1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "tls_arm64.h"
#include "funcdata.h"
#include "textflag.h"
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// SP = stack; R0 = argc; R1 = argv
SUB $32, RSP
MOVW R0, 8(RSP) // argc
MOVD R1, 16(RSP) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD RSP, R7
MOVD $(-64*1024)(R7), R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
MOVD R0, (g_stack+stack_lo)(g)
MOVD R7, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP $0, R12
BEQ nocgo
MRS_TPIDR_R0 // load TLS base pointer
MOVD R0, R3 // arg 3: TLS base pointer
#ifdef TLSG_IS_VARIABLE
MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
#else
MOVD $0, R2 // arg 2: not used when using platform's TLS
#endif
MOVD $setg_gcc<>(SB), R1 // arg 1: setg
MOVD g, R0 // arg 0: G
SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
BL (R12)
ADD $16, RSP
nocgo:
BL runtime·save_g(SB)
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R0
ADD $const__StackGuard, R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R0
// save m->g0 = g0
MOVD g, m_g0(R0)
// save m0 to g0->m
MOVD R0, g_m(g)
BL runtime·check(SB)
MOVW 8(RSP), R0 // copy argc
MOVW R0, -8(RSP)
MOVD 16(RSP), R0 // copy argv
MOVD R0, 0(RSP)
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R0 // entry
MOVD RSP, R7
MOVD.W $0, -8(R7)
MOVD.W R0, -8(R7)
MOVD.W $0, -8(R7)
MOVD.W $0, -8(R7)
MOVD R7, RSP
BL runtime·newproc(SB)
ADD $32, RSP
// start this M
BL runtime·mstart(SB)
MOVD $0, R0
MOVD R0, (R0) // boom
UNDEF
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
BRK
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R3
MOVD RSP, R0
MOVD R0, gobuf_sp(R3)
MOVD R29, gobuf_bp(R3)
MOVD LR, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD ZR, gobuf_lr(R3)
MOVD ZR, gobuf_ret(R3)
// Assert ctxt is zero. See func save.
MOVD gobuf_ctxt(R3), R0
CMP $0, R0
BEQ 2(PC)
CALL runtime·badctxt(SB)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $24-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g
BL runtime·save_g(SB)
MOVD 0(g), R4 // make sure g is not nil
MOVD gobuf_sp(R5), R0
MOVD R0, RSP
MOVD gobuf_bp(R5), R29
MOVD gobuf_lr(R5), LR
MOVD gobuf_ret(R5), R0
MOVD gobuf_ctxt(R5), R26
MOVD $0, gobuf_sp(R5)
MOVD $0, gobuf_bp(R5)
MOVD $0, gobuf_ret(R5)
MOVD $0, gobuf_lr(R5)
MOVD $0, gobuf_ctxt(R5)
CMP ZR, ZR // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R6
B (R6)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8
// Save caller state in g->sched
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
B runtime·badmcall(SB)
MOVD fn+0(FP), R26 // context
MOVD 0(R26), R4 // code pointer
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP // sp = m->g0->sched.sp
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R3, -8(RSP)
MOVD $0, -16(RSP)
SUB $16, RSP
BL (R4)
B runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R26 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
BL (R3)
B runtime·abort(SB)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $8, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $16, R3
AND $~15, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, RSP
MOVD (g_sched+gobuf_bp)(g), R29
// call target function
MOVD 0(R26), R3 // code pointer
BL (R3)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD $0, (g_sched+gobuf_sp)(g)
MOVD $0, (g_sched+gobuf_bp)(g)
RET
noswitch:
// already on m stack, just call directly
// Using a tail call here cleans up tracebacks since we won't stop
// at an intermediate systemstack.
MOVD 0(R26), R3 // code pointer
MOVD.P 16(RSP), R30 // restore LR
SUB $8, RSP, R29 // restore FP
B (R3)
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3 prolog's LR (R30)
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R8
MOVD m_g0(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackg0(SB)
B runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackgsignal(SB)
B runtime·abort(SB)
// Called from f.
// Set g->sched to context in f
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R3, (g_sched+gobuf_lr)(g)
MOVD R26, (g_sched+gobuf_ctxt)(g)
// Called from f.
