summaryrefslogtreecommitdiff
path: root/src/runtime/mcentral.go
blob: c1e0b472bc9cf93b38b090cd630700d72cd84947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Central free lists.
//
// See malloc.go for an overview.
//
// The MCentral doesn't actually contain the list of free objects; the MSpan does.
// Each MCentral is two lists of MSpans: those with free objects (c->nonempty)
// and those that are completely allocated (c->empty).

package runtime

import "runtime/internal/atomic"

// Central list of free objects of a given size.
//
//go:notinheap
type mcentral struct {
	lock      mutex
	spanclass spanClass
	nonempty  mSpanList // list of spans with a free object, ie a nonempty free list
	empty     mSpanList // list of spans with no free objects (or cached in an mcache)

	// nmalloc is the cumulative count of objects allocated from
	// this mcentral, assuming all spans in mcaches are
	// fully-allocated. Written atomically, read under STW.
	nmalloc uint64
}

// Initialize a single central free list.
func (c *mcentral) init(spc spanClass) {
	c.spanclass = spc
	c.nonempty.init()
	c.empty.init()
}

// Allocate a span to use in an MCache.
func (c *mcentral) cacheSpan() *mspan {
	// Deduct credit for this span allocation and sweep if necessary.
	spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize
	deductSweepCredit(spanBytes, 0)

	lock(&c.lock)
	traceDone := false
	if trace.enabled {
		traceGCSweepStart()
	}
	sg := mheap_.sweepgen
retry:
	var s *mspan
	for s = c.nonempty.first; s != nil; s = s.next {
		if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			c.nonempty.remove(s)
			c.empty.insertBack(s)
			unlock(&c.lock)
			s.sweep(true)
			goto havespan
		}
		if s.sweepgen == sg-1 {
			// the span is being swept by background sweeper, skip
			continue
		}
		// we have a nonempty span that does not require sweeping, allocate from it
		c.nonempty.remove(s)
		c.empty.insertBack(s)
		unlock(&c.lock)
		goto havespan
	}

	for s = c.empty.first; s != nil; s = s.next {
		if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			// we have an empty span that requires sweeping,
			// sweep it and see if we can free some space in it
			c.empty.remove(s)
			// swept spans are at the end of the list
			c.empty.insertBack(s)
			unlock(&c.lock)
			s.sweep(true)
			freeIndex := s.nextFreeIndex()
			if freeIndex != s.nelems {
				s.freeindex = freeIndex
				goto havespan
			}
			lock(&c.lock)
			// the span is still empty after sweep
			// it is already in the empty list, so just retry
			goto retry
		}
		if s.sweepgen == sg-1 {
			// the span is being swept by background sweeper, skip
			continue
		}
		// already swept empty span,
		// all subsequent ones must also be either swept or in process of sweeping
		break
	}
	if trace.enabled {
		traceGCSweepDone()
		traceDone = true
	}
	unlock(&c.lock)

	// Replenish central list if empty.
	s = c.grow()
	if s == nil {
		return nil
	}
	lock(&c.lock)
	c.empty.insertBack(s)
	unlock(&c.lock)

	// At this point s is a non-empty span, queued at the end of the empty list,
	// c is unlocked.
havespan:
	if trace.enabled && !traceDone {
		traceGCSweepDone()
	}
	cap := int32((s.npages << _PageShift) / s.elemsize)
	n := cap - int32(s.allocCount)
	if n == 0 || s.freeindex == s.nelems || uintptr(s.allocCount) == s.nelems {
		throw("span has no free objects")
	}
	// Assume all objects from this span will be allocated in the
	// mcache. If it gets uncached, we'll adjust this.
	atomic.Xadd64(&c.nmalloc, int64(n))
	usedBytes := uintptr(s.allocCount) * s.elemsize
	atomic.Xadd64(&memstats.heap_live, int64(spanBytes)-int64(usedBytes))
	if trace.enabled {
		// heap_live changed.
		traceHeapAlloc()
	}
	if gcBlackenEnabled != 0 {
		// heap_live changed.
		gcController.revise()
	}
	s.incache = true
	freeByteBase := s.freeindex &^ (64 - 1)
	whichByte := freeByteBase / 8
	// Init alloc bits cache.
	s.refillAllocCache(whichByte)

	// Adjust the allocCache so that s.freeindex corresponds to the low bit in
	// s.allocCache.
	s.allocCache >>= s.freeindex % 64

	return s
}

// Return span from an MCache.
func (c *mcentral) uncacheSpan(s *mspan) {
	lock(&c.lock)

	s.incache = false

	if s.allocCount == 0 {
		throw("uncaching span but s.allocCount == 0")
	}

	cap := int32((s.npages << _PageShift) / s.elemsize)
	n := cap - int32(s.allocCount)
	if n > 0 {
		c.empty.remove(s)
		c.nonempty.insert(s)
		// mCentral_CacheSpan conservatively counted
		// unallocated slots in heap_live. Undo this.
		atomic.Xadd64(&memstats.heap_live, -int64(n)*int64(s.elemsize))
		// cacheSpan updated alloc assuming all objects on s
		// were going to be allocated. Adjust for any that
		// weren't.
		atomic.Xadd64(&c.nmalloc, -int64(n))
	}
	unlock(&c.lock)
}

// freeSpan updates c and s after sweeping s.
// It sets s's sweepgen to the latest generation,
// and, based on the number of free objects in s,
// moves s to the appropriate list of c or returns it
// to the heap.
// freeSpan returns true if s was returned to the heap.
// If preserve=true, it does not move s (the caller
// must take care of it).
func (c *mcentral) freeSpan(s *mspan, preserve bool, wasempty bool) bool {
	if s.incache {
		throw("freeSpan given cached span")
	}
	s.needzero = 1

	if preserve {
		// preserve is set only when called from MCentral_CacheSpan above,
		// the span must be in the empty list.
		if !s.inList() {
			throw("can't preserve unlinked span")
		}
		atomic.Store(&s.sweepgen, mheap_.sweepgen)
		return false
	}

	lock(&c.lock)

	// Move to nonempty if necessary.
	if wasempty {
		c.empty.remove(s)
		c.nonempty.insert(s)
	}

	// delay updating sweepgen until here. This is the signal that
	// the span may be used in an MCache, so it must come after the
	// linked list operations above (actually, just after the
	// lock of c above.)
	atomic.Store(&s.sweepgen, mheap_.sweepgen)

	if s.allocCount != 0 {
		unlock(&c.lock)
		return false
	}

	c.nonempty.remove(s)
	unlock(&c.lock)
	mheap_.freeSpan(s, 0)
	return true
}

// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
	npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
	size := uintptr(class_to_size[c.spanclass.sizeclass()])
	n := (npages << _PageShift) / size

	s := mheap_.alloc(npages, c.spanclass, false, true)
	if s == nil {
		return nil
	}

	p := s.base()
	s.limit = p + size*n

	heapBitsForAddr(s.base()).initSpan(s)
	return s
}