1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/cpu"
"runtime/internal/sys"
"unsafe"
)
const (
c0 = uintptr((8-sys.PtrSize)/4*2860486313 + (sys.PtrSize-4)/4*33054211828000289)
c1 = uintptr((8-sys.PtrSize)/4*3267000013 + (sys.PtrSize-4)/4*23344194077549503)
)
// type algorithms - known to compiler
const (
alg_NOEQ = iota
alg_MEM0
alg_MEM8
alg_MEM16
alg_MEM32
alg_MEM64
alg_MEM128
alg_STRING
alg_INTER
alg_NILINTER
alg_FLOAT32
alg_FLOAT64
alg_CPLX64
alg_CPLX128
alg_max
)
func memhash0(p unsafe.Pointer, h uintptr) uintptr {
return h
}
func memhash8(p unsafe.Pointer, h uintptr) uintptr {
return memhash(p, h, 1)
}
func memhash16(p unsafe.Pointer, h uintptr) uintptr {
return memhash(p, h, 2)
}
func memhash128(p unsafe.Pointer, h uintptr) uintptr {
return memhash(p, h, 16)
}
//go:nosplit
func memhash_varlen(p unsafe.Pointer, h uintptr) uintptr {
ptr := getclosureptr()
size := *(*uintptr)(unsafe.Pointer(ptr + unsafe.Sizeof(h)))
return memhash(p, h, size)
}
// runtime variable to check if the processor we're running on
// actually supports the instructions used by the AES-based
// hash implementation.
var useAeshash bool
// in asm_*.s
func memhash(p unsafe.Pointer, h, s uintptr) uintptr
func memhash32(p unsafe.Pointer, h uintptr) uintptr
func memhash64(p unsafe.Pointer, h uintptr) uintptr
func strhash(p unsafe.Pointer, h uintptr) uintptr
func strhashFallback(a unsafe.Pointer, h uintptr) uintptr {
x := (*stringStruct)(a)
return memhashFallback(x.str, h, uintptr(x.len))
}
// NOTE: Because NaN != NaN, a map can contain any
// number of (mostly useless) entries keyed with NaNs.
// To avoid long hash chains, we assign a random number
// as the hash value for a NaN.
func f32hash(p unsafe.Pointer, h uintptr) uintptr {
f := *(*float32)(p)
switch {
case f == 0:
return c1 * (c0 ^ h) // +0, -0
case f != f:
return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN
default:
return memhash(p, h, 4)
}
}
func f64hash(p unsafe.Pointer, h uintptr) uintptr {
f := *(*float64)(p)
switch {
case f == 0:
return c1 * (c0 ^ h) // +0, -0
case f != f:
return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN
default:
return memhash(p, h, 8)
}
}
func c64hash(p unsafe.Pointer, h uintptr) uintptr {
x := (*[2]float32)(p)
return f32hash(unsafe.Pointer(&x[1]), f32hash(unsafe.Pointer(&x[0]), h))
}
func c128hash(p unsafe.Pointer, h uintptr) uintptr {
x := (*[2]float64)(p)
return f64hash(unsafe.Pointer(&x[1]), f64hash(unsafe.Pointer(&x[0]), h))
}
func interhash(p unsafe.Pointer, h uintptr) uintptr {
a := (*iface)(p)
tab := a.tab
if tab == nil {
return h
}
t := tab._type
if t.equal == nil {
// Check hashability here. We could do this check inside
// typehash, but we want to report the topmost type in
// the error text (e.g. in a struct with a field of slice type
// we want to report the struct, not the slice).
panic(errorString("hash of unhashable type " + t.string()))
}
if isDirectIface(t) {
return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
} else {
return c1 * typehash(t, a.data, h^c0)
}
}
func nilinterhash(p unsafe.Pointer, h uintptr) uintptr {
a := (*eface)(p)
t := a._type
if t == nil {
return h
}
if t.equal == nil {
// See comment in interhash above.
panic(errorString("hash of unhashable type " + t.string()))
}
if isDirectIface(t) {
return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
} else {
return c1 * typehash(t, a.data, h^c0)
}
}
// typehash computes the hash of the object of type t at address p.
// h is the seed.
// This function is seldom used. Most maps use for hashing either
// fixed functions (e.g. f32hash) or compiler-generated functions
// (e.g. for a type like struct { x, y string }). This implementation
// is slower but more general and is used for hashing interface types
// (called from interhash or nilinterhash, above) or for hashing in
// maps generated by reflect.MapOf (reflect_typehash, below).
func typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
if t.tflag&tflagRegularMemory != 0 {
return memhash(p, h, t.size)
}
switch t.kind & kindMask {
case kindFloat32:
return f32hash(p, h)
case kindFloat64:
return f64hash(p, h)
case kindComplex64:
return c64hash(p, h)
case kindComplex128:
return c128hash(p, h)
case kindString:
return strhash(p, h)
case kindInterface:
i := (*interfacetype)(unsafe.Pointer(t))
if len(i.mhdr) == 0 {
return nilinterhash(p, h)
}
return interhash(p, h)
case kindArray:
a := (*arraytype)(unsafe.Pointer(t))
for i := uintptr(0); i < a.len; i++ {
h = typehash(a.elem, add(p, i*a.elem.size), h)
}
return h
case kindStruct:
s := (*structtype)(unsafe.Pointer(t))
for _, f := range s.fields {
// TODO: maybe we could hash several contiguous fields all at once.
if f.name.isBlank() {
continue
}
h = typehash(f.typ, add(p, f.offset()), h)
}
return h
default:
// Should never happen, as typehash should only be called
// with comparable types.
