknowledge phase change.
// 10. Malloc now allocates black objects, so number of unmarked reachable objects
// monotonically decreases.
// 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet reachable objects.
// 12. When GC completes a full cycle over P's and discovers no new grey
// objects, (which means all reachable objects are marked) set phase = GCsweep.
// 13. Wait for all P's to acknowledge phase change.
// 14. Now malloc allocates white (but sweeps spans before use).
// Write barrier becomes nop.
// 15. GC does background sweeping, see description below.
// 16. When sweeping is complete set phase to GCoff.
// 17. When sufficient allocation has taken place replay the sequence starting at 0 above,
// see discussion of GC rate below.
// Changing phases.
// Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
// All phase action must be benign in the presence of a change.
// Starting with GCoff
// GCoff to GCscan
// GSscan scans stacks and globals greying them and never marks an object black.
// Once all the P's are aware of the new phase they will scan gs on preemption.
// This means that the scanning of preempted gs can't start until all the Ps
// have acknowledged.
// GCscan to GCmark
// GCMark turns on the write barrier which also only greys objects. No scanning
// of objects (making them black) can happen until all the Ps have acknowledged
// the phase change.
// GCmark to GCmarktermination
// The only change here is that we start allocating black so the Ps must acknowledge
// the change before we begin the termination algorithm
// GCmarktermination to GSsweep
// Object currently on the freelist must be marked black for this to work.
// Are things on the free lists black or white? How does the sweep phase work?
// Concurrent sweep.
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// However, at the end of the stop-the-world GC phase we don't know the size of the live heap,
// and so next_gc calculation is tricky and happens as follows.
// At the end of the stop-the-world phase next_gc is conservatively set based on total
// heap size; all spans are marked as "needs sweeping".
// Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory.
// The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc
// closer to the target value. However, this is not enough to avoid over-allocating memory.
// Consider that a goroutine wants to allocate a new span for a large object and
// there are no free swept spans, but there are small-object unswept spans.
// If the goroutine naively allocates a new span, it can surpass the yet-unknown
// target next_gc value. In order to prevent such cases (1) when a goroutine needs
// to allocate a new small-object span, it sweeps small-object spans for the same
// object size until it frees at least one object; (2) when a goroutine needs to
// allocate large-object span from heap, it sweeps spans until it frees at least
// that many pages into heap. Together these two measures ensure that we don't surpass
// target next_gc value by a large margin. There is an exception: if a goroutine sweeps
// and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span,
// but there can still be other one-page unswept spans which could be combined into a two-page span.
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).
// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).
package runtime
import "unsafe"
const (
_DebugGC = 0
_DebugGCPtrs = false // if true, print trace of every pointer load during GC
_ConcurrentSweep = true
_WorkbufSize = 4 * 1024
_FinBlockSize = 4 * 1024
_RootData = 0
_RootBss = 1
_RootFinalizers = 2
_RootSpans = 3
_RootFlushCaches = 4
_RootCount = 5
)
// ptrmask for an allocation containing a single pointer.
var oneptr = [...]uint8{bitsPointer}
// Initialized from $GOGC. GOGC=off means no GC.
var gcpercent int32
// Holding worldsema grants an M the right to try to stop the world.
// The procedure is:
//
// semacquire(&worldsema);
// m.gcing = 1;
// stoptheworld();
//
// ... do stuff ...
//
// m.gcing = 0;
// semrelease(&worldsema);
// starttheworld();
//
var worldsema uint32 = 1
// It is a bug if bits does not have bitBoundary set but
// there are still some cases where this happens related
// to stack spans.
type markbits struct {
bitp *byte // pointer to the byte holding xbits
shift uintptr // bits xbits needs to be shifted to get bits
xbits byte // byte holding all the bits from *bitp
bits byte // mark and boundary bits relevant to corresponding slot.
tbits byte // pointer||scalar bits relevant to corresponding slot.
}
type workbuf struct {
node lfnode // must be first
nobj uintptr
obj [(_WorkbufSize - unsafe.Sizeof(lfnode{}) - ptrSize) / ptrSize]uintptr
}
var data, edata, bss, ebss, gcdata, gcbss struct{}
var finlock mutex // protects the following variables
var fing *g // goroutine that runs finalizers
var finq *finblock // list of finalizers that are to be executed
var finc *finblock // cache of free blocks
var finptrmask [_FinBlockSize / ptrSize / pointersPerByte]byte
var fingwait bool
var fingwake bool
var allfin *finblock // list of all blocks
var gcdatamask bitvector
var gcbssmask bitvector
var gclock mutex
var badblock [1024]uintptr
var nbadblock int32
type workdata struct {
full uint64 // lock-free list of full blocks
empty uint64 // lock-free list of empty blocks
partial uint64 // lock-free list of partially filled blocks
pad0 [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait
nproc uint32
tstart int64
nwait uint32
ndone uint32
alldone note
markfor *parfor
// Copy of mheap.allspans for marker or sweeper.
spans []*mspan
}
var work workdata
//go:linkname weak_cgo_allocate go.weak.runtime._cgo_allocate_internal
var weak_cgo_allocate byte
// Is _cgo_allocate linked into the binary?
func have_cgo_allocate() bool {
return &weak_cgo_allocate != nil
}
// To help debug the concurrent GC we remark with the world
// stopped ensuring that any object encountered has their normal
// mark bit set. To do this we use an orthogonal bit
// pattern to indicate the object is marked. The following pattern
// uses the upper two bits in the object's bounday nibble.
// 01: scalar not marked
// 10: pointer not marked
// 11: pointer marked
// 00: scalar marked
// Xoring with 01 will flip the pattern from marked to unmarked and vica versa.
// The higher bit is 1 for pointers and 0 for scalars, whether the object
// is marked or not.
// The first nibble no longer holds the bitsDead pattern indicating that the
// there are no more pointers in the object. This information is held
// in the second nibble.
// When marking an object if the bool checkmark is true one uses the above
// encoding, otherwise one uses the bitMarked bit in the lower two bits
// of the nibble.
var (
checkmark = false
gccheckmarkenable = true
)
// Is address b in the known heap. If it doesn't have a valid gcmap
// returns false. For example pointers into stacks will return false.
func inheap(b uintptr) bool {
if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
return false
}
// Not a beginning of a block, consult span table to find the block beginning.
k := b >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
return false
}
return true
}
// Given an address in the heap return the relevant byte from the gcmap. This routine
// can be used on addresses to the start of an object or to the interior of the an object.
func slottombits(obj uintptr, mbits *markbits) {
off := (obj&^(ptrSize-1) - mheap_.arena_start) / ptrSize
mbits.bitp = (*byte)(unsafe.Pointer(mheap_.arena_start - off/wordsPerBitmapByte - 1))
mbits.shift = off % wordsPerBitmapByte * gcBits
mbits.xbits = *mbits.bitp
mbits.bits = (mbits.xbits >> mbits.shift) & bitMask
mbits.tbits = ((mbits.xbits >> mbits.shift) & bitPtrMask) >> 2
}
// b is a pointer into the heap.
// Find the start of the object refered to by b.
// Set mbits to the associated bits from the bit map.
// If b is not a valid heap object return nil and
// undefined values in mbits.
func objectstart(b uintptr, mbits *markbits) uintptr {
obj := b &^ (ptrSize - 1)
for {
slottombits(obj, mbits)
if mbits.bits&bitBoundary == bitBoundary {
break
}
// Not a beginning of a block, consult span table to find the block beginning.
k := b >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
if s != nil && s.state == _MSpanStack {
return 0 // This is legit.
}
// The following ensures that we are rigorous about what data
// structures hold valid pointers
if false {
// Still happens sometimes. We don't know why.
printlock()
print("runtime:objectstart Span weird: obj=", hex(obj), " k=", hex(k))
if s == nil {
print(" s=nil\n")
} else {
print(" s.start=", hex(s.start<<_PageShift), " s.limit=", hex(s.limit), " s.state=", s.state, "\n")
}
printunlock()
gothrow("objectstart: bad pointer in unexpected span")
}
return 0
}
p := uintptr(s.start) << _PageShift
if s.sizeclass != 0 {
size := s.elemsize
idx := (obj - p) / size
p = p + idx*size
}
if p == obj {
print("runtime: failed to find block beginning for ", hex(p), " s=", hex(s.start*_PageSize), " s.limit=", s.limit, "\n")
gothrow("failed to find block beginning")
}
obj = p
}
// if size(obj.firstfield) < PtrSize, the &obj.secondfield could map to the boundary bit
// Clear any low bits to get to the start of the object.