// Set m->morebuf to f's callers.
MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
MOVD RSP, R0
MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP
MOVD g, (m_morebuf+gobuf_g)(R8)
// Call newstack on m->g0's stack.
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned)
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVW $0, R26
B runtime·morestack(SB)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R27; \
CMP R27, R16; \
BGT 3(PC); \
MOVD $NAME(SB), R27; \
B (R27)
// Note: can't just "B NAME(SB)" - bad inlining results.
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32
MOVWU argsize+24(FP), R16
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R0
B (R0)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWU argsize+24(FP), R4; \
ADD $8, RSP, R5; \
BIC $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&~15) != 0 */ \
ADD R6, R5, R6; \
/* copy 16 bytes a time */ \
LDP.P 16(R3), (R7, R8); \
STP.P (R7, R8), 16(R5); \
CMP R5, R6; \
BNE -3(PC); \
AND $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&15) != 0 */ \
ADD R6, R5, R6; \
/* copy 1 byte a time for the rest */ \
MOVBU.P 1(R3), R7; \
MOVBU.P R7, 1(R5); \
CMP R5, R6; \
BNE -3(PC); \
/* call function */ \
MOVD f+8(FP), R26; \
MOVD (R26), R0; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R0); \
/* copy return values back */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWU n+24(FP), R4; \
MOVWU retoffset+28(FP), R6; \
ADD $8, RSP, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
BL callRet<>(SB); \
RET
// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $40-0
MOVD R7, 8(RSP)
MOVD R3, 16(RSP)
MOVD R5, 24(RSP)
MOVD R4, 32(RSP)
BL runtime·reflectcallmove(SB)
RET
// These have 8 added to make the overall frame size a multiple of 16,
// as required by the ABI. (There is another +8 for the saved LR.)
CALLFN(·call32, 40 )
CALLFN(·call64, 72 )
CALLFN(·call128, 136 )
CALLFN(·call256, 264 )
CALLFN(·call512, 520 )
CALLFN(·call1024, 1032 )
CALLFN(·call2048, 2056 )
CALLFN(·call4096, 4104 )
CALLFN(·call8192, 8200 )
CALLFN(·call16384, 16392 )
CALLFN(·call32768, 32776 )
CALLFN(·call65536, 65544 )
CALLFN(·call131072, 131080 )
CALLFN(·call262144, 262152 )
CALLFN(·call524288, 524296 )
CALLFN(·call1048576, 1048584 )
CALLFN(·call2097152, 2097160 )
CALLFN(·call4194304, 4194312 )
CALLFN(·call8388608, 8388616 )
CALLFN(·call16777216, 16777224 )
CALLFN(·call33554432, 33554440 )
CALLFN(·call67108864, 67108872 )
CALLFN(·call134217728, 134217736 )
CALLFN(·call268435456, 268435464 )
CALLFN(·call536870912, 536870920 )
CALLFN(·call1073741824, 1073741832 )
// func memhash32(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD h+8(FP), R1
MOVD $ret+16(FP), R2
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.S[1]
VMOV R1, V0.S[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VST1 [V0.D1], (R2)
RET
noaes:
B runtime·memhash32Fallback(SB)
// func memhash64(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD h+8(FP), R1
MOVD $ret+16(FP), R2
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.D[1]
VMOV R1, V0.D[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VST1 [V0.D1], (R2)
RET
noaes:
B runtime·memhash64Fallback(SB)
// func memhash(p unsafe.Pointer, h, size uintptr) uintptr
TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD s+16(FP), R1
MOVD h+8(FP), R3
MOVD $ret+24(FP), R2
B aeshashbody<>(SB)
noaes:
B runtime·memhashFallback(SB)
