summaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/sizes.go
blob: dff8d7bb9a2360545534e186d79de6b4045e2952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"fmt"

	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
)

// Code below based on go/types.StdSizes.
// Intentional differences are marked with "gc:".

type gcSizes struct{}

func (s *gcSizes) Alignof(T types2.Type) int64 {
	// For arrays and structs, alignment is defined in terms
	// of alignment of the elements and fields, respectively.
	switch t := T.Underlying().(type) {
	case *types2.Array:
		// spec: "For a variable x of array type: unsafe.Alignof(x)
		// is the same as unsafe.Alignof(x[0]), but at least 1."
		return s.Alignof(t.Elem())
	case *types2.Struct:
		if t.NumFields() == 0 && types2.IsSyncAtomicAlign64(T) {
			// Special case: sync/atomic.align64 is an
			// empty struct we recognize as a signal that
			// the struct it contains must be
			// 64-bit-aligned.
			//
			// This logic is equivalent to the logic in
			// cmd/compile/internal/types/size.go:calcStructOffset
			return 8
		}

		// spec: "For a variable x of struct type: unsafe.Alignof(x)
		// is the largest of the values unsafe.Alignof(x.f) for each
		// field f of x, but at least 1."
		max := int64(1)
		for i, nf := 0, t.NumFields(); i < nf; i++ {
			if a := s.Alignof(t.Field(i).Type()); a > max {
				max = a
			}
		}
		return max
	case *types2.Slice, *types2.Interface:
		// Multiword data structures are effectively structs
		// in which each element has size PtrSize.
		return int64(types.PtrSize)
	case *types2.Basic:
		// Strings are like slices and interfaces.
		if t.Info()&types2.IsString != 0 {
			return int64(types.PtrSize)
		}
	}
	a := s.Sizeof(T) // may be 0
	// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
	if a < 1 {
		return 1
	}
	// complex{64,128} are aligned like [2]float{32,64}.
	if isComplex(T) {
		a /= 2
	}
	if a > int64(types.RegSize) {
		return int64(types.RegSize)
	}
	return a
}

func isComplex(T types2.Type) bool {
	basic, ok := T.Underlying().(*types2.Basic)
	return ok && basic.Info()&types2.IsComplex != 0
}

func (s *gcSizes) Offsetsof(fields []*types2.Var) []int64 {
	offsets := make([]int64, len(fields))
	var offs int64
	for i, f := range fields {
		if offs < 0 {
			// all remaining offsets are too large
			offsets[i] = -1
			continue
		}
		// offs >= 0
		typ := f.Type()
		a := s.Alignof(typ)
		offs = types.RoundUp(offs, a) // possibly < 0 if align overflows
		offsets[i] = offs
		if d := s.Sizeof(typ); d >= 0 && offs >= 0 {
			offs += d // ok to overflow to < 0
		} else {
			offs = -1
		}
	}
	return offsets
}

func (s *gcSizes) Sizeof(T types2.Type) int64 {
	switch t := T.Underlying().(type) {
	case *types2.Basic:
		k := t.Kind()
		if int(k) < len(basicSizes) {
			if s := basicSizes[k]; s > 0 {
				return int64(s)
			}
		}
		switch k {
		case types2.String:
			return int64(types.PtrSize) * 2
		case types2.Int, types2.Uint, types2.Uintptr, types2.UnsafePointer:
			return int64(types.PtrSize)
		}
		panic(fmt.Sprintf("unimplemented basic: %v (kind %v)", T, k))
	case *types2.Array:
		n := t.Len()
		if n <= 0 {
			return 0
		}
		// n > 0
		// gc: Size includes alignment padding.
		esize := s.Sizeof(t.Elem())
		if esize < 0 {
			return -1 // array element too large
		}
		if esize == 0 {
			return 0 // 0-size element
		}
		// esize > 0
		// Final size is esize * n; and size must be <= maxInt64.
		const maxInt64 = 1<<63 - 1
		if esize > maxInt64/n {
			return -1 // esize * n overflows
		}
		return esize * n
	case *types2.Slice:
		return int64(types.PtrSize) * 3
	case *types2.Struct:
		n := t.NumFields()
		if n == 0 {
			return 0
		}
		fields := make([]*types2.Var, n)
		for i := range fields {
			fields[i] = t.Field(i)
		}
		offsets := s.Offsetsof(fields)

		// gc: The last field of a non-zero-sized struct is not allowed to
		// have size 0.
		last := s.Sizeof(fields[n-1].Type())
		if last == 0 && offsets[n-1] > 0 {
			last = 1
		}

		// gc: Size includes alignment padding.
		return types.RoundUp(offsets[n-1]+last, s.Alignof(t)) // may overflow to < 0 which is ok
	case *types2.Interface:
		return int64(types.PtrSize) * 2
	case *types2.Chan, *types2.Map, *types2.Pointer, *types2.Signature:
		return int64(types.PtrSize)
	default:
		panic(fmt.Sprintf("unimplemented type: %T", t))
	}
}

var basicSizes = [...]byte{
	types2.Invalid:    1,
	types2.Bool:       1,
	types2.Int8:       1,
	types2.Int16:      2,
	types2.Int32:      4,
	types2.Int64:      8,
	types2.Uint8:      1,
	types2.Uint16:     2,
	types2.Uint32:     4,
	types2.Uint64:     8,
	types2.Float32:    4,
	types2.Float64:    8,
	types2.Complex64:  8,
	types2.Complex128: 16,
}