summaryrefslogtreecommitdiff
path: root/src/runtime/extern.go
blob: 34fdeb2b418779c77b7c95c6890cc003920de86e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
Package runtime contains operations that interact with Go's runtime system,
such as functions to control goroutines. It also includes the low-level type information
used by the reflect package; see reflect's documentation for the programmable
interface to the run-time type system.

Environment Variables

The following environment variables ($name or %name%, depending on the host
operating system) control the run-time behavior of Go programs. The meanings
and use may change from release to release.

The GOGC variable sets the initial garbage collection target percentage.
A collection is triggered when the ratio of freshly allocated data to live data
remaining after the previous collection reaches this percentage. The default
is GOGC=100. Setting GOGC=off disables the garbage collector entirely.
The runtime/debug package's SetGCPercent function allows changing this
percentage at run time. See http://golang.org/pkg/runtime/debug/#SetGCPercent.

The GODEBUG variable controls debug output from the runtime. GODEBUG value is
a comma-separated list of name=val pairs. Supported names are:

	allocfreetrace: setting allocfreetrace=1 causes every allocation to be
	profiled and a stack trace printed on each object's allocation and free.

	efence: setting efence=1 causes the allocator to run in a mode
	where each object is allocated on a unique page and addresses are
	never recycled.

	gctrace: setting gctrace=1 causes the garbage collector to emit a single line to standard
	error at each collection, summarizing the amount of memory collected and the
	length of the pause. Setting gctrace=2 emits the same summary but also
	repeats each collection.

	gcdead: setting gcdead=1 causes the garbage collector to clobber all stack slots
	that it thinks are dead.

	invalidptr: defaults to invalidptr=1, causing the garbage collector and stack
	copier to crash the program if an invalid pointer value (for example, 1)
	is found in a pointer-typed location. Setting invalidptr=0 disables this check.
	This should only be used as a temporary workaround to diagnose buggy code.
	The real fix is to not store integers in pointer-typed locations.

	scheddetail: setting schedtrace=X and scheddetail=1 causes the scheduler to emit
	detailed multiline info every X milliseconds, describing state of the scheduler,
	processors, threads and goroutines.

	schedtrace: setting schedtrace=X causes the scheduler to emit a single line to standard
	error every X milliseconds, summarizing the scheduler state.

	scavenge: scavenge=1 enables debugging mode of heap scavenger.

The GOMAXPROCS variable limits the number of operating system threads that
can execute user-level Go code simultaneously. There is no limit to the number of threads
that can be blocked in system calls on behalf of Go code; those do not count against
the GOMAXPROCS limit. This package's GOMAXPROCS function queries and changes
the limit.

The GOTRACEBACK variable controls the amount of output generated when a Go
program fails due to an unrecovered panic or an unexpected runtime condition.
By default, a failure prints a stack trace for every extant goroutine, eliding functions
internal to the run-time system, and then exits with exit code 2.
If GOTRACEBACK=0, the per-goroutine stack traces are omitted entirely.
If GOTRACEBACK=1, the default behavior is used.
If GOTRACEBACK=2, the per-goroutine stack traces include run-time functions.
If GOTRACEBACK=crash, the per-goroutine stack traces include run-time functions,
and if possible the program crashes in an operating-specific manner instead of
exiting. For example, on Unix systems, the program raises SIGABRT to trigger a
core dump.

The GOARCH, GOOS, GOPATH, and GOROOT environment variables complete
the set of Go environment variables. They influence the building of Go programs
(see http://golang.org/cmd/go and http://golang.org/pkg/go/build).
GOARCH, GOOS, and GOROOT are recorded at compile time and made available by
constants or functions in this package, but they do not influence the execution
of the run-time system.
*/
package runtime

// Caller reports file and line number information about function invocations on
// the calling goroutine's stack.  The argument skip is the number of stack frames
// to ascend, with 0 identifying the caller of Caller.  (For historical reasons the
// meaning of skip differs between Caller and Callers.) The return values report the
// program counter, file name, and line number within the file of the corresponding
// call.  The boolean ok is false if it was not possible to recover the information.
func Caller(skip int) (pc uintptr, file string, line int, ok bool) {
	// Ask for two PCs: the one we were asked for
	// and what it called, so that we can see if it
	// "called" sigpanic.
	var rpc [2]uintptr
	if callers(1+skip-1, &rpc[0], 2) < 2 {
		return
	}
	f := findfunc(rpc[1])
	if f == nil {
		// TODO(rsc): Probably a bug?
		// The C version said "have retpc at least"
		// but actually returned pc=0.
		ok = true
		return
	}
	pc = rpc[1]
	xpc := pc
	g := findfunc(rpc[0])
	// All architectures turn faults into apparent calls to sigpanic.
	// If we see a call to sigpanic, we do not back up the PC to find
	// the line number of the call instruction, because there is no call.
	if xpc > f.entry && (g == nil || g.entry != funcPC(sigpanic)) {
		xpc--
	}
	file, line32 := funcline(f, xpc)
	line = int(line32)
	ok = true
	return
}

// Callers fills the slice pc with the return program counters of function invocations
// on the calling goroutine's stack.  The argument skip is the number of stack frames
// to skip before recording in pc, with 0 identifying the frame for Callers itself and
// 1 identifying the caller of Callers.
// It returns the number of entries written to pc.
//
// Note that since each slice entry pc[i] is a return program counter,
// looking up the file and line for pc[i] (for example, using (*Func).FileLine)
// will return the file and line number of the instruction immediately
// following the call.
// To look up the file and line number of the call itself, use pc[i]-1.
// As an exception to this rule, if pc[i-1] corresponds to the function
// runtime.sigpanic, then pc[i] is the program counter of a faulting
// instruction and should be used without any subtraction.
func Callers(skip int, pc []uintptr) int {
	// runtime.callers uses pc.array==nil as a signal
	// to print a stack trace.  Pick off 0-length pc here
	// so that we don't let a nil pc slice get to it.
	if len(pc) == 0 {
		return 0
	}
	return callers(skip, &pc[0], len(pc))
}

// GOROOT returns the root of the Go tree.
// It uses the GOROOT environment variable, if set,
// or else the root used during the Go build.
func GOROOT() string {
	s := gogetenv("GOROOT")
	if s != "" {
		return s
	}
	return defaultGoroot
}

// Version returns the Go tree's version string.
// It is either the commit hash and date at the time of the build or,
// when possible, a release tag like "go1.3".
func Version() string {
	return theVersion
}

// GOOS is the running program's operating system target:
// one of darwin, freebsd, linux, and so on.
const GOOS string = theGoos

// GOARCH is the running program's architecture target:
// 386, amd64, or arm.
const GOARCH string = theGoarch