summaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/writebarrier.go
blob: f5a7ed592814952e77ee8c615ae2b94ae23cb478 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"fmt"
)

// A ZeroRegion records parts of an object which are known to be zero.
// A ZeroRegion only applies to a single memory state.
// Each bit in mask is set if the corresponding pointer-sized word of
// the base object is known to be zero.
// In other words, if mask & (1<<i) != 0, then [base+i*ptrSize, base+(i+1)*ptrSize)
// is known to be zero.
type ZeroRegion struct {
	base *Value
	mask uint64
}

// needwb reports whether we need write barrier for store op v.
// v must be Store/Move/Zero.
// zeroes provides known zero information (keyed by ID of memory-type values).
func needwb(v *Value, zeroes map[ID]ZeroRegion) bool {
	t, ok := v.Aux.(*types.Type)
	if !ok {
		v.Fatalf("store aux is not a type: %s", v.LongString())
	}
	if !t.HasPointers() {
		return false
	}
	if IsStackAddr(v.Args[0]) {
		return false // write on stack doesn't need write barrier
	}
	if v.Op == OpMove && IsReadOnlyGlobalAddr(v.Args[1]) {
		if mem, ok := IsNewObject(v.Args[0]); ok && mem == v.MemoryArg() {
			// Copying data from readonly memory into a fresh object doesn't need a write barrier.
			return false
		}
	}
	if v.Op == OpStore && IsGlobalAddr(v.Args[1]) {
		// Storing pointers to non-heap locations into zeroed memory doesn't need a write barrier.
		ptr := v.Args[0]
		var off int64
		size := v.Aux.(*types.Type).Size()
		for ptr.Op == OpOffPtr {
			off += ptr.AuxInt
			ptr = ptr.Args[0]
		}
		ptrSize := v.Block.Func.Config.PtrSize
		if off%ptrSize != 0 || size%ptrSize != 0 {
			v.Fatalf("unaligned pointer write")
		}
		if off < 0 || off+size > 64*ptrSize {
			// write goes off end of tracked offsets
			return true
		}
		z := zeroes[v.MemoryArg().ID]
		if ptr != z.base {
			return true
		}
		for i := off; i < off+size; i += ptrSize {
			if z.mask>>uint(i/ptrSize)&1 == 0 {
				return true // not known to be zero
			}
		}
		// All written locations are known to be zero - write barrier not needed.
		return false
	}
	return true
}

// writebarrier pass inserts write barriers for store ops (Store, Move, Zero)
// when necessary (the condition above). It rewrites store ops to branches
// and runtime calls, like
//
//	if writeBarrier.enabled {
//		gcWriteBarrier(ptr, val)	// Not a regular Go call
//	} else {
//		*ptr = val
//	}
//
// A sequence of WB stores for many pointer fields of a single type will
// be emitted together, with a single branch.
func writebarrier(f *Func) {
	if !f.fe.UseWriteBarrier() {
		return
	}

	var sb, sp, wbaddr, const0 *Value
	var typedmemmove, typedmemclr, gcWriteBarrier *obj.LSym
	var stores, after []*Value
	var sset *sparseSet
	var storeNumber []int32

	zeroes := f.computeZeroMap()
	for _, b := range f.Blocks { // range loop is safe since the blocks we added contain no stores to expand
		// first, identify all the stores that need to insert a write barrier.
		// mark them with WB ops temporarily. record presence of WB ops.
		nWBops := 0 // count of temporarily created WB ops remaining to be rewritten in the current block
		for _, v := range b.Values {
			switch v.Op {
			case OpStore, OpMove, OpZero:
				if needwb(v, zeroes) {
					switch v.Op {
					case OpStore:
						v.Op = OpStoreWB
					case OpMove:
						v.Op = OpMoveWB
					case OpZero:
						v.Op = OpZeroWB
					}
					nWBops++
				}
			}
		}
		if nWBops == 0 {
			continue
		}

		if wbaddr == nil {
			// lazily initialize global values for write barrier test and calls
			// find SB and SP values in entry block
			initpos := f.Entry.Pos
			sp, sb = f.spSb()
			wbsym := f.fe.Syslook("writeBarrier")
			wbaddr = f.Entry.NewValue1A(initpos, OpAddr, f.Config.Types.UInt32Ptr, wbsym, sb)
			gcWriteBarrier = f.fe.Syslook("gcWriteBarrier")
			typedmemmove = f.fe.Syslook("typedmemmove")
			typedmemclr = f.fe.Syslook("typedmemclr")
			const0 = f.ConstInt32(f.Config.Types.UInt32, 0)