// greyobject depends on this.
return obj
}
// Slow for now as we serialize this, since this is on a debug path
// speed is not critical at this point.
var andlock mutex
func atomicand8(src *byte, val byte) {
lock(&andlock)
*src &= val
unlock(&andlock)
}
// Mark using the checkmark scheme.
func docheckmark(mbits *markbits) {
// xor 01 moves 01(scalar unmarked) to 00(scalar marked)
// and 10(pointer unmarked) to 11(pointer marked)
if mbits.tbits == _BitsScalar {
atomicand8(mbits.bitp, ^byte(_BitsCheckMarkXor<<mbits.shift<<2))
} else if mbits.tbits == _BitsPointer {
atomicor8(mbits.bitp, byte(_BitsCheckMarkXor<<mbits.shift<<2))
}
// reload bits for ischeckmarked
mbits.xbits = *mbits.bitp
mbits.bits = (mbits.xbits >> mbits.shift) & bitMask
mbits.tbits = ((mbits.xbits >> mbits.shift) & bitPtrMask) >> 2
}
// In the default scheme does mbits refer to a marked object.
func ismarked(mbits *markbits) bool {
if mbits.bits&bitBoundary != bitBoundary {
gothrow("ismarked: bits should have boundary bit set")
}
return mbits.bits&bitMarked == bitMarked
}
// In the checkmark scheme does mbits refer to a marked object.
func ischeckmarked(mbits *markbits) bool {
if mbits.bits&bitBoundary != bitBoundary {
gothrow("ischeckmarked: bits should have boundary bit set")
}
return mbits.tbits == _BitsScalarMarked || mbits.tbits == _BitsPointerMarked
}
// When in GCmarkterminate phase we allocate black.
func gcmarknewobject_m(obj uintptr) {
if gcphase != _GCmarktermination {
gothrow("marking new object while not in mark termination phase")
}
if checkmark { // The world should be stopped so this should not happen.
gothrow("gcmarknewobject called while doing checkmark")
}
var mbits markbits
slottombits(obj, &mbits)
if mbits.bits&bitMarked != 0 {
return
}
// Each byte of GC bitmap holds info for two words.
// If the current object is larger than two words, or if the object is one word
// but the object it shares the byte with is already marked,
// then all the possible concurrent updates are trying to set the same bit,
// so we can use a non-atomic update.
if mbits.xbits&(bitMask|(bitMask<<gcBits)) != bitBoundary|bitBoundary<<gcBits || work.nproc == 1 {
*mbits.bitp = mbits.xbits | bitMarked<<mbits.shift
} else {
atomicor8(mbits.bitp, bitMarked<<mbits.shift)
}
}
// obj is the start of an object with mark mbits.
// If it isn't already marked, mark it and enqueue into workbuf.
// Return possibly new workbuf to use.
func greyobject(obj uintptr, mbits *markbits, wbuf *workbuf) *workbuf {
// obj should be start of allocation, and so must be at least pointer-aligned.
if obj&(ptrSize-1) != 0 {
gothrow("greyobject: obj not pointer-aligned")
}
if checkmark {
if !ismarked(mbits) {
print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), ", mbits->bits=", hex(mbits.bits), " *mbits->bitp=", hex(*mbits.bitp), "\n")
k := obj >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
printlock()
print("runtime:greyobject Span: obj=", hex(obj), " k=", hex(k))
if s == nil {
print(" s=nil\n")
} else {
print(" s.start=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n")
// NOTE(rsc): This code is using s.sizeclass as an approximation of the
// number of pointer-sized words in an object. Perhaps not what was intended.
for i := 0; i < int(s.sizeclass); i++ {
print(" *(obj+", i*ptrSize, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + uintptr(i)*ptrSize))), "\n")
}
}
gothrow("checkmark found unmarked object")
}
if ischeckmarked(mbits) {
return wbuf
}
docheckmark(mbits)
if !ischeckmarked(mbits) {
print("mbits xbits=", hex(mbits.xbits), " bits=", hex(mbits.bits), " tbits=", hex(mbits.tbits), " shift=", mbits.shift, "\n")
gothrow("docheckmark and ischeckmarked disagree")
}
} else {
// If marked we have nothing to do.
if mbits.bits&bitMarked != 0 {
return wbuf
}
// Each byte of GC bitmap holds info for two words.
// If the current object is larger than two words, or if the object is one word
// but the object it shares the byte with is already marked,
// then all the possible concurrent updates are trying to set the same bit,
// so we can use a non-atomic update.
if mbits.xbits&(bitMask|bitMask<<gcBits) != bitBoundary|bitBoundary<<gcBits || work.nproc == 1 {
*mbits.bitp = mbits.xbits | bitMarked<<mbits.shift
} else {
atomicor8(mbits.bitp, bitMarked<<mbits.shift)
}
}
if !checkmark && (mbits.xbits>>(mbits.shift+2))&_BitsMask == _BitsDead {
return wbuf // noscan object
}
// Queue the obj for scanning. The PREFETCH(obj) logic has been removed but
// seems like a nice optimization that can be added back in.
// There needs to be time between the PREFETCH and the use.
// Previously we put the obj in an 8 element buffer that is drained at a rate
// to give the PREFETCH time to do its work.
// Use of PREFETCHNTA might be more appropriate than PREFETCH
// If workbuf is full, obtain an empty one.
if wbuf.nobj >= uintptr(len(wbuf.obj)) {
wbuf = getempty(wbuf)
}
wbuf.obj[wbuf.nobj] = obj
wbuf.nobj++
return wbuf
}
// Scan the object b of size n, adding pointers to wbuf.
// Return possibly new wbuf to use.
// If ptrmask != nil, it specifies where pointers are in b.
// If ptrmask == nil, the GC bitmap should be consulted.
// In this case, n may be an overestimate of the size; the GC bitmap
// must also be used to make sure the scan stops at the end of b.
func scanobject(b, n uintptr, ptrmask *uint8, wbuf *workbuf) *workbuf {
arena_start := mheap_.arena_start
arena_used := mheap_.arena_used
// Find bits of the beginning of the object.
var ptrbitp unsafe.Pointer
var mbits markbits
if ptrmask == nil {
b = objectstart(b, &mbits)
if b == 0 {
return wbuf
}
ptrbitp = unsafe.Pointer(mbits.bitp)
}
for i := uintptr(0); i < n; i += ptrSize {
// Find bits for this word.
var bits uintptr
if ptrmask != nil {
// dense mask (stack or data)
bits = (uintptr(*(*byte)(add(unsafe.Pointer(ptrmask), (i/ptrSize)/4))) >> (((i / ptrSize) % 4) * bitsPerPointer)) & bitsMask
} else {
// Check if we have reached end of span.
// n is an overestimate of the size of the object.
if (b+i)%_PageSize == 0 && h_spans[(b-arena_start)>>_PageShift] != h_spans[(b+i-arena_start)>>_PageShift] {
break
}
// Consult GC bitmap.
bits = uintptr(*(*byte)(ptrbitp))
if wordsPerBitmapByte != 2 {
gothrow("alg doesn't work for wordsPerBitmapByte != 2")
}
j := (uintptr(b) + i) / ptrSize & 1 // j indicates upper nibble or lower nibble
bits >>= gcBits * j
if i == 0 {
bits &^= bitBoundary
}
ptrbitp = add(ptrbitp, -j)
if bits&bitBoundary != 0 && i != 0 {
break // reached beginning of the next object
}
bits = (bits & bitPtrMask) >> 2 // bits refer to the type bits.
if i != 0 && bits == bitsDead { // BitsDead in first nibble not valid during checkmark
break // reached no-scan part of the object
}
}
if bits <= _BitsScalar { // _BitsScalar, _BitsDead, _BitsScalarMarked
continue
}
if bits&_BitsPointer != _BitsPointer {
print("gc checkmark=", checkmark, " b=", hex(b), " ptrmask=", ptrmask, " mbits.bitp=", mbits.bitp, " mbits.xbits=", hex(mbits.xbits), " bits=", hex(bits), "\n")
gothrow("unexpected garbage collection bits")
}
obj := *(*uintptr)(unsafe.Pointer(b + i))
// At this point we have extracted the next potential pointer.
// Check if it points into heap.
if obj == 0 || obj < arena_start || obj >= arena_used {
continue
}
// Mark the object. return some important bits.
// We we combine the following two rotines we don't have to pass mbits or obj around.
var mbits markbits
obj = objectstart(obj, &mbits)
if obj == 0 {
continue
}
wbuf = greyobject(obj, &mbits, wbuf)
}
return wbuf
}
// scanblock starts by scanning b as scanobject would.
// If the gcphase is GCscan, that's all scanblock does.
// Otherwise it traverses some fraction of the pointers it found in b, recursively.
// As a special case, scanblock(nil, 0, nil) means to scan previously queued work,
// stopping only when no work is left in the system.
func scanblock(b, n uintptr, ptrmask *uint8) {
wbuf := getpartialorempty()
if b != 0 {
wbuf = scanobject(b, n, ptrmask, wbuf)
if gcphase == _GCscan {
if inheap(b) && ptrmask == nil {
// b is in heap, we are in GCscan so there should be a ptrmask.
gothrow("scanblock: In GCscan phase and inheap is true.")
}
// GCscan only goes one level deep since mark wb not turned on.
putpartial(wbuf)
return
}
}
if gcphase == _GCscan {
gothrow("scanblock: In GCscan phase but no b passed in.")
}
keepworking := b == 0
// ptrmask can have 2 possible values:
// 1. nil - obtain pointer mask from GC bitmap.
// 2. pointer to a compact mask (for stacks and data).
for {
if wbuf.nobj == 0 {
if !keepworking {
putempty(wbuf)
return
}
// Refill workbuf from global queue.
wbuf = getfull(wbuf)
if wbuf == nil { // nil means out of work barrier reached
return
}
if wbuf.nobj <= 0 {
gothrow("runtime:scanblock getfull returns empty buffer")
}
}
// If another proc wants a pointer, give it some.
if work.nwait > 0 && wbuf.nobj > 4 && work.full == 0 {
wbuf = handoff(wbuf)
}
// This might be a good place to add prefetch code...