panic(errorString("hash of unhashable type " + t.string()))
}
}
//go:linkname reflect_typehash reflect.typehash
func reflect_typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
return typehash(t, p, h)
}
func memequal0(p, q unsafe.Pointer) bool {
return true
}
func memequal8(p, q unsafe.Pointer) bool {
return *(*int8)(p) == *(*int8)(q)
}
func memequal16(p, q unsafe.Pointer) bool {
return *(*int16)(p) == *(*int16)(q)
}
func memequal32(p, q unsafe.Pointer) bool {
return *(*int32)(p) == *(*int32)(q)
}
func memequal64(p, q unsafe.Pointer) bool {
return *(*int64)(p) == *(*int64)(q)
}
func memequal128(p, q unsafe.Pointer) bool {
return *(*[2]int64)(p) == *(*[2]int64)(q)
}
func f32equal(p, q unsafe.Pointer) bool {
return *(*float32)(p) == *(*float32)(q)
}
func f64equal(p, q unsafe.Pointer) bool {
return *(*float64)(p) == *(*float64)(q)
}
func c64equal(p, q unsafe.Pointer) bool {
return *(*complex64)(p) == *(*complex64)(q)
}
func c128equal(p, q unsafe.Pointer) bool {
return *(*complex128)(p) == *(*complex128)(q)
}
func strequal(p, q unsafe.Pointer) bool {
return *(*string)(p) == *(*string)(q)
}
func interequal(p, q unsafe.Pointer) bool {
x := *(*iface)(p)
y := *(*iface)(q)
return x.tab == y.tab && ifaceeq(x.tab, x.data, y.data)
}
func nilinterequal(p, q unsafe.Pointer) bool {
x := *(*eface)(p)
y := *(*eface)(q)
return x._type == y._type && efaceeq(x._type, x.data, y.data)
}
func efaceeq(t *_type, x, y unsafe.Pointer) bool {
if t == nil {
return true
}
eq := t.equal
if eq == nil {
panic(errorString("comparing uncomparable type " + t.string()))
}
if isDirectIface(t) {
// Direct interface types are ptr, chan, map, func, and single-element structs/arrays thereof.
// Maps and funcs are not comparable, so they can't reach here.
// Ptrs, chans, and single-element items can be compared directly using ==.
return x == y
}
return eq(x, y)
}
func ifaceeq(tab *itab, x, y unsafe.Pointer) bool {
if tab == nil {
return true
}
t := tab._type
eq := t.equal
if eq == nil {
panic(errorString("comparing uncomparable type " + t.string()))
}
if isDirectIface(t) {
// See comment in efaceeq.
return x == y
}
return eq(x, y)
}
// Testing adapters for hash quality tests (see hash_test.go)
func stringHash(s string, seed uintptr) uintptr {
return strhash(noescape(unsafe.Pointer(&s)), seed)
}
func bytesHash(b []byte, seed uintptr) uintptr {
s := (*slice)(unsafe.Pointer(&b))
return memhash(s.array, seed, uintptr(s.len))
}
func int32Hash(i uint32, seed uintptr) uintptr {
return memhash32(noescape(unsafe.Pointer(&i)), seed)
}
func int64Hash(i uint64, seed uintptr) uintptr {
return memhash64(noescape(unsafe.Pointer(&i)), seed)
}
func efaceHash(i interface{}, seed uintptr) uintptr {
return nilinterhash(noescape(unsafe.Pointer(&i)), seed)
}
func ifaceHash(i interface {
F()
}, seed uintptr) uintptr {
return interhash(noescape(unsafe.Pointer(&i)), seed)
}
const hashRandomBytes = sys.PtrSize / 4 * 64
// used in asm_{386,amd64,arm64}.s to seed the hash function
var aeskeysched [hashRandomBytes]byte
// used in hash{32,64}.go to seed the hash function
var hashkey [4]uintptr
func alginit() {
// Install AES hash algorithms if the instructions needed are present.
if (GOARCH == "386" || GOARCH == "amd64") &&
GOOS != "nacl" &&
cpu.X86.HasAES && // AESENC
cpu.X86.HasSSSE3 && // PSHUFB
cpu.X86.HasSSE41 { // PINSR{D,Q}
initAlgAES()
return
}
if GOARCH == "arm64" && cpu.ARM64.HasAES {
initAlgAES()
return
}
getRandomData((*[len(hashkey) * sys.PtrSize]byte)(unsafe.Pointer(&hashkey))[:])
hashkey[0] |= 1 // make sure these numbers are odd
hashkey[1] |= 1
hashkey[2] |= 1
hashkey[3] |= 1
}
func initAlgAES() {
useAeshash = true
// Initialize with random data so hash collisions will be hard to engineer.
getRandomData(aeskeysched[:])
}
// Note: These routines perform the read with an native endianness.
func readUnaligned32(p unsafe.Pointer) uint32 {
q := (*[4]byte)(p)
if sys.BigEndian {
return uint32(q[3]) | uint32(q[2])<<8 | uint32(q[1])<<16 | uint32(q[0])<<24
}
return uint32(q[0]) | uint32(q[1])<<8 | uint32(q[2])<<16 | uint32(q[3])<<24
}
func readUnaligned64(p unsafe.Pointer) uint64 {
q := (*[8]byte)(p)
if sys.BigEndian {
return uint64(q[7]) | uint64(q[6])<<8 | uint64(q[5])<<16 | uint64(q[4])<<24 |
uint64(q[3])<<32 | uint64(q[2])<<40 | uint64(q[1])<<48 | uint64(q[0])<<56
}
return uint64(q[0]) | uint64(q[1])<<8 | uint64(q[2])<<16 | uint64(q[3])<<24 | uint64(q[4])<<32 | uint64(q[5])<<40 | uint64(q[6])<<48 | uint64(q[7])<<56
}
|