			// allocate auxiliary data structures for computing store order
			sset = f.newSparseSet(f.NumValues())
			defer f.retSparseSet(sset)
			storeNumber = make([]int32, f.NumValues())
		}

		// order values in store order
		b.Values = storeOrder(b.Values, sset, storeNumber)

		firstSplit := true
	again:
		// find the start and end of the last contiguous WB store sequence.
		// a branch will be inserted there. values after it will be moved
		// to a new block.
		var last *Value
		var start, end int
		values := b.Values
	FindSeq:
		for i := len(values) - 1; i >= 0; i-- {
			w := values[i]
			switch w.Op {
			case OpStoreWB, OpMoveWB, OpZeroWB:
				start = i
				if last == nil {
					last = w
					end = i + 1
				}
			case OpVarDef, OpVarLive:
				continue
			default:
				if last == nil {
					continue
				}
				break FindSeq
			}
		}
		stores = append(stores[:0], b.Values[start:end]...) // copy to avoid aliasing
		after = append(after[:0], b.Values[end:]...)
		b.Values = b.Values[:start]

		// find the memory before the WB stores
		mem := stores[0].MemoryArg()
		pos := stores[0].Pos
		bThen := f.NewBlock(BlockPlain)
		bElse := f.NewBlock(BlockPlain)
		bEnd := f.NewBlock(b.Kind)
		bThen.Pos = pos
		bElse.Pos = pos
		bEnd.Pos = b.Pos
		b.Pos = pos

		// set up control flow for end block
		bEnd.CopyControls(b)
		bEnd.Likely = b.Likely
		for _, e := range b.Succs {
			bEnd.Succs = append(bEnd.Succs, e)
			e.b.Preds[e.i].b = bEnd
		}

		// set up control flow for write barrier test
		// load word, test word, avoiding partial register write from load byte.
		cfgtypes := &f.Config.Types
		flag := b.NewValue2(pos, OpLoad, cfgtypes.UInt32, wbaddr, mem)
		flag = b.NewValue2(pos, OpNeq32, cfgtypes.Bool, flag, const0)
		b.Kind = BlockIf
		b.SetControl(flag)
		b.Likely = BranchUnlikely
		b.Succs = b.Succs[:0]
		b.AddEdgeTo(bThen)
		b.AddEdgeTo(bElse)
		// TODO: For OpStoreWB and the buffered write barrier,
		// we could move the write out of the write barrier,
		// which would lead to fewer branches. We could do
		// something similar to OpZeroWB, since the runtime
		// could provide just the barrier half and then we
		// could unconditionally do an OpZero (which could
		// also generate better zeroing code). OpMoveWB is
		// trickier and would require changing how
		// cgoCheckMemmove works.
		bThen.AddEdgeTo(bEnd)
		bElse.AddEdgeTo(bEnd)

		// for each write barrier store, append write barrier version to bThen
		// and simple store version to bElse
		memThen := mem
		memElse := mem

		// If the source of a MoveWB is volatile (will be clobbered by a
		// function call), we need to copy it to a temporary location, as
		// marshaling the args of typedmemmove might clobber the value we're
		// trying to move.
		// Look for volatile source, copy it to temporary before we emit any
		// call.
		// It is unlikely to have more than one of them. Just do a linear
		// search instead of using a map.
		type volatileCopy struct {
			src *Value // address of original volatile value
			tmp *Value // address of temporary we've copied the volatile value into
		}
		var volatiles []volatileCopy
	copyLoop:
		for _, w := range stores {
			if w.Op == OpMoveWB {
				val := w.Args[1]
				if isVolatile(val) {
					for _, c := range volatiles {
						if val == c.src {
							continue copyLoop // already copied
						}
					}

					t := val.Type.Elem()
					tmp := f.fe.Auto(w.Pos, t)
					memThen = bThen.NewValue1A(w.Pos, OpVarDef, types.TypeMem, tmp, memThen)
					tmpaddr := bThen.NewValue2A(w.Pos, OpLocalAddr, t.PtrTo(), tmp, sp, memThen)
					siz := t.Size()
					memThen = bThen.NewValue3I(w.Pos, OpMove, types.TypeMem, siz, tmpaddr, val, memThen)
					memThen.Aux = t
					volatiles = append(volatiles, volatileCopy{val, tmpaddr})
				}
			}
		}

		for _, w := range stores {
			ptr := w.Args[0]
			pos := w.Pos

			var fn *obj.LSym
			var typ *obj.LSym
			var val *Value
			switch w.Op {
			case OpStoreWB:
				val = w.Args[1]
				nWBops--
			case OpMoveWB:
				fn = typedmemmove
				val = w.Args[1]
				typ = reflectdata.TypeLinksym(w.Aux.(*types.Type))
				nWBops--
			case OpZeroWB:
				fn = typedmemclr
				typ = reflectdata.TypeLinksym(w.Aux.(*types.Type))
				nWBops--
			case OpVarDef, OpVarLive:
			}