// if(wbuf->nobj > 4) {
// PREFETCH(wbuf->obj[wbuf->nobj - 3];
// }
wbuf.nobj--
b = wbuf.obj[wbuf.nobj]
wbuf = scanobject(b, mheap_.arena_used-b, nil, wbuf)
}
}
func markroot(desc *parfor, i uint32) {
// Note: if you add a case here, please also update heapdump.c:dumproots.
switch i {
case _RootData:
scanblock(uintptr(unsafe.Pointer(&data)), uintptr(unsafe.Pointer(&edata))-uintptr(unsafe.Pointer(&data)), gcdatamask.bytedata)
case _RootBss:
scanblock(uintptr(unsafe.Pointer(&bss)), uintptr(unsafe.Pointer(&ebss))-uintptr(unsafe.Pointer(&bss)), gcbssmask.bytedata)
case _RootFinalizers:
for fb := allfin; fb != nil; fb = fb.alllink {
scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), uintptr(fb.cnt)*unsafe.Sizeof(fb.fin[0]), &finptrmask[0])
}
case _RootSpans:
// mark MSpan.specials
sg := mheap_.sweepgen
for spanidx := uint32(0); spanidx < uint32(len(work.spans)); spanidx++ {
s := work.spans[spanidx]
if s.state != mSpanInUse {
continue
}
if !checkmark && s.sweepgen != sg {
// sweepgen was updated (+2) during non-checkmark GC pass
print("sweep ", s.sweepgen, " ", sg, "\n")
gothrow("gc: unswept span")
}
for sp := s.specials; sp != nil; sp = sp.next {
if sp.kind != _KindSpecialFinalizer {
continue
}
// don't mark finalized object, but scan it so we
// retain everything it points to.
spf := (*specialfinalizer)(unsafe.Pointer(sp))
// A finalizer can be set for an inner byte of an object, find object beginning.
p := uintptr(s.start<<_PageShift) + uintptr(spf.special.offset)/s.elemsize*s.elemsize
if gcphase != _GCscan {
scanblock(p, s.elemsize, nil) // scanned during mark phase
}
scanblock(uintptr(unsafe.Pointer(&spf.fn)), ptrSize, &oneptr[0])
}
}
case _RootFlushCaches:
if gcphase != _GCscan { // Do not flush mcaches during GCscan phase.
flushallmcaches()
}
default:
// the rest is scanning goroutine stacks
if uintptr(i-_RootCount) >= allglen {
gothrow("markroot: bad index")
}
gp := allgs[i-_RootCount]
// remember when we've first observed the G blocked
// needed only to output in traceback
status := readgstatus(gp) // We are not in a scan state
if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
gp.waitsince = work.tstart
}
// Shrink a stack if not much of it is being used but not in the scan phase.
if gcphase != _GCscan { // Do not shrink during GCscan phase.
shrinkstack(gp)
}
if readgstatus(gp) == _Gdead {
gp.gcworkdone = true
} else {
gp.gcworkdone = false
}
restart := stopg(gp)
// goroutine will scan its own stack when it stops running.
// Wait until it has.
for readgstatus(gp) == _Grunning && !gp.gcworkdone {
}
// scanstack(gp) is done as part of gcphasework
// But to make sure we finished we need to make sure that
// the stack traps have all responded so drop into
// this while loop until they respond.
for !gp.gcworkdone {
status = readgstatus(gp)
if status == _Gdead {
gp.gcworkdone = true // scan is a noop
break
}
if status == _Gwaiting || status == _Grunnable {
restart = stopg(gp)
}
}
if restart {
restartg(gp)
}
}
}
// Get an empty work buffer off the work.empty list,
// allocating new buffers as needed.
func getempty(b *workbuf) *workbuf {
if b != nil {
putfull(b)
b = nil
}
if work.empty != 0 {
b = (*workbuf)(lfstackpop(&work.empty))
}
if b != nil && b.nobj != 0 {
_g_ := getg()
print("m", _g_.m.id, ": getempty: popped b=", b, " with non-zero b.nobj=", b.nobj, "\n")
gothrow("getempty: workbuffer not empty, b->nobj not 0")
}
if b == nil {
b = (*workbuf)(persistentalloc(unsafe.Sizeof(*b), _CacheLineSize, &memstats.gc_sys))
b.nobj = 0
}
return b
}
func putempty(b *workbuf) {
if b.nobj != 0 {
gothrow("putempty: b->nobj not 0")
}
lfstackpush(&work.empty, &b.node)
}
func putfull(b *workbuf) {
if b.nobj <= 0 {
gothrow("putfull: b->nobj <= 0")
}
lfstackpush(&work.full, &b.node)
}
// Get an partially empty work buffer
// if none are available get an empty one.
func getpartialorempty() *workbuf {
b := (*workbuf)(lfstackpop(&work.partial))
if b == nil {
b = getempty(nil)
}
return b
}
func putpartial(b *workbuf) {
if b.nobj == 0 {
lfstackpush(&work.empty, &b.node)
} else if b.nobj < uintptr(len(b.obj)) {
lfstackpush(&work.partial, &b.node)
} else if b.nobj == uintptr(len(b.obj)) {
lfstackpush(&work.full, &b.node)
} else {
print("b=", b, " b.nobj=", b.nobj, " len(b.obj)=", len(b.obj), "\n")
gothrow("putpartial: bad Workbuf b.nobj")
}
}
// Get a full work buffer off the work.full or a partially
// filled one off the work.partial list. If nothing is available
// wait until all the other gc helpers have finished and then
// return nil.
// getfull acts as a barrier for work.nproc helpers. As long as one
// gchelper is actively marking objects it
// may create a workbuffer that the other helpers can work on.
// The for loop either exits when a work buffer is found
// or when _all_ of the work.nproc GC helpers are in the loop
// looking for work and thus not capable of creating new work.
// This is in fact the termination condition for the STW mark
// phase.
func getfull(b *workbuf) *workbuf {
if b != nil {
putempty(b)
}
b = (*workbuf)(lfstackpop(&work.full))
if b == nil {
b = (*workbuf)(lfstackpop(&work.partial))
}
if b != nil || work.nproc == 1 {
return b
}
xadd(&work.nwait, +1)
for i := 0; ; i++ {
if work.full != 0 {
xadd(&work.nwait, -1)
b = (*workbuf)(lfstackpop(&work.full))
if b == nil {
b = (*workbuf)(lfstackpop(&work.partial))
}
if b != nil {
return b
}
xadd(&work.nwait, +1)
}
if work.nwait == work.nproc {
return nil
}
_g_ := getg()
if i < 10 {
_g_.m.gcstats.nprocyield++
procyield(20)
} else if i < 20 {
_g_.m.gcstats.nosyield++
osyield()
} else {
_g_.m.gcstats.nsleep++
usleep(100)
}
}
}
func handoff(b *workbuf) *workbuf {
// Make new buffer with half of b's pointers.
b1 := getempty(nil)
n := b.nobj / 2
b.nobj -= n
b1.nobj = n
memmove(unsafe.Pointer(&b1.obj[0]), unsafe.Pointer(&b.obj[b.nobj]), n*unsafe.Sizeof(b1.obj[0]))
_g_ := getg()
_g_.m.gcstats.nhandoff++
_g_.m.gcstats.nhandoffcnt += uint64(n)
// Put b on full list - let first half of b get stolen.
lfstackpush(&work.full, &b.node)
return b1
}
func stackmapdata(stkmap *stackmap, n int32) bitvector {
if n < 0 || n >= stkmap.n {
gothrow("stackmapdata: index out of range")
}
return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+31)/32*4))))}
}
// Scan a stack frame: local variables and function arguments/results.
func scanframe(frame *stkframe, unused unsafe.Pointer) bool {
f := frame.fn
targetpc := frame.continpc
if targetpc == 0 {
// Frame is dead.
return true
}
if _DebugGC > 1 {
print("scanframe ", gofuncname(f), "\n")
}
if targetpc != f.entry {
targetpc--
}
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
if pcdata == -1 {
// We do not have a valid pcdata value but there might be a
// stackmap for this function. It is likely that we are looking
// at the function prologue, assume so and hope for the best.
pcdata = 0
}
// Scan local variables if stack frame has been allocated.
size := frame.varp - frame.sp
var minsize uintptr
if thechar != '6' && thechar != '8' {
minsize = ptrSize
} else {
minsize = 0
}
if size > minsize {
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stkmap == nil || stkmap.n <= 0 {
print("runtime: frame ", gofuncname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
gothrow("missing stackmap")
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stkmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", gofuncname(f), " (targetpc=", targetpc, ")\n")
gothrow("scanframe: bad symbol table")
}
bv := stackmapdata(stkmap, pcdata)
size = (uintptr(bv.n) * ptrSize) / bitsPerPointer
scanblock(frame.varp-size, uintptr(bv.n)/bitsPerPointer*ptrSize, bv.bytedata)
}
// Scan arguments.
if frame.arglen > 0 {
var bv bitvector
if frame.argmap != nil {
bv = *frame.argmap
} else {
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stkmap == nil || stkmap.n <= 0 {
print("runtime: frame ", gofuncname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n")
gothrow("missing stackmap")
}
if pcdata < 0 || pcdata >= stkmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", gofuncname(f), " (targetpc=", targetpc, ")\n")
gothrow("scanframe: bad symbol table")
}
bv = stackmapdata(stkmap, pcdata)
}
scanblock(frame.argp, uintptr(bv.n)/bitsPerPointer*ptrSize, bv.bytedata)
}
return true
}
func scanstack(gp *g) {
// TODO(rsc): Due to a precedence error, this was never checked in the original C version.