// func strhash(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R10 // string pointer
LDP (R10), (R0, R1) //string data/ length
MOVD h+8(FP), R3
MOVD $ret+16(FP), R2 // return adddress
B aeshashbody<>(SB)
noaes:
B runtime·strhashFallback(SB)
// R0: data
// R1: length
// R2: address to put return value
// R3: seed data
TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
VEOR V30.B16, V30.B16, V30.B16
VMOV R3, V30.D[0]
VMOV R1, V30.D[1] // load length into seed
MOVD $runtime·aeskeysched+0(SB), R4
VLD1.P 16(R4), [V0.B16]
AESE V30.B16, V0.B16
AESMC V0.B16, V0.B16
CMP $16, R1
BLO aes0to15
BEQ aes16
CMP $32, R1
BLS aes17to32
CMP $64, R1
BLS aes33to64
CMP $128, R1
BLS aes65to128
B aes129plus
aes0to15:
CMP $0, R1
BEQ aes0
VEOR V2.B16, V2.B16, V2.B16
TBZ $3, R1, less_than_8
VLD1.P 8(R0), V2.D[0]
less_than_8:
TBZ $2, R1, less_than_4
VLD1.P 4(R0), V2.S[2]
less_than_4:
TBZ $1, R1, less_than_2
VLD1.P 2(R0), V2.H[6]
less_than_2:
TBZ $0, R1, done
VLD1 (R0), V2.B[14]
done:
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
VST1 [V2.D1], (R2)
RET
aes0:
VST1 [V0.D1], (R2)
RET
aes16:
VLD1 (R0), [V2.B16]
B done
aes17to32:
// make second seed
VLD1 (R4), [V1.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
SUB $16, R1, R10
VLD1.P (R0)(R10), [V2.B16]
VLD1 (R0), [V3.B16]
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESE V1.B16, V3.B16
VEOR V3.B16, V2.B16, V2.B16
VST1 [V2.D1], (R2)
RET
aes33to64:
VLD1 (R4), [V1.B16, V2.B16, V3.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
SUB $32, R1, R10
VLD1.P (R0)(R10), [V4.B16, V5.B16]
VLD1 (R0), [V6.B16, V7.B16]
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESE V1.B16, V5.B16
AESE V2.B16, V6.B16
AESE V3.B16, V7.B16
VEOR V6.B16, V4.B16, V4.B16
VEOR V7.B16, V5.B16, V5.B16
VEOR V5.B16, V4.B16, V4.B16
VST1 [V4.D1], (R2)
RET
aes65to128:
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $64, R1, R10
VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESE V1.B16, V9.B16
AESE V2.B16, V10.B16
AESE V3.B16, V11.B16
AESE V4.B16, V12.B16
AESE V5.B16, V13.B16
AESE V6.B16, V14.B16
AESE V7.B16, V15.B16
VEOR V12.B16, V8.B16, V8.B16
VEOR V13.B16, V9.B16, V9.B16
VEOR V14.B16, V10.B16, V10.B16
VEOR V15.B16, V11.B16, V11.B16
VEOR V10.B16, V8.B16, V8.B16
VEOR V11.B16, V9.B16, V9.B16
VEOR V9.B16, V8.B16, V8.B16
VST1 [V8.D1], (R2)
RET
aes129plus:
PRFM (R0), PLDL1KEEP
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
ADD R0, R1, R10
SUB $128, R10, R10
VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16]
SUB $1, R1, R1
LSR $7, R1, R1
aesloop:
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $1, R1, R1
CBNZ R1, aesloop
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESE V9.B16, V1.B16
AESE V10.B16, V2.B16
AESE V11.B16, V3.B16
AESE V12.B16, V4.B16
AESE V13.B16, V5.B16
AESE V14.B16, V6.B16
AESE V15.B16, V7.B16
VEOR V0.B16, V1.B16, V0.B16
VEOR V2.B16, V3.B16, V2.B16
VEOR V4.B16, V5.B16, V4.B16
VEOR V6.B16, V7.B16, V6.B16
VEOR V0.B16, V2.B16, V0.B16
VEOR V4.B16, V6.B16, V4.B16
VEOR V4.B16, V0.B16, V0.B16
VST1 [V0.D1], (R2)
RET
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVWU cycles+0(FP), R0
again:
YIELD
SUBW $1, R0
CBNZ R0, again
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. BR to fn
TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16
MOVD 0(RSP), R0
SUB $4, R0
MOVD R0, LR
MOVD fv+0(FP), R26
MOVD argp+8(FP), R0
MOVD R0, RSP
SUB $8, RSP
MOVD 0(R26), R3
B (R3)
// Save state of caller into g->sched. Smashes R0.