			// then block: emit write barrier call
			switch w.Op {
			case OpStoreWB, OpMoveWB, OpZeroWB:
				if w.Op == OpStoreWB {
					memThen = bThen.NewValue3A(pos, OpWB, types.TypeMem, gcWriteBarrier, ptr, val, memThen)
				} else {
					srcval := val
					if w.Op == OpMoveWB && isVolatile(srcval) {
						for _, c := range volatiles {
							if srcval == c.src {
								srcval = c.tmp
								break
							}
						}
					}
					memThen = wbcall(pos, bThen, fn, typ, ptr, srcval, memThen, sp, sb)
				}
				// Note that we set up a writebarrier function call.
				f.fe.SetWBPos(pos)
			case OpVarDef, OpVarLive:
				memThen = bThen.NewValue1A(pos, w.Op, types.TypeMem, w.Aux, memThen)
			}

			// else block: normal store
			switch w.Op {
			case OpStoreWB:
				memElse = bElse.NewValue3A(pos, OpStore, types.TypeMem, w.Aux, ptr, val, memElse)
			case OpMoveWB:
				memElse = bElse.NewValue3I(pos, OpMove, types.TypeMem, w.AuxInt, ptr, val, memElse)
				memElse.Aux = w.Aux
			case OpZeroWB:
				memElse = bElse.NewValue2I(pos, OpZero, types.TypeMem, w.AuxInt, ptr, memElse)
				memElse.Aux = w.Aux
			case OpVarDef, OpVarLive:
				memElse = bElse.NewValue1A(pos, w.Op, types.TypeMem, w.Aux, memElse)
			}
		}

		// merge memory
		// Splice memory Phi into the last memory of the original sequence,
		// which may be used in subsequent blocks. Other memories in the
		// sequence must be dead after this block since there can be only
		// one memory live.
		bEnd.Values = append(bEnd.Values, last)
		last.Block = bEnd
		last.reset(OpPhi)
		last.Pos = last.Pos.WithNotStmt()
		last.Type = types.TypeMem
		last.AddArg(memThen)
		last.AddArg(memElse)
		for _, w := range stores {
			if w != last {
				w.resetArgs()
			}
		}
		for _, w := range stores {
			if w != last {
				f.freeValue(w)
			}
		}

		// put values after the store sequence into the end block
		bEnd.Values = append(bEnd.Values, after...)
		for _, w := range after {
			w.Block = bEnd
		}

		// Preemption is unsafe between loading the write
		// barrier-enabled flag and performing the write
		// because that would allow a GC phase transition,
		// which would invalidate the flag. Remember the
		// conditional block so liveness analysis can disable
		// safe-points. This is somewhat subtle because we're
		// splitting b bottom-up.
		if firstSplit {
			// Add b itself.
			b.Func.WBLoads = append(b.Func.WBLoads, b)
			firstSplit = false
		} else {
			// We've already split b, so we just pushed a
			// write barrier test into bEnd.
			b.Func.WBLoads = append(b.Func.WBLoads, bEnd)
		}

		// if we have more stores in this block, do this block again
		if nWBops > 0 {
			goto again
		}
	}
}

// computeZeroMap returns a map from an ID of a memory value to
// a set of locations that are known to be zeroed at that memory value.
func (f *Func) computeZeroMap() map[ID]ZeroRegion {
	ptrSize := f.Config.PtrSize
	// Keep track of which parts of memory are known to be zero.
	// This helps with removing write barriers for various initialization patterns.
	// This analysis is conservative. We only keep track, for each memory state, of
	// which of the first 64 words of a single object are known to be zero.
	zeroes := map[ID]ZeroRegion{}
	// Find new objects.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if mem, ok := IsNewObject(v); ok {
				// While compiling package runtime itself, we might see user
				// calls to newobject, which will have result type
				// unsafe.Pointer instead. We can't easily infer how large the
				// allocated memory is, so just skip it.
				if types.LocalPkg.Path == "runtime" && v.Type.IsUnsafePtr() {
					continue
				}