// If you enable the check, the gothrow happens.
/*
if readgstatus(gp)&_Gscan == 0 {
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
gothrow("mark - bad status")
}
*/
switch readgstatus(gp) &^ _Gscan {
default:
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
gothrow("mark - bad status")
case _Gdead:
return
case _Grunning:
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
gothrow("scanstack: goroutine not stopped")
case _Grunnable, _Gsyscall, _Gwaiting:
// ok
}
if gp == getg() {
gothrow("can't scan our own stack")
}
mp := gp.m
if mp != nil && mp.helpgc != 0 {
gothrow("can't scan gchelper stack")
}
gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0)
tracebackdefers(gp, scanframe, nil)
}
// If the slot is grey or black return true, if white return false.
// If the slot is not in the known heap and thus does not have a valid GC bitmap then
// it is considered grey. Globals and stacks can hold such slots.
// The slot is grey if its mark bit is set and it is enqueued to be scanned.
// The slot is black if it has already been scanned.
// It is white if it has a valid mark bit and the bit is not set.
func shaded(slot uintptr) bool {
if !inheap(slot) { // non-heap slots considered grey
return true
}
var mbits markbits
valid := objectstart(slot, &mbits)
if valid == 0 {
return true
}
if checkmark {
return ischeckmarked(&mbits)
}
return mbits.bits&bitMarked != 0
}
// Shade the object if it isn't already.
// The object is not nil and known to be in the heap.
func shade(b uintptr) {
if !inheap(b) {
gothrow("shade: passed an address not in the heap")
}
wbuf := getpartialorempty()
// Mark the object, return some important bits.
// If we combine the following two rotines we don't have to pass mbits or obj around.
var mbits markbits
obj := objectstart(b, &mbits)
if obj != 0 {
wbuf = greyobject(obj, &mbits, wbuf) // augments the wbuf
}
putpartial(wbuf)
}
// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
// The original Dijkstra barrier only shaded ptrs being placed in black slots.
//
// Shade indicates that it has seen a white pointer by adding the referent
// to wbuf as well as marking it.
//
// slot is the destination (dst) in go code
// ptr is the value that goes into the slot (src) in the go code
//
// Dijkstra pointed out that maintaining the no black to white
// pointers means that white to white pointers not need
// to be noted by the write barrier. Furthermore if either
// white object dies before it is reached by the
// GC then the object can be collected during this GC cycle
// instead of waiting for the next cycle. Unfortunately the cost of
// ensure that the object holding the slot doesn't concurrently
// change to black without the mutator noticing seems prohibitive.
//
// Consider the following example where the mutator writes into
// a slot and then loads the slot's mark bit while the GC thread
// writes to the slot's mark bit and then as part of scanning reads
// the slot.
//
// Initially both [slot] and [slotmark] are 0 (nil)
// Mutator thread GC thread
// st [slot], ptr st [slotmark], 1
//
// ld r1, [slotmark] ld r2, [slot]
//
// This is a classic example of independent reads of independent writes,
// aka IRIW. The question is if r1==r2==0 is allowed and for most HW the
// answer is yes without inserting a memory barriers between the st and the ld.
// These barriers are expensive so we have decided that we will
// always grey the ptr object regardless of the slot's color.
func gcmarkwb_m(slot *uintptr, ptr uintptr) {
switch gcphase {
default:
gothrow("gcphasework in bad gcphase")
case _GCoff, _GCquiesce, _GCstw, _GCsweep, _GCscan:
// ok
case _GCmark, _GCmarktermination:
if ptr != 0 && inheap(ptr) {
shade(ptr)
}
}
}
// The gp has been moved to a GC safepoint. GC phase specific
// work is done here.
func gcphasework(gp *g) {
switch gcphase {
default:
gothrow("gcphasework in bad gcphase")
case _GCoff, _GCquiesce, _GCstw, _GCsweep:
// No work.
case _GCscan:
// scan the stack, mark the objects, put pointers in work buffers
// hanging off the P where this is being run.
scanstack(gp)
case _GCmark:
// No work.
case _GCmarktermination:
scanstack(gp)
// All available mark work will be emptied before returning.
}
gp.gcworkdone = true
}
var finalizer1 = [...]byte{
// Each Finalizer is 5 words, ptr ptr uintptr ptr ptr.
// Each byte describes 4 words.
// Need 4 Finalizers described by 5 bytes before pattern repeats:
// ptr ptr uintptr ptr ptr
// ptr ptr uintptr ptr ptr
// ptr ptr uintptr ptr ptr
// ptr ptr uintptr ptr ptr
// aka
// ptr ptr uintptr ptr
// ptr ptr ptr uintptr
// ptr ptr ptr ptr
// uintptr ptr ptr ptr
// ptr uintptr ptr ptr
// Assumptions about Finalizer layout checked below.
bitsPointer | bitsPointer<<2 | bitsScalar<<4 | bitsPointer<<6,
bitsPointer | bitsPointer<<2 | bitsPointer<<4 | bitsScalar<<6,
bitsPointer | bitsPointer<<2 | bitsPointer<<4 | bitsPointer<<6,
bitsScalar | bitsPointer<<2 | bitsPointer<<4 | bitsPointer<<6,
bitsPointer | bitsScalar<<2 | bitsPointer<<4 | bitsPointer<<6,
}
func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
lock(&finlock)
if finq == nil || finq.cnt == finq.cap {
if finc == nil {
finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys))
finc.cap = int32((_FinBlockSize-unsafe.Sizeof(finblock{}))/unsafe.Sizeof(finalizer{}) + 1)
finc.alllink = allfin
allfin = finc
if finptrmask[0] == 0 {
// Build pointer mask for Finalizer array in block.
// Check assumptions made in finalizer1 array above.
if (unsafe.Sizeof(finalizer{}) != 5*ptrSize ||
unsafe.Offsetof(finalizer{}.fn) != 0 ||
unsafe.Offsetof(finalizer{}.arg) != ptrSize ||
unsafe.Offsetof(finalizer{}.nret) != 2*ptrSize ||
unsafe.Offsetof(finalizer{}.fint) != 3*ptrSize ||
unsafe.Offsetof(finalizer{}.ot) != 4*ptrSize ||
bitsPerPointer != 2) {
gothrow("finalizer out of sync")
}
for i := range finptrmask {
finptrmask[i] = finalizer1[i%len(finalizer1)]
}
}
}
block := finc
finc = block.next
block.next = finq
finq = block
}
f := (*finalizer)(add(unsafe.Pointer(&finq.fin[0]), uintptr(finq.cnt)*unsafe.Sizeof(finq.fin[0])))
finq.cnt++
f.fn = fn
f.nret = nret
f.fint = fint
f.ot = ot
f.arg = p
fingwake = true
unlock(&finlock)
}
func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
for fb := allfin; fb != nil; fb = fb.alllink {
for i := int32(0); i < fb.cnt; i++ {
f := &fb.fin[i]
callback(f.fn, f.arg, f.nret, f.fint, f.ot)
}
}
}
// Returns only when span s has been swept.
func mSpan_EnsureSwept(s *mspan) {
// Caller must disable preemption.
// Otherwise when this function returns the span can become unswept again
// (if GC is triggered on another goroutine).
_g_ := getg()
if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
gothrow("MSpan_EnsureSwept: m is not locked")
}
sg := mheap_.sweepgen
if atomicload(&s.sweepgen) == sg {
return
}
// The caller must be sure that the span is a MSpanInUse span.
if cas(&s.sweepgen, sg-2, sg-1) {
mSpan_Sweep(s, false)
return
}
// unfortunate condition, and we don't have efficient means to wait
for atomicload(&s.sweepgen) != sg {
osyield()
}
}
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
// Returns true if the span was returned to heap.
// If preserve=true, don't return it to heap nor relink in MCentral lists;
// caller takes care of it.
func mSpan_Sweep(s *mspan, preserve bool) bool {
if checkmark {
gothrow("MSpan_Sweep: checkmark only runs in STW and after the sweep")
}
// It's critical that we enter this function with preemption disabled,
// GC must not start while we are in the middle of this function.
