summaryrefslogtreecommitdiff
path: root/lib/gl_anytree_list2.h
blob: b23f5f5207323f4828968d5284879c5eab4106b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/* Sequential list data type implemented by a binary tree.
   Copyright (C) 2006-2010 Free Software Foundation, Inc.
   Written by Bruno Haible <bruno@clisp.org>, 2006.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Common code of gl_avltree_list.c, gl_rbtree_list.c,
                  gl_avltreehash_list.c, gl_rbtreehash_list.c.  */

static gl_list_t
gl_tree_nx_create_empty (gl_list_implementation_t implementation,
                         gl_listelement_equals_fn equals_fn,
                         gl_listelement_hashcode_fn hashcode_fn,
                         gl_listelement_dispose_fn dispose_fn,
                         bool allow_duplicates)
{
  struct gl_list_impl *list = (struct gl_list_impl *) malloc (sizeof (struct gl_list_impl));

  if (list == NULL)
    return NULL;

  list->base.vtable = implementation;
  list->base.equals_fn = equals_fn;
  list->base.hashcode_fn = hashcode_fn;
  list->base.dispose_fn = dispose_fn;
  list->base.allow_duplicates = allow_duplicates;
#if WITH_HASHTABLE
  list->table_size = 11;
  list->table =
    (gl_hash_entry_t *) calloc (list->table_size, sizeof (gl_hash_entry_t));
  if (list->table == NULL)
    goto fail;
#endif
  list->root = NULL;

  return list;

#if WITH_HASHTABLE
 fail:
  free (list);
  return NULL;
#endif
}

static size_t
gl_tree_size (gl_list_t list)
{
  return (list->root != NULL ? list->root->branch_size : 0);
}

static const void *
gl_tree_node_value (gl_list_t list, gl_list_node_t node)
{
  return node->value;
}

static int
gl_tree_node_nx_set_value (gl_list_t list, gl_list_node_t node, const void *elt)
{
#if WITH_HASHTABLE
  if (elt != node->value)
    {
      size_t new_hashcode =
        (list->base.hashcode_fn != NULL
         ? list->base.hashcode_fn (elt)
         : (size_t)(uintptr_t) elt);

      if (new_hashcode != node->h.hashcode)
        {
          remove_from_bucket (list, node);
          node->value = elt;
          node->h.hashcode = new_hashcode;
          if (add_to_bucket (list, node) < 0)
            {
              /* Out of memory.  We removed node from a bucket but cannot add
                 it to another bucket.  In order to avoid inconsistencies, we
                 must remove node entirely from the list.  */
              gl_tree_remove_node_from_tree (list, node);
              free (node);
              return -1;
            }
        }
      else
        node->value = elt;
    }
#else
  node->value = elt;
#endif
  return 0;
}

static gl_list_node_t
gl_tree_next_node (gl_list_t list, gl_list_node_t node)
{
  if (node->right != NULL)
    {
      node = node->right;
      while (node->left != NULL)
        node = node->left;
    }
  else
    {
      while (node->parent != NULL && node->parent->right == node)
        node = node->parent;
      node = node->parent;
    }
  return node;
}

static gl_list_node_t
gl_tree_previous_node (gl_list_t list, gl_list_node_t node)
{
  if (node->left != NULL)
    {
      node = node->left;
      while (node->right != NULL)
        node = node->right;
    }
  else
    {
      while (node->parent != NULL && node->parent->left == node)
        node = node->parent;
      node = node->parent;
    }
  return node;
}

/* Return the node at the given position < gl_tree_size (list).  */
static inline gl_list_node_t
node_at (gl_list_node_t root, size_t position)
{
  /* Here we know that root != NULL.  */
  gl_list_node_t node = root;

  for (;;)
    {
      if (node->left != NULL)
        {
          if (position < node->left->branch_size)
            {
              node = node->left;
              continue;
            }
          position -= node->left->branch_size;
        }
      if (position == 0)
        break;
      position--;
      node = node->right;
    }
  return node;
}

static const void *
gl_tree_get_at (gl_list_t list, size_t position)
{
  gl_list_node_t node = list->root;

  if (!(node != NULL && position < node->branch_size))
    /* Invalid argument.  */
    abort ();
  node = node_at (node, position);
  return node->value;
}

static gl_list_node_t
gl_tree_nx_set_at (gl_list_t list, size_t position, const void *elt)
{
  gl_list_node_t node = list->root;

  if (!(node != NULL && position < node->branch_size))
    /* Invalid argument.  */
    abort ();
  node = node_at (node, position);
#if WITH_HASHTABLE
  if (elt != node->value)
    {
      size_t new_hashcode =
        (list->base.hashcode_fn != NULL
         ? list->base.hashcode_fn (elt)
         : (size_t)(uintptr_t) elt);