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD $0, (g_sched+gobuf_ret)(g)
// Assert ctxt is zero. See func save.
MOVD (g_sched+gobuf_ctxt)(g), R0
CMP $0, R0
BEQ 2(PC)
CALL runtime·badctxt(SB)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R1
MOVD arg+8(FP), R0
MOVD RSP, R2 // save original stack pointer
CMP $0, g
BEQ nosave
MOVD g, R4
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R8
MOVD m_gsignal(R8), R3
CMP R3, g
BEQ nosave
MOVD m_g0(R8), R3
CMP R3, g
BEQ nosave
// Switch to system stack.
MOVD R0, R9 // gosave<> and save_g might clobber R0
BL gosave<>(SB)
MOVD R3, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R9, R0
// Now on a scheduling stack (a pthread-created stack).
// Save room for two of our pointers /*, plus 32 bytes of callee
// save area that lives on the caller stack. */
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD R4, 0(RSP) // save old g on stack
MOVD (g_stack+stack_hi)(R4), R4
SUB R2, R4
MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
BL (R1)
MOVD R0, R9
// Restore g, stack pointer. R0 is errno, so don't touch it
MOVD 0(RSP), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 8(RSP), R6
SUB R6, R5
MOVD R9, R0
MOVD R5, RSP
MOVW R0, ret+16(FP)
RET
nosave:
// Running on a system stack, perhaps even without a g.
// Having no g can happen during thread creation or thread teardown
// (see needm/dropm on Solaris, for example).
// This code is like the above sequence but without saving/restoring g
// and without worrying about the stack moving out from under us
// (because we're on a system stack, not a goroutine stack).
// The above code could be used directly if already on a system stack,
// but then the only path through this code would be a rare case on Solaris.
// Using this code for all "already on system stack" calls exercises it more,
// which should help keep it correct.
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD $0, R4
MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging.
MOVD R2, 8(RSP) // Save original stack pointer.
BL (R1)
// Restore stack pointer.
MOVD 8(RSP), R2
MOVD R2, RSP
MOVD R0, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$40-32
MOVD $fn+0(FP), R0
MOVD R0, 8(RSP)
MOVD frame+8(FP), R0
MOVD R0, 16(RSP)
MOVD framesize+16(FP), R0
MOVD R0, 24(RSP)
MOVD ctxt+24(FP), R0
MOVD R0, 32(RSP)
MOVD $runtime·cgocallback_gofunc(SB), R0
BL (R0)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$24-32
NO_LOCAL_POINTERS
// Load g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMP $0, R3
BEQ nocgo
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP $0, g
BEQ needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
B havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R0
BL (R0)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
MOVD R29, (g_sched+gobuf_bp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
// Beware that the frame size is actually 32+16.
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -8(SP) is unused (where SP refers to
// m->curg's SP while we're setting it up, before we've adjusted it).
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -48(R4)
MOVD (g_sched+gobuf_bp)(g), R5
MOVD R5, -56(R4)
MOVD ctxt+24(FP), R0
MOVD R0, -40(R4)
MOVD $-48(R4), R0 // maintain 16-byte SP alignment
MOVD R0, RSP
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(RSP), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD RSP, R4
ADD $48, R4, R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMP $0, R6
BNE droppedm
MOVD $runtime·dropm(SB), R0
BL (R0)
droppedm:
// Done!
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$24
// g (R28) and REGTMP (R27) might be clobbered by load_g. They
// are callee-save in the gcc calling convention, so save them.
MOVD R27, savedR27-8(SP)
MOVD g, saveG-16(SP)
BL runtime·load_g(SB)
MOVD g_m(g), R0
MOVD m_curg(R0), R0
MOVD (g_stack+stack_hi)(R0), R0
MOVD saveG-16(SP), g
MOVD savedR28-8(SP), R27
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g called from gcc
TEXT setg_gcc<>(SB),NOSPLIT,$8
MOVD R0, g
MOVD R27, savedR27-8(SP)
BL runtime·save_g(SB)
MOVD savedR27-8(SP), R27
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVD ZR, R0
MOVD (R0), R0
UNDEF
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R0
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
MOVD R0, R0 // NOP
BL runtime·goexit1(SB) // does not return
// This is called from .init_array and follows the platform, not Go, ABI.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
SUB $0x10, RSP
MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
MOVD runtime·lastmoduledatap(SB), R1
MOVD R0, moduledata_next(R1)
MOVD R0, runtime·lastmoduledatap(SB)
MOVD 8(RSP), R27
ADD $0x10, RSP
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R3
MOVB R3, ret+0(FP)
RET
// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - R2 is the destination of the write
// - R3 is the value being written at R2
// It clobbers condition codes.