_g_ := getg()
if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
gothrow("MSpan_Sweep: m is not locked")
}
sweepgen := mheap_.sweepgen
if s.state != mSpanInUse || s.sweepgen != sweepgen-1 {
print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
gothrow("MSpan_Sweep: bad span state")
}
arena_start := mheap_.arena_start
cl := s.sizeclass
size := s.elemsize
var n int32
var npages int32
if cl == 0 {
n = 1
} else {
// Chunk full of small blocks.
npages = class_to_allocnpages[cl]
n = (npages << _PageShift) / int32(size)
}
res := false
nfree := 0
var head mlink
end := &head
c := _g_.m.mcache
sweepgenset := false
// Mark any free objects in this span so we don't collect them.
for link := s.freelist; link != nil; link = link.next {
off := (uintptr(unsafe.Pointer(link)) - arena_start) / ptrSize
bitp := arena_start - off/wordsPerBitmapByte - 1
shift := (off % wordsPerBitmapByte) * gcBits
*(*byte)(unsafe.Pointer(bitp)) |= bitMarked << shift
}
// Unlink & free special records for any objects we're about to free.
specialp := &s.specials
special := *specialp
for special != nil {
// A finalizer can be set for an inner byte of an object, find object beginning.
p := uintptr(s.start<<_PageShift) + uintptr(special.offset)/size*size
off := (p - arena_start) / ptrSize
bitp := arena_start - off/wordsPerBitmapByte - 1
shift := (off % wordsPerBitmapByte) * gcBits
bits := (*(*byte)(unsafe.Pointer(bitp)) >> shift) & bitMask
if bits&bitMarked == 0 {
// Find the exact byte for which the special was setup
// (as opposed to object beginning).
p := uintptr(s.start<<_PageShift) + uintptr(special.offset)
// about to free object: splice out special record
y := special
special = special.next
*specialp = special
if !freespecial(y, unsafe.Pointer(p), size, false) {
// stop freeing of object if it has a finalizer
*(*byte)(unsafe.Pointer(bitp)) |= bitMarked << shift
}
} else {
// object is still live: keep special record
specialp = &special.next
special = *specialp
}
}
// Sweep through n objects of given size starting at p.
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
p := uintptr(s.start << _PageShift)
off := (p - arena_start) / ptrSize
bitp := arena_start - off/wordsPerBitmapByte - 1
shift := uint(0)
step := size / (ptrSize * wordsPerBitmapByte)
// Rewind to the previous quadruple as we move to the next
// in the beginning of the loop.
bitp += step
if step == 0 {
// 8-byte objects.
bitp++
shift = gcBits
}
for ; n > 0; n, p = n-1, p+size {
bitp -= step
if step == 0 {
if shift != 0 {
bitp--
}
shift = gcBits - shift
}
xbits := *(*byte)(unsafe.Pointer(bitp))
bits := (xbits >> shift) & bitMask
// Allocated and marked object, reset bits to allocated.
if bits&bitMarked != 0 {
*(*byte)(unsafe.Pointer(bitp)) &^= bitMarked << shift
continue
}
// At this point we know that we are looking at garbage object
// that needs to be collected.
if debug.allocfreetrace != 0 {
tracefree(unsafe.Pointer(p), size)
}
// Reset to allocated+noscan.
*(*byte)(unsafe.Pointer(bitp)) = uint8(uintptr(xbits&^((bitMarked|bitsMask<<2)<<shift)) | uintptr(bitsDead)<<(shift+2))
if cl == 0 {
// Free large span.
if preserve {
gothrow("can't preserve large span")
}
unmarkspan(p, s.npages<<_PageShift)
s.needzero = 1
// important to set sweepgen before returning it to heap
atomicstore(&s.sweepgen, sweepgen)
sweepgenset = true
// NOTE(rsc,dvyukov): The original implementation of efence
// in CL 22060046 used SysFree instead of SysFault, so that
// the operating system would eventually give the memory
// back to us again, so that an efence program could run
// longer without running out of memory. Unfortunately,
// calling SysFree here without any kind of adjustment of the
// heap data structures means that when the memory does
// come back to us, we have the wrong metadata for it, either in
// the MSpan structures or in the garbage collection bitmap.
// Using SysFault here means that the program will run out of
// memory fairly quickly in efence mode, but at least it won't
// have mysterious crashes due to confused memory reuse.
// It should be possible to switch back to SysFree if we also
// implement and then call some kind of MHeap_DeleteSpan.
if debug.efence > 0 {
s.limit = 0 // prevent mlookup from finding this span
sysFault(unsafe.Pointer(p), size)
} else {
mHeap_Free(&mheap_, s, 1)
}
c.local_nlargefree++
c.local_largefree += size
xadd64(&memstats.next_gc, -int64(size)*int64(gcpercent+100)/100)
res = true
} else {
// Free small object.
if size > 2*ptrSize {
*(*uintptr)(unsafe.Pointer(p + ptrSize)) = uintptrMask & 0xdeaddeaddeaddead // mark as "needs to be zeroed"
} else if size > ptrSize {
*(*uintptr)(unsafe.Pointer(p + ptrSize)) = 0
}
end.next = (*mlink)(unsafe.Pointer(p))
end = end.next
nfree++
}
}
// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
// because of the potential for a concurrent free/SetFinalizer.
// But we need to set it before we make the span available for allocation
// (return it to heap or mcentral), because allocation code assumes that a
// span is already swept if available for allocation.
if !sweepgenset && nfree == 0 {
// The span must be in our exclusive ownership until we update sweepgen,
// check for potential races.
if s.state != mSpanInUse || s.sweepgen != sweepgen-1 {
print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
gothrow("MSpan_Sweep: bad span state after sweep")
}
atomicstore(&s.sweepgen, sweepgen)
}
if nfree > 0 {
c.local_nsmallfree[cl] += uintptr(nfree)
c.local_cachealloc -= intptr(uintptr(nfree) * size)
xadd64(&memstats.next_gc, -int64(nfree)*int64(size)*int64(gcpercent+100)/100)
res = mCentral_FreeSpan(&mheap_.central[cl].mcentral, s, int32(nfree), head.next, end, preserve)
// MCentral_FreeSpan updates sweepgen
}
return res
}
// State of background sweep.
// Protected by gclock.
type sweepdata struct {
g *g
parked bool
started bool
spanidx uint32 // background sweeper position
nbgsweep uint32
npausesweep uint32
}
var sweep sweepdata
// sweeps one span
// returns number of pages returned to heap, or ^uintptr(0) if there is nothing to sweep
func sweepone() uintptr {
_g_ := getg()
// increment locks to ensure that the goroutine is not preempted
// in the middle of sweep thus leaving the span in an inconsistent state for next GC
_g_.m.locks++
sg := mheap_.sweepgen
for {
idx := xadd(&sweep.spanidx, 1) - 1
if idx >= uint32(len(work.spans)) {
mheap_.sweepdone = 1
_g_.m.locks--
return ^uintptr(0)
}
s := work.spans[idx]
if s.state != mSpanInUse {
s.sweepgen = sg
continue
}
if s.sweepgen != sg-2 || !cas(&s.sweepgen, sg-2, sg-1) {
continue
}
npages := s.npages
if !mSpan_Sweep(s, false) {
npages = 0
}
_g_.m.locks--
return npages
}
}
func gosweepone() uintptr {
var ret uintptr
systemstack(func() {
ret = sweepone()
})
return ret
}
func gosweepdone() bool {
return mheap_.sweepdone != 0
}
func gchelper() {
_g_ := getg()
_g_.m.traceback = 2
gchelperstart()
// parallel mark for over GC roots
parfordo(work.markfor)
if gcphase != _GCscan {
scanblock(0, 0, nil) // blocks in getfull
}
nproc := work.nproc // work.nproc can change right after we increment work.ndone
if xadd(&work.ndone, +1) == nproc-1 {
notewakeup(&work.alldone)
}
_g_.m.traceback = 0
}
func cachestats() {
for i := 0; ; i++ {
p := allp[i]
if p == nil {
break
}
c := p.mcache
if c == nil {
continue
}
purgecachedstats(c)
}
}
func flushallmcaches() {
for i := 0; ; i++ {
p := allp[i]
if p == nil {
break
}
c := p.mcache
if c == nil {
continue
}
mCache_ReleaseAll(c)
stackcache_clear(c)
}
}
func updatememstats(stats *gcstats) {
if stats != nil {
*stats = gcstats{}
}
for mp := allm; mp != nil; mp = mp.alllink {
if stats != nil {
src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
for i, v := range src {
dst[i] += v
}
mp.gcstats = gcstats{}
}
}
memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
// Current number of alive object in the heap and amount of alive heap memory
// are calculated by scanning all spans.
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
memstats.alloc = 0
memstats.total_alloc = 0
memstats.nmalloc = 0
memstats.nfree = 0
for i := 0; i < len(memstats.by_size); i++ {
memstats.by_size[i].nmalloc = 0
memstats.by_size[i].nfree = 0
}
// Flush MCache's to MCentral.
systemstack(flushallmcaches)
// Aggregate local stats.
cachestats()
// Scan all spans and count number of alive objects.
lock(&mheap_.lock)
for i := uint32(0); i < mheap_.nspan; i++ {
s := h_allspans[i]
if s.state != mSpanInUse {
continue
}
if s.sizeclass == 0 {
memstats.nmalloc++
memstats.alloc += uint64(s.elemsize)
} else {
memstats.nmalloc += uint64(s.ref)
memstats.by_size[s.sizeclass].nmalloc += uint64(s.ref)
memstats.alloc += uint64(s.ref) * uint64(s.elemsize)
}
}
unlock(&mheap_.lock)
// Aggregate by size class.
smallfree := uint64(0)
memstats.nfree = mheap_.nlargefree
for i := 0; i < len(memstats.by_size); i++ {
memstats.nfree += mheap_.nsmallfree[i]
memstats.by_size[i].nfree = mheap_.nsmallfree[i]
memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
smallfree += uint64(mheap_.nsmallfree[i]) * uint64(class_to_size[i])
}
memstats.nfree += memstats.tinyallocs
memstats.nmalloc += memstats.nfree
// Calculate derived stats.
memstats.total_alloc = uint64(memstats.alloc) + uint64(mheap_.largefree) + smallfree
memstats.heap_alloc = memstats.alloc
memstats.heap_objects = memstats.nmalloc - memstats.nfree
}
func gcinit() {
if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
gothrow("runtime: size of Workbuf is suboptimal")
}
work.markfor = parforalloc(_MaxGcproc)
gcpercent = readgogc()
gcdatamask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcdata)), uintptr(unsafe.Pointer(&edata))-uintptr(unsafe.Pointer(&data)))
gcbssmask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcbss)), uintptr(unsafe.Pointer(&ebss))-uintptr(unsafe.Pointer(&bss)))
}
// Called from malloc.go using onM, stopping and starting the world handled in caller.
func gc_m(start_time int64, eagersweep bool) {
_g_ := getg()
gp := _g_.m.curg
casgstatus(gp, _Grunning, _Gwaiting)
gp.waitreason = "garbage collection"
gc(start_time, eagersweep)
casgstatus(gp, _Gwaiting, _Grunning)
}
// Similar to clearcheckmarkbits but works on a single span.