      if (new_hashcode != node->h.hashcode)
        {
          remove_from_bucket (list, node);
          node->value = elt;
          node->h.hashcode = new_hashcode;
          if (add_to_bucket (list, node) < 0)
            {
              /* Out of memory.  We removed node from a bucket but cannot add
                 it to another bucket.  In order to avoid inconsistencies, we
                 must remove node entirely from the list.  */
              gl_tree_remove_node_from_tree (list, node);
              free (node);
              return NULL;
            }
        }
      else
        node->value = elt;
    }
#else
  node->value = elt;
#endif
  return node;
}

#if !WITH_HASHTABLE

static gl_list_node_t
gl_tree_search_from_to (gl_list_t list, size_t start_index, size_t end_index,
                        const void *elt)
{
  if (!(start_index <= end_index
        && end_index <= (list->root != NULL ? list->root->branch_size : 0)))
    /* Invalid arguments.  */
    abort ();
  {
    gl_listelement_equals_fn equals = list->base.equals_fn;
    /* Iterate across all elements.  */
    gl_list_node_t node = list->root;
    iterstack_t stack;
    iterstack_item_t *stack_ptr = &stack[0];
    size_t index = 0;

    if (start_index == 0)
      {
        /* Consider all elements.  */
        for (;;)
          {
            /* Descend on left branch.  */
            for (;;)
              {
                if (node == NULL)
                  break;
                stack_ptr->node = node;
                stack_ptr->rightp = 0;
                node = node->left;
                stack_ptr++;
              }
            /* Climb up again.  */
            for (;;)
              {
                if (stack_ptr == &stack[0])
                  return NULL;
                stack_ptr--;
                if (!stack_ptr->rightp)
                  break;
              }
            node = stack_ptr->node;
            /* Test against current element.  */
            if (equals != NULL ? equals (elt, node->value) : elt == node->value)
              return node;
            index++;
            if (index >= end_index)
              return NULL;
            /* Descend on right branch.  */
            stack_ptr->rightp = 1;
            node = node->right;
            stack_ptr++;
          }
      }
    else
      {
        /* Consider only elements at indices >= start_index.
           In this case, rightp contains the difference between the start_index
           for the parent node and the one for the child node (0 when the child
           node is the parent's left child, > 0 when the child is the parent's
           right child).  */
        for (;;)
          {
            /* Descend on left branch.  */
            for (;;)
              {
                if (node == NULL)
                  break;
                if (node->branch_size <= start_index)
                  break;
                stack_ptr->node = node;
                stack_ptr->rightp = 0;
                node = node->left;
                stack_ptr++;
              }
            /* Climb up again.  */
            for (;;)
              {
                if (stack_ptr == &stack[0])
                  return NULL;
                stack_ptr--;
                if (!stack_ptr->rightp)
                  break;
                start_index += stack_ptr->rightp;
              }
            node = stack_ptr->node;
            {
              size_t left_branch_size1 =
                (node->left != NULL ? node->left->branch_size : 0) + 1;
              if (start_index < left_branch_size1)
                {
                  /* Test against current element.  */
                  if (equals != NULL ? equals (elt, node->value) : elt == node->value)
                    return node;
                  /* Now that we have considered all indices < left_branch_size1,
                     we can increment start_index.  */
                  start_index = left_branch_size1;
                }
              index++;
              if (index >= end_index)
                return NULL;
              /* Descend on right branch.  */
              start_index -= left_branch_size1;
              stack_ptr->rightp = left_branch_size1;
            }
            node = node->right;
            stack_ptr++;
          }
      }
  }
}

static size_t
gl_tree_indexof_from_to (gl_list_t list, size_t start_index, size_t end_index,
                         const void *elt)
{
  if (!(start_index <= end_index
        && end_index <= (list->root != NULL ? list->root->branch_size : 0)))
    /* Invalid arguments.  */
    abort ();
  {
    gl_listelement_equals_fn equals = list->base.equals_fn;
    /* Iterate across all elements.  */
    gl_list_node_t node = list->root;
    iterstack_t stack;
    iterstack_item_t *stack_ptr = &stack[0];
    size_t index = 0;

