summaryrefslogtreecommitdiff
path: root/test/typeparam/nested.go
blob: cdb8bfb57424fbd24172778c7b02159268a742d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// run

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This test case stress tests a number of subtle cases involving
// nested type-parameterized declarations. At a high-level, it
// declares a generic function that contains a generic type
// declaration:
//
//	func F[A intish]() {
//		type T[B intish] struct{}
//
//		// store reflect.Type tuple (A, B, F[A].T[B]) in tests
//	}
//
// It then instantiates this function with a variety of type arguments
// for A and B. Particularly tricky things like shadowed types.
//
// From this data it tests two things:
//
// 1. Given tuples (A, B, F[A].T[B]) and (A', B', F[A'].T[B']),
//    F[A].T[B] should be identical to F[A'].T[B'] iff (A, B) is
//    identical to (A', B').
//
// 2. A few of the instantiations are constructed to be identical, and
//    it tests that exactly these pairs are duplicated (by golden
//    output comparison to nested.out).
//
// In both cases, we're effectively using the compiler's existing
// runtime.Type handling (which is well tested) of type identity of A
// and B as a way to help bootstrap testing and validate its new
// runtime.Type handling of F[A].T[B].
//
// This isn't perfect, but it smoked out a handful of issues in
// gotypes2 and unified IR.

package main

import (
	"fmt"
	"reflect"
)

type test struct {
	TArgs    [2]reflect.Type
	Instance reflect.Type
}

var tests []test

type intish interface{ ~int }

type Int int
type GlobalInt = Int // allow access to global Int, even when shadowed

func F[A intish]() {
	add := func(B, T interface{}) {
		tests = append(tests, test{
			TArgs: [2]reflect.Type{
				reflect.TypeOf(A(0)),
				reflect.TypeOf(B),
			},
			Instance: reflect.TypeOf(T),
		})
	}

	type Int int

	type T[B intish] struct{}

	add(int(0), T[int]{})
	add(Int(0), T[Int]{})
	add(GlobalInt(0), T[GlobalInt]{})
	add(A(0), T[A]{}) // NOTE: intentionally dups with int and GlobalInt

	type U[_ any] int
	type V U[int]
	type W V

	add(U[int](0), T[U[int]]{})
	add(U[Int](0), T[U[Int]]{})
	add(U[GlobalInt](0), T[U[GlobalInt]]{})
	add(U[A](0), T[U[A]]{}) // NOTE: intentionally dups with U[int] and U[GlobalInt]
	add(V(0), T[V]{})
	add(W(0), T[W]{})
}

func main() {
	type Int int

	F[int]()
	F[Int]()
	F[GlobalInt]()

	type U[_ any] int
	type V U[int]
	type W V

	F[U[int]]()
	F[U[Int]]()
	F[U[GlobalInt]]()
	F[V]()
	F[W]()

	type X[A any] U[X[A]]

	F[X[int]]()
	F[X[Int]]()
	F[X[GlobalInt]]()

	for j, tj := range tests {
		for i, ti := range tests[:j+1] {
			if (ti.TArgs == tj.TArgs) != (ti.Instance == tj.Instance) {
				fmt.Printf("FAIL: %d,%d: %s, but %s\n", i, j, eq(ti.TArgs, tj.TArgs), eq(ti.Instance, tj.Instance))
			}

			// The test is constructed so we should see a few identical types.
			// See "NOTE" comments above.
			if i != j && ti.Instance == tj.Instance {
				fmt.Printf("%d,%d: %v\n", i, j, ti.Instance)
			}
		}
	}
}

func eq(a, b interface{}) string {
	op := "=="
	if a != b {
		op = "!="
	}
	return fmt.Sprintf("%v %s %v", a, op, b)
}