// It preforms two tasks.
// 1. When used before the checkmark phase it converts BitsDead (00) to bitsScalar (01)
// for nibbles with the BoundaryBit set.
// 2. When used after the checkmark phase it converts BitsPointerMark (11) to BitsPointer 10 and
// BitsScalarMark (00) to BitsScalar (01), thus clearing the checkmark mark encoding.
// For the second case it is possible to restore the BitsDead pattern but since
// clearmark is a debug tool performance has a lower priority than simplicity.
// The span is MSpanInUse and the world is stopped.
func clearcheckmarkbitsspan(s *mspan) {
if s.state != _MSpanInUse {
print("runtime:clearcheckmarkbitsspan: state=", s.state, "\n")
gothrow("clearcheckmarkbitsspan: bad span state")
}
arena_start := mheap_.arena_start
cl := s.sizeclass
size := s.elemsize
var n int32
if cl == 0 {
n = 1
} else {
// Chunk full of small blocks
npages := class_to_allocnpages[cl]
n = npages << _PageShift / int32(size)
}
// MSpan_Sweep has similar code but instead of overloading and
// complicating that routine we do a simpler walk here.
// Sweep through n objects of given size starting at p.
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
p := uintptr(s.start) << _PageShift
// Find bits for the beginning of the span.
off := (p - arena_start) / ptrSize
bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
step := size / (ptrSize * wordsPerBitmapByte)
// The type bit values are:
// 00 - BitsDead, for us BitsScalarMarked
// 01 - BitsScalar
// 10 - BitsPointer
// 11 - unused, for us BitsPointerMarked
//
// When called to prepare for the checkmark phase (checkmark==1),
// we change BitsDead to BitsScalar, so that there are no BitsScalarMarked
// type bits anywhere.
//
// The checkmark phase marks by changing BitsScalar to BitsScalarMarked
// and BitsPointer to BitsPointerMarked.
//
// When called to clean up after the checkmark phase (checkmark==0),
// we unmark by changing BitsScalarMarked back to BitsScalar and
// BitsPointerMarked back to BitsPointer.
//
// There are two problems with the scheme as just described.
// First, the setup rewrites BitsDead to BitsScalar, but the type bits
// following a BitsDead are uninitialized and must not be used.
// Second, objects that are free are expected to have their type
// bits zeroed (BitsDead), so in the cleanup we need to restore
// any BitsDeads that were there originally.
//
// In a one-word object (8-byte allocation on 64-bit system),
// there is no difference between BitsScalar and BitsDead, because
// neither is a pointer and there are no more words in the object,
// so using BitsScalar during the checkmark is safe and mapping
// both back to BitsDead during cleanup is also safe.
//
// In a larger object, we need to be more careful. During setup,
// if the type of the first word is BitsDead, we change it to BitsScalar
// (as we must) but also initialize the type of the second
// word to BitsDead, so that a scan during the checkmark phase
// will still stop before seeing the uninitialized type bits in the
// rest of the object. The sequence 'BitsScalar BitsDead' never
// happens in real type bitmaps - BitsDead is always as early
// as possible, so immediately after the last BitsPointer.
// During cleanup, if we see a BitsScalar, we can check to see if it
// is followed by BitsDead. If so, it was originally BitsDead and
// we can change it back.
if step == 0 {
// updating top and bottom nibbles, all boundaries
for i := int32(0); i < n/2; i, bitp = i+1, addb(bitp, uintptrMask&-1) {
if *bitp&bitBoundary == 0 {
gothrow("missing bitBoundary")
}
b := (*bitp & bitPtrMask) >> 2
if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) {
*bitp &^= 0x0c // convert to _BitsDead
} else if b == _BitsScalarMarked || b == _BitsPointerMarked {
*bitp &^= _BitsCheckMarkXor << 2
}
if (*bitp>>gcBits)&bitBoundary == 0 {
gothrow("missing bitBoundary")
}
b = ((*bitp >> gcBits) & bitPtrMask) >> 2
if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) {
*bitp &^= 0xc0 // convert to _BitsDead
} else if b == _BitsScalarMarked || b == _BitsPointerMarked {
*bitp &^= _BitsCheckMarkXor << (2 + gcBits)
}
}
} else {
// updating bottom nibble for first word of each object
for i := int32(0); i < n; i, bitp = i+1, addb(bitp, -step) {
if *bitp&bitBoundary == 0 {
gothrow("missing bitBoundary")
}
b := (*bitp & bitPtrMask) >> 2
if checkmark && b == _BitsDead {
// move BitsDead into second word.
// set bits to BitsScalar in preparation for checkmark phase.
*bitp &^= 0xc0
*bitp |= _BitsScalar << 2
} else if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) && *bitp&0xc0 == 0 {
// Cleaning up after checkmark phase.
// First word is scalar or dead (we forgot)
// and second word is dead.
// First word might as well be dead too.
*bitp &^= 0x0c
} else if b == _BitsScalarMarked || b == _BitsPointerMarked {
*bitp ^= _BitsCheckMarkXor << 2
}
}
}
}
// clearcheckmarkbits preforms two tasks.
// 1. When used before the checkmark phase it converts BitsDead (00) to bitsScalar (01)
// for nibbles with the BoundaryBit set.
// 2. When used after the checkmark phase it converts BitsPointerMark (11) to BitsPointer 10 and
// BitsScalarMark (00) to BitsScalar (01), thus clearing the checkmark mark encoding.
// This is a bit expensive but preserves the BitsDead encoding during the normal marking.
// BitsDead remains valid for every nibble except the ones with BitsBoundary set.
func clearcheckmarkbits() {
for _, s := range work.spans {
if s.state == _MSpanInUse {
clearcheckmarkbitsspan(s)
}
}
}
// Called from malloc.go using onM.
// The world is stopped. Rerun the scan and mark phases
// using the bitMarkedCheck bit instead of the
// bitMarked bit. If the marking encounters an
// bitMarked bit that is not set then we throw.
func gccheckmark_m(startTime int64, eagersweep bool) {
if !gccheckmarkenable {
return
}
if checkmark {
gothrow("gccheckmark_m, entered with checkmark already true")
}
checkmark = true
clearcheckmarkbits() // Converts BitsDead to BitsScalar.
gc_m(startTime, eagersweep) // turns off checkmark
// Work done, fixed up the GC bitmap to remove the checkmark bits.
clearcheckmarkbits()
}
func gccheckmarkenable_m() {
gccheckmarkenable = true
}
func gccheckmarkdisable_m() {
gccheckmarkenable = false
}
func finishsweep_m() {
// The world is stopped so we should be able to complete the sweeps
// quickly.
for sweepone() != ^uintptr(0) {
sweep.npausesweep++
}
// There may be some other spans being swept concurrently that
// we need to wait for. If finishsweep_m is done with the world stopped
// this code is not required.
sg := mheap_.sweepgen
for _, s := range work.spans {
if s.sweepgen != sg && s.state == _MSpanInUse {
mSpan_EnsureSwept(s)
}
}
}
// Scan all of the stacks, greying (or graying if in America) the referents
// but not blackening them since the mark write barrier isn't installed.
func gcscan_m() {
_g_ := getg()
// Grab the g that called us and potentially allow rescheduling.
// This allows it to be scanned like other goroutines.
mastergp := _g_.m.curg
casgstatus(mastergp, _Grunning, _Gwaiting)
mastergp.waitreason = "garbage collection scan"
// Span sweeping has been done by finishsweep_m.
// Long term we will want to make this goroutine runnable
// by placing it onto a scanenqueue state and then calling
// runtimeĀ·restartg(mastergp) to make it Grunnable.
// At the bottom we will want to return this p back to the scheduler.
oldphase := gcphase
// Prepare flag indicating that the scan has not been completed.
lock(&allglock)
local_allglen := allglen
for i := uintptr(0); i < local_allglen; i++ {
gp := allgs[i]
gp.gcworkdone = false // set to true in gcphasework
}
unlock(&allglock)
work.nwait = 0
work.ndone = 0
work.nproc = 1 // For now do not do this in parallel.
gcphase = _GCscan
// ackgcphase is not needed since we are not scanning running goroutines.
parforsetup(work.markfor, work.nproc, uint32(_RootCount+local_allglen), nil, false, markroot)
parfordo(work.markfor)
lock(&allglock)
// Check that gc work is done.
for i := uintptr(0); i < local_allglen; i++ {
gp := allgs[i]
if !gp.gcworkdone {
gothrow("scan missed a g")
}
}
unlock(&allglock)
gcphase = oldphase
casgstatus(mastergp, _Gwaiting, _Grunning)
// Let the g that called us continue to run.