				nptr := v.Type.Elem().Size() / ptrSize
				if nptr > 64 {
					nptr = 64
				}
				zeroes[mem.ID] = ZeroRegion{base: v, mask: 1<<uint(nptr) - 1}
			}
		}
	}
	// Find stores to those new objects.
	for {
		changed := false
		for _, b := range f.Blocks {
			// Note: iterating forwards helps convergence, as values are
			// typically (but not always!) in store order.
			for _, v := range b.Values {
				if v.Op != OpStore {
					continue
				}
				z, ok := zeroes[v.MemoryArg().ID]
				if !ok {
					continue
				}
				ptr := v.Args[0]
				var off int64
				size := v.Aux.(*types.Type).Size()
				for ptr.Op == OpOffPtr {
					off += ptr.AuxInt
					ptr = ptr.Args[0]
				}
				if ptr != z.base {
					// Different base object - we don't know anything.
					// We could even be writing to the base object we know
					// about, but through an aliased but offset pointer.
					// So we have to throw all the zero information we have away.
					continue
				}
				// Round to cover any partially written pointer slots.
				// Pointer writes should never be unaligned like this, but non-pointer
				// writes to pointer-containing types will do this.
				if d := off % ptrSize; d != 0 {
					off -= d
					size += d
				}
				if d := size % ptrSize; d != 0 {
					size += ptrSize - d
				}
				// Clip to the 64 words that we track.
				min := off
				max := off + size
				if min < 0 {
					min = 0
				}
				if max > 64*ptrSize {
					max = 64 * ptrSize
				}
				// Clear bits for parts that we are writing (and hence
				// will no longer necessarily be zero).
				for i := min; i < max; i += ptrSize {
					bit := i / ptrSize
					z.mask &^= 1 << uint(bit)
				}
				if z.mask == 0 {
					// No more known zeros - don't bother keeping.
					continue
				}
				// Save updated known zero contents for new store.
				if zeroes[v.ID] != z {
					zeroes[v.ID] = z
					changed = true
				}
			}
		}
		if !changed {
			break
		}
	}
	if f.pass.debug > 0 {
		fmt.Printf("func %s\n", f.Name)
		for mem, z := range zeroes {
			fmt.Printf("  memory=v%d ptr=%v zeromask=%b\n", mem, z.base, z.mask)
		}
	}
	return zeroes
}

// wbcall emits write barrier runtime call in b, returns memory.
func wbcall(pos src.XPos, b *Block, fn, typ *obj.LSym, ptr, val, mem, sp, sb *Value) *Value {
	config := b.Func.Config

	var wbargs []*Value
	// TODO (register args) this is a bit of a hack.
	inRegs := b.Func.ABIDefault == b.Func.ABI1 && len(config.intParamRegs) >= 3

	// put arguments on stack
	off := config.ctxt.Arch.FixedFrameSize

	var argTypes []*types.Type
	if typ != nil { // for typedmemmove
		taddr := b.NewValue1A(pos, OpAddr, b.Func.Config.Types.Uintptr, typ, sb)
		argTypes = append(argTypes, b.Func.Config.Types.Uintptr)
		off = round(off, taddr.Type.Alignment())
		if inRegs {
			wbargs = append(wbargs, taddr)
		} else {
			arg := b.NewValue1I(pos, OpOffPtr, taddr.Type.PtrTo(), off, sp)
			mem = b.NewValue3A(pos, OpStore, types.TypeMem, ptr.Type, arg, taddr, mem)
		}
		off += taddr.Type.Size()
	}

	argTypes = append(argTypes, ptr.Type)
	off = round(off, ptr.Type.Alignment())
	if inRegs {
		wbargs = append(wbargs, ptr)
	} else {
		arg := b.NewValue1I(pos, OpOffPtr, ptr.Type.PtrTo(), off, sp)
		mem = b.NewValue3A(pos, OpStore, types.TypeMem, ptr.Type, arg, ptr, mem)
	}
	off += ptr.Type.Size()

	if val != nil {
		argTypes = append(argTypes, val.Type)
		off = round(off, val.Type.Alignment())
		if inRegs {
			wbargs = append(wbargs, val)
		} else {
			arg := b.NewValue1I(pos, OpOffPtr, val.Type.PtrTo(), off, sp)
			mem = b.NewValue3A(pos, OpStore, types.TypeMem, val.Type, arg, val, mem)
		}
		off += val.Type.Size()
	}
	off = round(off, config.PtrSize)
	wbargs = append(wbargs, mem)

	// issue call
	call := b.NewValue0A(pos, OpStaticCall, types.TypeResultMem, StaticAuxCall(fn, b.Func.ABIDefault.ABIAnalyzeTypes(nil, argTypes, nil)))
	call.AddArgs(wbargs...)
	call.AuxInt = off - config.ctxt.Arch.FixedFrameSize
	return b.NewValue1I(pos, OpSelectN, types.TypeMem, 0, call)
}

