blob: 53d36b18c18e536fde8e5a2296a877184b9555c4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/* Test of log10*() function family.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
static void
test_function (void)
{
int i;
int j;
const DOUBLE TWO_MANT_DIG =
/* Assume MANT_DIG <= 5 * 31.
Use the identity
n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5). */
(DOUBLE) (1U << ((MANT_DIG - 1) / 5))
* (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5))
* (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5))
* (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5))
* (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5));
/* Pole. */
{
DOUBLE z = LOG10 (L_(0.0));
ASSERT (z == - HUGEVAL);
}
{
DOUBLE z = LOG10 (MINUS_ZERO);
ASSERT (z == - HUGEVAL);
}
/* Randomized tests. */
{
/* Error bound, in ulps. */
const DOUBLE err_bound =
(sizeof (DOUBLE) > sizeof (double) ?
#if defined __i386__ && defined __FreeBSD__
/* On FreeBSD/x86 6.4, the 'long double' type really has only 53 bits of
precision in the compiler but 64 bits of precision at runtime. See
<https://lists.gnu.org/r/bug-gnulib/2008-07/msg00063.html>.
The compiler has truncated all 'long double' literals in log10l.c to
53 bits of precision. */
L_(18.0)
#else
L_(3.0)
#endif
: L_(3.0));
for (i = 0; i < SIZEOF (RANDOM); i++)
{
DOUBLE x = L_(16.0) * RANDOM[i] + L_(1.0); /* 1.0 <= x <= 17.0 */
DOUBLE y = LOG10 (x);
DOUBLE z = LOG10 (L_(1.0) / x);
DOUBLE err = y + z;
ASSERT (y >= L_(0.0));
ASSERT (z <= L_(0.0));
ASSERT (err > - err_bound / TWO_MANT_DIG
&& err < err_bound / TWO_MANT_DIG);
}
}
{
/* Error bound, in ulps. */
const DOUBLE err_bound =
(sizeof (DOUBLE) > sizeof (double) ?
#if defined __i386__ && defined __FreeBSD__
/* On FreeBSD/x86 6.4, the 'long double' type really has only 53 bits of
precision in the compiler but 64 bits of precision at runtime. See
<https://lists.gnu.org/r/bug-gnulib/2008-07/msg00063.html>.
The compiler has truncated all 'long double' literals in log10l.c to
53 bits of precision. */
L_(38.0)
#else
L_(5.0)
#endif
: L_(5.0));
for (i = 0; i < SIZEOF (RANDOM) / 5; i++)
for (j = 0; j < SIZEOF (RANDOM) / 5; j++)
{
DOUBLE x = L_(17.0) / (L_(16.0) - L_(15.0) * RANDOM[i]) - L_(1.0);
DOUBLE y = L_(17.0) / (L_(16.0) - L_(15.0) * RANDOM[j]) - L_(1.0);
/* 1/16 <= x,y <= 16 */
DOUBLE z = L_(1.0) / (x * y);
/* Approximately x * y * z = 1. */
DOUBLE err = LOG10 (x) + LOG10 (y) + LOG10 (z);
ASSERT (err > - err_bound / TWO_MANT_DIG
&& err < err_bound / TWO_MANT_DIG);
}
}
}
volatile DOUBLE x;
DOUBLE y;
|