}
// Mark all objects that are known about.
func gcmark_m() {
scanblock(0, 0, nil)
}
// For now this must be bracketed with a stoptheworld and a starttheworld to ensure
// all go routines see the new barrier.
func gcinstallmarkwb_m() {
gcphase = _GCmark
}
// For now this must be bracketed with a stoptheworld and a starttheworld to ensure
// all go routines see the new barrier.
func gcinstalloffwb_m() {
gcphase = _GCoff
}
func gc(start_time int64, eagersweep bool) {
if _DebugGCPtrs {
print("GC start\n")
}
if debug.allocfreetrace > 0 {
tracegc()
}
_g_ := getg()
_g_.m.traceback = 2
t0 := start_time
work.tstart = start_time
var t1 int64
if debug.gctrace > 0 {
t1 = nanotime()
}
if !checkmark {
finishsweep_m() // skip during checkmark debug phase.
}
// Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
// resizing/freeing allspans.
// New spans can be created while GC progresses, but they are not garbage for
// this round:
// - new stack spans can be created even while the world is stopped.
// - new malloc spans can be created during the concurrent sweep
// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
lock(&mheap_.lock)
// Free the old cached sweep array if necessary.
if work.spans != nil && &work.spans[0] != &h_allspans[0] {
sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
}
// Cache the current array for marking.
mheap_.gcspans = mheap_.allspans
work.spans = h_allspans
unlock(&mheap_.lock)
oldphase := gcphase
work.nwait = 0
work.ndone = 0
work.nproc = uint32(gcprocs())
gcphase = _GCmarktermination
// World is stopped so allglen will not change.
for i := uintptr(0); i < allglen; i++ {
gp := allgs[i]
gp.gcworkdone = false // set to true in gcphasework
}
parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), nil, false, markroot)
if work.nproc > 1 {
noteclear(&work.alldone)
helpgc(int32(work.nproc))
}
var t2 int64
if debug.gctrace > 0 {
t2 = nanotime()
}
gchelperstart()
parfordo(work.markfor)
scanblock(0, 0, nil)
if work.full != 0 {
gothrow("work.full != 0")
}
if work.partial != 0 {
gothrow("work.partial != 0")
}
gcphase = oldphase
var t3 int64
if debug.gctrace > 0 {
t3 = nanotime()
}
if work.nproc > 1 {
notesleep(&work.alldone)
}
shrinkfinish()
cachestats()
// next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
// estimate what was live heap size after previous GC (for printing only)
heap0 := memstats.next_gc * 100 / (uint64(gcpercent) + 100)
// conservatively set next_gc to high value assuming that everything is live
// concurrent/lazy sweep will reduce this number while discovering new garbage
memstats.next_gc = memstats.heap_alloc + memstats.heap_alloc*uint64(gcpercent)/100
t4 := nanotime()
atomicstore64(&memstats.last_gc, uint64(unixnanotime())) // must be Unix time to make sense to user
memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(t4 - t0)
memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(t4)
memstats.pause_total_ns += uint64(t4 - t0)
memstats.numgc++
if memstats.debuggc {
print("pause ", t4-t0, "\n")
}
if debug.gctrace > 0 {
heap1 := memstats.heap_alloc
var stats gcstats
updatememstats(&stats)
if heap1 != memstats.heap_alloc {
print("runtime: mstats skew: heap=", heap1, "/", memstats.heap_alloc, "\n")
gothrow("mstats skew")
}
obj := memstats.nmalloc - memstats.nfree
stats.nprocyield += work.markfor.nprocyield
stats.nosyield += work.markfor.nosyield
stats.nsleep += work.markfor.nsleep
print("gc", memstats.numgc, "(", work.nproc, "): ",
(t1-t0)/1000, "+", (t2-t1)/1000, "+", (t3-t2)/1000, "+", (t4-t3)/1000, " us, ",
heap0>>20, " -> ", heap1>>20, " MB, ",
obj, " (", memstats.nmalloc, "-", memstats.nfree, ") objects, ",
gcount(), " goroutines, ",
len(work.spans), "/", sweep.nbgsweep, "/", sweep.npausesweep, " sweeps, ",
stats.nhandoff, "(", stats.nhandoffcnt, ") handoff, ",
work.markfor.nsteal, "(", work.markfor.nstealcnt, ") steal, ",
stats.nprocyield, "/", stats.nosyield, "/", stats.nsleep, " yields\n")
sweep.nbgsweep = 0
sweep.npausesweep = 0
}
// See the comment in the beginning of this function as to why we need the following.
// Even if this is still stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
lock(&mheap_.lock)
// Free the old cached mark array if necessary.
if work.spans != nil && &work.spans[0] != &h_allspans[0] {
sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
}
if gccheckmarkenable {
if !checkmark {
// first half of two-pass; don't set up sweep
unlock(&mheap_.lock)
return
}
checkmark = false // done checking marks
}
// Cache the current array for sweeping.
mheap_.gcspans = mheap_.allspans
mheap_.sweepgen += 2
mheap_.sweepdone = 0
work.spans = h_allspans
sweep.spanidx = 0
unlock(&mheap_.lock)
if _ConcurrentSweep && !eagersweep {
lock(&gclock)
if !sweep.started {
go bgsweep()
sweep.started = true
} else if sweep.parked {
sweep.parked = false
ready(sweep.g)
}
unlock(&gclock)
} else {
// Sweep all spans eagerly.
for sweepone() != ^uintptr(0) {
sweep.npausesweep++
}
// Do an additional mProf_GC, because all 'free' events are now real as well.
mProf_GC()
}
mProf_GC()
_g_.m.traceback = 0
if _DebugGCPtrs {
print("GC end\n")
}
}
func readmemstats_m(stats *MemStats) {
updatememstats(nil)
// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
// Stack numbers are part of the heap numbers, separate those out for user consumption
stats.StackSys = stats.StackInuse
stats.HeapInuse -= stats.StackInuse
stats.HeapSys -= stats.StackInuse
}
//go:linkname readGCStats runtime/debug.readGCStats
func readGCStats(pauses *[]uint64) {
systemstack(func() {
readGCStats_m(pauses)
})
}
func readGCStats_m(pauses *[]uint64) {
p := *pauses
// Calling code in runtime/debug should make the slice large enough.
if cap(p) < len(memstats.pause_ns)+3 {
gothrow("runtime: short slice passed to readGCStats")
}
// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
lock(&mheap_.lock)
n := memstats.numgc
if n > uint32(len(memstats.pause_ns)) {
n = uint32(len(memstats.pause_ns))
}
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%len(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
p = p[:cap(p)]
for i := uint32(0); i < n; i++ {
j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
p[i] = memstats.pause_ns[j]
p[n+i] = memstats.pause_end[j]
}
p[n+n] = memstats.last_gc
p[n+n+1] = uint64(memstats.numgc)
p[n+n+2] = memstats.pause_total_ns
unlock(&mheap_.lock)
*pauses = p[:n+n+3]
}
func setGCPercent(in int32) (out int32) {
lock(&mheap_.lock)
out = gcpercent
if in < 0 {
in = -1
}
gcpercent = in
unlock(&mheap_.lock)
return out
}
func gchelperstart() {
_g_ := getg()
if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
gothrow("gchelperstart: bad m->helpgc")
}
if _g_ != _g_.m.g0 {
gothrow("gchelper not running on g0 stack")
}
}
func wakefing() *g {
var res *g
lock(&finlock)
if fingwait && fingwake {
fingwait = false
fingwake = false
res = fing
}
unlock(&finlock)
return res
}
func addb(p *byte, n uintptr) *byte {
return (*byte)(add(unsafe.Pointer(p), n))
}
// Recursively unrolls GC program in prog.
// mask is where to store the result.
// ppos is a pointer to position in mask, in bits.