// It does not clobber any general-purpose registers,
// but may clobber others (e.g., floating point registers)
// The act of CALLing gcWriteBarrier will clobber R30 (LR).
TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$216
// Save the registers clobbered by the fast path.
MOVD R0, 200(RSP)
MOVD R1, 208(RSP)
MOVD g_m(g), R0
MOVD m_p(R0), R0
MOVD (p_wbBuf+wbBuf_next)(R0), R1
// Increment wbBuf.next position.
ADD $16, R1
MOVD R1, (p_wbBuf+wbBuf_next)(R0)
MOVD (p_wbBuf+wbBuf_end)(R0), R0
CMP R1, R0
// Record the write.
MOVD R3, -16(R1) // Record value
MOVD (R2), R0 // TODO: This turns bad writes into bad reads.
MOVD R0, -8(R1) // Record *slot
// Is the buffer full? (flags set in CMP above)
BEQ flush
ret:
MOVD 200(RSP), R0
MOVD 208(RSP), R1
// Do the write.
MOVD R3, (R2)
RET
flush:
// Save all general purpose registers since these could be
// clobbered by wbBufFlush and were not saved by the caller.
MOVD R2, 8(RSP) // Also first argument to wbBufFlush
MOVD R3, 16(RSP) // Also second argument to wbBufFlush
// R0 already saved
// R1 already saved
MOVD R4, 24(RSP)
MOVD R5, 32(RSP)
MOVD R6, 40(RSP)
MOVD R7, 48(RSP)
MOVD R8, 56(RSP)
MOVD R9, 64(RSP)
MOVD R10, 72(RSP)
MOVD R11, 80(RSP)
MOVD R12, 88(RSP)
MOVD R13, 96(RSP)
MOVD R14, 104(RSP)
MOVD R15, 112(RSP)
MOVD R16, 120(RSP)
MOVD R17, 128(RSP)
// R18 is unused.
MOVD R19, 136(RSP)
MOVD R20, 144(RSP)
MOVD R21, 152(RSP)
MOVD R22, 160(RSP)
MOVD R23, 168(RSP)
MOVD R24, 176(RSP)
MOVD R25, 184(RSP)
MOVD R26, 192(RSP)
// R27 is temp register.
// R28 is g.
// R29 is frame pointer (unused).
// R30 is LR, which was saved by the prologue.
// R31 is SP.
// This takes arguments R2 and R3.
CALL runtime·wbBufFlush(SB)
MOVD 8(RSP), R2
MOVD 16(RSP), R3
MOVD 24(RSP), R4
MOVD 32(RSP), R5
MOVD 40(RSP), R6
MOVD 48(RSP), R7
MOVD 56(RSP), R8
MOVD 64(RSP), R9
MOVD 72(RSP), R10
MOVD 80(RSP), R11
MOVD 88(RSP), R12
MOVD 96(RSP), R13
MOVD 104(RSP), R14
MOVD 112(RSP), R15
MOVD 120(RSP), R16
MOVD 128(RSP), R17
MOVD 136(RSP), R19
MOVD 144(RSP), R20
MOVD 152(RSP), R21
MOVD 160(RSP), R22
MOVD 168(RSP), R23
MOVD 176(RSP), R24
MOVD 184(RSP), R25
MOVD 192(RSP), R26
JMP ret
// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicIndex(SB)
TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicIndexU(SB)
TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAlen(SB)
TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAlenU(SB)
TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAcap(SB)
TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAcapU(SB)
TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSliceB(SB)
TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSliceBU(SB)
TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3Alen(SB)
TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3AlenU(SB)
TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3Acap(SB)
TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3AcapU(SB)
TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSlice3B(SB)
TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSlice3BU(SB)
TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSlice3C(SB)
TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSlice3CU(SB)
|