// round to a multiple of r, r is a power of 2
func round(o int64, r int64) int64 {
	return (o + r - 1) &^ (r - 1)
}

// IsStackAddr reports whether v is known to be an address of a stack slot.
func IsStackAddr(v *Value) bool {
	for v.Op == OpOffPtr || v.Op == OpAddPtr || v.Op == OpPtrIndex || v.Op == OpCopy {
		v = v.Args[0]
	}
	switch v.Op {
	case OpSP, OpLocalAddr, OpSelectNAddr, OpGetCallerSP:
		return true
	}
	return false
}

// IsGlobalAddr reports whether v is known to be an address of a global (or nil).
func IsGlobalAddr(v *Value) bool {
	for v.Op == OpOffPtr || v.Op == OpAddPtr || v.Op == OpPtrIndex || v.Op == OpCopy {
		v = v.Args[0]
	}
	if v.Op == OpAddr && v.Args[0].Op == OpSB {
		return true // address of a global
	}
	if v.Op == OpConstNil {
		return true
	}
	if v.Op == OpLoad && IsReadOnlyGlobalAddr(v.Args[0]) {
		return true // loading from a read-only global - the resulting address can't be a heap address.
	}
	return false
}

// IsReadOnlyGlobalAddr reports whether v is known to be an address of a read-only global.
func IsReadOnlyGlobalAddr(v *Value) bool {
	if v.Op == OpConstNil {
		// Nil pointers are read only. See issue 33438.
		return true
	}
	if v.Op == OpAddr && v.Aux.(*obj.LSym).Type == objabi.SRODATA {
		return true
	}
	return false
}

// IsNewObject reports whether v is a pointer to a freshly allocated & zeroed object,
// if so, also returns the memory state mem at which v is zero.
func IsNewObject(v *Value) (mem *Value, ok bool) {
	f := v.Block.Func
	c := f.Config
	if f.ABIDefault == f.ABI1 && len(c.intParamRegs) >= 1 {
		if v.Op != OpSelectN || v.AuxInt != 0 {
			return nil, false
		}
		// Find the memory
		for _, w := range v.Block.Values {
			if w.Op == OpSelectN && w.AuxInt == 1 && w.Args[0] == v.Args[0] {
				mem = w
				break
			}
		}
		if mem == nil {
			return nil, false
		}
	} else {
		if v.Op != OpLoad {
			return nil, false
		}
		mem = v.MemoryArg()
		if mem.Op != OpSelectN {
			return nil, false
		}
		if mem.Type != types.TypeMem {
			return nil, false
		} // assume it is the right selection if true
	}
	call := mem.Args[0]
	if call.Op != OpStaticCall {
		return nil, false
	}
	if !isSameCall(call.Aux, "runtime.newobject") {
		return nil, false
	}
	if f.ABIDefault == f.ABI1 && len(c.intParamRegs) >= 1 {
		if v.Args[0] == call {
			return mem, true
		}
		return nil, false
	}
	if v.Args[0].Op != OpOffPtr {
		return nil, false
	}
	if v.Args[0].Args[0].Op != OpSP {
		return nil, false
	}
	if v.Args[0].AuxInt != c.ctxt.Arch.FixedFrameSize+c.RegSize { // offset of return value
		return nil, false
	}
	return mem, true
}

// IsSanitizerSafeAddr reports whether v is known to be an address
// that doesn't need instrumentation.
func IsSanitizerSafeAddr(v *Value) bool {
	for v.Op == OpOffPtr || v.Op == OpAddPtr || v.Op == OpPtrIndex || v.Op == OpCopy {
		v = v.Args[0]
	}
	switch v.Op {
	case OpSP, OpLocalAddr, OpSelectNAddr:
		// Stack addresses are always safe.
		return true
	case OpITab, OpStringPtr, OpGetClosurePtr:
		// Itabs, string data, and closure fields are
		// read-only once initialized.
		return true
	case OpAddr:
		vt := v.Aux.(*obj.LSym).Type
		return vt == objabi.SRODATA || vt == objabi.SLIBFUZZER_8BIT_COUNTER || vt == objabi.SCOVERAGE_COUNTER || vt == objabi.SCOVERAGE_AUXVAR
	}
	return false
}

// isVolatile reports whether v is a pointer to argument region on stack which
// will be clobbered by a function call.
func isVolatile(v *Value) bool {
	for v.Op == OpOffPtr || v.Op == OpAddPtr || v.Op == OpPtrIndex || v.Op == OpCopy || v.Op == OpSelectNAddr {
		v = v.Args[0]
	}
	return v.Op == OpSP
}