// sparse says to generate 4-bits per word mask for heap (2-bits for data/bss otherwise).
func unrollgcprog1(maskp *byte, prog *byte, ppos *uintptr, inplace, sparse bool) *byte {
arena_start := mheap_.arena_start
pos := *ppos
mask := (*[1 << 30]byte)(unsafe.Pointer(maskp))
for {
switch *prog {
default:
gothrow("unrollgcprog: unknown instruction")
case insData:
prog = addb(prog, 1)
siz := int(*prog)
prog = addb(prog, 1)
p := (*[1 << 30]byte)(unsafe.Pointer(prog))
for i := 0; i < siz; i++ {
v := p[i/_PointersPerByte]
v >>= (uint(i) % _PointersPerByte) * _BitsPerPointer
v &= _BitsMask
if inplace {
// Store directly into GC bitmap.
off := (uintptr(unsafe.Pointer(&mask[pos])) - arena_start) / ptrSize
bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
shift := (off % wordsPerBitmapByte) * gcBits
if shift == 0 {
*bitp = 0
}
*bitp |= v << (shift + 2)
pos += ptrSize
} else if sparse {
// 4-bits per word
v <<= (pos % 8) + 2
mask[pos/8] |= v
pos += gcBits
} else {
// 2-bits per word
v <<= pos % 8
mask[pos/8] |= v
pos += _BitsPerPointer
}
}
prog = addb(prog, round(uintptr(siz)*_BitsPerPointer, 8)/8)
case insArray:
prog = (*byte)(add(unsafe.Pointer(prog), 1))
siz := uintptr(0)
for i := uintptr(0); i < ptrSize; i++ {
siz = (siz << 8) + uintptr(*(*byte)(add(unsafe.Pointer(prog), ptrSize-i-1)))
}
prog = (*byte)(add(unsafe.Pointer(prog), ptrSize))
var prog1 *byte
for i := uintptr(0); i < siz; i++ {
prog1 = unrollgcprog1(&mask[0], prog, &pos, inplace, sparse)
}
if *prog1 != insArrayEnd {
gothrow("unrollgcprog: array does not end with insArrayEnd")
}
prog = (*byte)(add(unsafe.Pointer(prog1), 1))
case insArrayEnd, insEnd:
*ppos = pos
return prog
}
}
}
// Unrolls GC program prog for data/bss, returns dense GC mask.
func unrollglobgcprog(prog *byte, size uintptr) bitvector {
masksize := round(round(size, ptrSize)/ptrSize*bitsPerPointer, 8) / 8
mask := (*[1 << 30]byte)(persistentalloc(masksize+1, 0, &memstats.gc_sys))
mask[masksize] = 0xa1
pos := uintptr(0)
prog = unrollgcprog1(&mask[0], prog, &pos, false, false)
if pos != size/ptrSize*bitsPerPointer {
print("unrollglobgcprog: bad program size, got ", pos, ", expect ", size/ptrSize*bitsPerPointer, "\n")
gothrow("unrollglobgcprog: bad program size")
}
if *prog != insEnd {
gothrow("unrollglobgcprog: program does not end with insEnd")
}
if mask[masksize] != 0xa1 {
gothrow("unrollglobgcprog: overflow")
}
return bitvector{int32(masksize * 8), &mask[0]}
}
func unrollgcproginplace_m(v unsafe.Pointer, typ *_type, size, size0 uintptr) {
pos := uintptr(0)
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
for pos != size0 {
unrollgcprog1((*byte)(v), prog, &pos, true, true)
}
// Mark first word as bitAllocated.
arena_start := mheap_.arena_start
off := (uintptr(v) - arena_start) / ptrSize
bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
shift := (off % wordsPerBitmapByte) * gcBits
*bitp |= bitBoundary << shift
// Mark word after last as BitsDead.
if size0 < size {
off := (uintptr(v) + size0 - arena_start) / ptrSize
bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
shift := (off % wordsPerBitmapByte) * gcBits
*bitp &= uint8(^(bitPtrMask << shift) | uintptr(bitsDead)<<(shift+2))
}
}
var unroll mutex
// Unrolls GC program in typ.gc[1] into typ.gc[0]
func unrollgcprog_m(typ *_type) {
lock(&unroll)
mask := (*byte)(unsafe.Pointer(uintptr(typ.gc[0])))
if *mask == 0 {
pos := uintptr(8) // skip the unroll flag
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
prog = unrollgcprog1(mask, prog, &pos, false, true)
if *prog != insEnd {
gothrow("unrollgcprog: program does not end with insEnd")
}
if typ.size/ptrSize%2 != 0 {
// repeat the program
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
unrollgcprog1(mask, prog, &pos, false, true)
}
// atomic way to say mask[0] = 1
atomicor8(mask, 1)
}
unlock(&unroll)
}
// mark the span of memory at v as having n blocks of the given size.
// if leftover is true, there is left over space at the end of the span.
func markspan(v unsafe.Pointer, size uintptr, n uintptr, leftover bool) {
if uintptr(v)+size*n > mheap_.arena_used || uintptr(v) < mheap_.arena_start {
gothrow("markspan: bad pointer")
}
// Find bits of the beginning of the span.
off := (uintptr(v) - uintptr(mheap_.arena_start)) / ptrSize
if off%wordsPerBitmapByte != 0 {
gothrow("markspan: unaligned length")
}
b := mheap_.arena_start - off/wordsPerBitmapByte - 1
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap byte has bits for only
// one span, so no other goroutines are changing these bitmap words.
if size == ptrSize {
// Possible only on 64-bits (minimal size class is 8 bytes).
// Set memory to 0x11.
if (bitBoundary|bitsDead)<<gcBits|bitBoundary|bitsDead != 0x11 {
gothrow("markspan: bad bits")
}
if n%(wordsPerBitmapByte*ptrSize) != 0 {
gothrow("markspan: unaligned length")
}
b = b - n/wordsPerBitmapByte + 1 // find first byte
if b%ptrSize != 0 {
gothrow("markspan: unaligned pointer")
}
for i := uintptr(0); i < n; i, b = i+wordsPerBitmapByte*ptrSize, b+ptrSize {
*(*uintptr)(unsafe.Pointer(b)) = uintptrMask & 0x1111111111111111 // bitBoundary | bitsDead, repeated
}
return
}
if leftover {
n++ // mark a boundary just past end of last block too
}
step := size / (ptrSize * wordsPerBitmapByte)
for i := uintptr(0); i < n; i, b = i+1, b-step {
*(*byte)(unsafe.Pointer(b)) = bitBoundary | bitsDead<<2
}
}
// unmark the span of memory at v of length n bytes.
func unmarkspan(v, n uintptr) {
if v+n > mheap_.arena_used || v < mheap_.arena_start {
gothrow("markspan: bad pointer")
}
off := (v - mheap_.arena_start) / ptrSize // word offset
if off%(ptrSize*wordsPerBitmapByte) != 0 {
gothrow("markspan: unaligned pointer")
}
b := mheap_.arena_start - off/wordsPerBitmapByte - 1
n /= ptrSize
if n%(ptrSize*wordsPerBitmapByte) != 0 {
gothrow("unmarkspan: unaligned length")
}
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
n /= wordsPerBitmapByte
memclr(unsafe.Pointer(b-n+1), n)
}
func mHeap_MapBits(h *mheap) {
// Caller has added extra mappings to the arena.
// Add extra mappings of bitmap words as needed.
// We allocate extra bitmap pieces in chunks of bitmapChunk.
const bitmapChunk = 8192
n := (h.arena_used - h.arena_start) / (ptrSize * wordsPerBitmapByte)
n = round(n, bitmapChunk)
n = round(n, _PhysPageSize)
if h.bitmap_mapped >= n {
return
}
sysMap(unsafe.Pointer(h.arena_start-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
h.bitmap_mapped = n
}
func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
target := (*stkframe)(ctxt)
if frame.sp <= target.sp && target.sp < frame.varp {
*target = *frame
return false
}
return true
}
// Returns GC type info for object p for testing.
func getgcmask(p unsafe.Pointer, t *_type, mask **byte, len *uintptr) {
*mask = nil
*len = 0
// data
if uintptr(unsafe.Pointer(&data)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&edata)) {
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
*len = n / ptrSize
*mask = &make([]byte, *len)[0]
for i := uintptr(0); i < n; i += ptrSize {
off := (uintptr(p) + i - uintptr(unsafe.Pointer(&data))) / ptrSize
bits := (*(*byte)(add(unsafe.Pointer(gcdatamask.bytedata), off/pointersPerByte)) >> ((off % pointersPerByte) * bitsPerPointer)) & bitsMask
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
}
return
}
// bss
if uintptr(unsafe.Pointer(&bss)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&ebss)) {
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
*len = n / ptrSize
*mask = &make([]byte, *len)[0]
for i := uintptr(0); i < n; i += ptrSize {
off := (uintptr(p) + i - uintptr(unsafe.Pointer(&bss))) / ptrSize
bits := (*(*byte)(add(unsafe.Pointer(gcbssmask.bytedata), off/pointersPerByte)) >> ((off % pointersPerByte) * bitsPerPointer)) & bitsMask
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
}
return
}
// heap
var n uintptr
var base uintptr
if mlookup(uintptr(p), &base, &n, nil) != 0 {
*len = n / ptrSize
*mask = &make([]byte, *len)[0]
for i := uintptr(0); i < n; i += ptrSize {
off := (uintptr(base) + i - mheap_.arena_start) / ptrSize
b := mheap_.arena_start - off/wordsPerBitmapByte - 1
shift := (off % wordsPerBitmapByte) * gcBits
bits := (*(*byte)(unsafe.Pointer(b)) >> (shift + 2)) & bitsMask
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
}
return
}
// stack
var frame stkframe
frame.sp = uintptr(p)
_g_ := getg()
gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
if frame.fn != nil {
f := frame.fn
targetpc := frame.continpc
if targetpc == 0 {
return
}
if targetpc != f.entry {
targetpc--
}
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
if pcdata == -1 {
return
}
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stkmap == nil || stkmap.n <= 0 {
return
}
bv := stackmapdata(stkmap, pcdata)
size := uintptr(bv.n) / bitsPerPointer * ptrSize
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
*len = n / ptrSize
*mask = &make([]byte, *len)[0]
for i := uintptr(0); i < n; i += ptrSize {
off := (uintptr(p) + i - frame.varp + size) / ptrSize
bits := ((*(*byte)(add(unsafe.Pointer(bv.bytedata), off*bitsPerPointer/8))) >> ((off * bitsPerPointer) % 8)) & bitsMask
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
}
}
}
func unixnanotime() int64 {
var now int64
gc_unixnanotime(&now)
return now
}
|