    if (start_index == 0)
      {
        /* Consider all elements.  */
        for (;;)
          {
            /* Descend on left branch.  */
            for (;;)
              {
                if (node == NULL)
                  break;
                stack_ptr->node = node;
                stack_ptr->rightp = 0;
                node = node->left;
                stack_ptr++;
              }
            /* Climb up again.  */
            for (;;)
              {
                if (stack_ptr == &stack[0])
                  return (size_t)(-1);
                stack_ptr--;
                if (!stack_ptr->rightp)
                  break;
              }
            node = stack_ptr->node;
            /* Test against current element.  */
            if (equals != NULL ? equals (elt, node->value) : elt == node->value)
              return index;
            index++;
            if (index >= end_index)
              return (size_t)(-1);
            /* Descend on right branch.  */
            stack_ptr->rightp = 1;
            node = node->right;
            stack_ptr++;
          }
      }
    else
      {
        /* Consider only elements at indices >= start_index.
           In this case, rightp contains the difference between the start_index
           for the parent node and the one for the child node (0 when the child
           node is the parent's left child, > 0 when the child is the parent's
           right child).  */
        for (;;)
          {
            /* Descend on left branch.  */
            for (;;)
              {
                if (node == NULL)
                  break;
                if (node->branch_size <= start_index)
                  break;
                stack_ptr->node = node;
                stack_ptr->rightp = 0;
                node = node->left;
                stack_ptr++;
              }
            /* Climb up again.  */
            for (;;)
              {
                if (stack_ptr == &stack[0])
                  return (size_t)(-1);
                stack_ptr--;
                if (!stack_ptr->rightp)
                  break;
                start_index += stack_ptr->rightp;
              }
            node = stack_ptr->node;
            {
              size_t left_branch_size1 =
                (node->left != NULL ? node->left->branch_size : 0) + 1;
              if (start_index < left_branch_size1)
                {
                  /* Test against current element.  */
                  if (equals != NULL ? equals (elt, node->value) : elt == node->value)
                    return index;
                  /* Now that we have considered all indices < left_branch_size1,
                     we can increment start_index.  */
                  start_index = left_branch_size1;
                }
              index++;
              if (index >= end_index)
                return (size_t)(-1);
              /* Descend on right branch.  */
              start_index -= left_branch_size1;
              stack_ptr->rightp = left_branch_size1;
            }
            node = node->right;
            stack_ptr++;
          }
      }
  }
}

#endif

static gl_list_node_t
gl_tree_nx_add_at (gl_list_t list, size_t position, const void *elt)
{
  size_t count = (list->root != NULL ? list->root->branch_size : 0);

  if (!(position <= count))
    /* Invalid argument.  */
    abort ();
  if (position == count)
    return gl_tree_nx_add_last (list, elt);
  else
    return gl_tree_nx_add_before (list, node_at (list->root, position), elt);
}

static bool
gl_tree_remove_node (gl_list_t list, gl_list_node_t node)
{
#if WITH_HASHTABLE
  /* Remove node from the hash table.
     Note that this is only possible _before_ the node is removed from the
     tree structure, because remove_from_bucket() uses node_position().  */
  remove_from_bucket (list, node);
#endif

  gl_tree_remove_node_from_tree (list, node);

  if (list->base.dispose_fn != NULL)
    list->base.dispose_fn (node->value);
  free (node);
  return true;
}

static bool
gl_tree_remove_at (gl_list_t list, size_t position)
{
  gl_list_node_t node = list->root;

  if (!(node != NULL && position < node->branch_size))
    /* Invalid argument.  */
    abort ();
  node = node_at (node, position);
  return gl_tree_remove_node (list, node);
}

static bool
gl_tree_remove (gl_list_t list, const void *elt)
{
  if (list->root != NULL)
    {
      gl_list_node_t node =
        gl_tree_search_from_to (list, 0, list->root->branch_size, elt);

      if (node != NULL)
        return gl_tree_remove_node (list, node);
    }
  return false;
}

#if !WITH_HASHTABLE

static void
gl_tree_list_free (gl_list_t list)
{
  /* Iterate across all elements in post-order.  */
  gl_list_node_t node = list->root;
  iterstack_t stack;
  iterstack_item_t *stack_ptr = &stack[0];

  for (;;)
    {
      /* Descend on left branch.  */
      for (;;)
        {
          if (node == NULL)
            break;
          stack_ptr->node = node;
          stack_ptr->rightp = false;
          node = node->left;
          stack_ptr++;
        }
      /* Climb up again.  */
      for (;;)
        {
          if (stack_ptr == &stack[0])
            goto done_iterate;
          stack_ptr--;
          node = stack_ptr->node;
          if (!stack_ptr->rightp)
            break;
          /* Free the current node.  */
          if (list->base.dispose_fn != NULL)
            list->base.dispose_fn (node->value);
          free (node);
        }
      /* Descend on right branch.  */
      stack_ptr->rightp = true;
      node = node->right;
      stack_ptr++;
    }
 done_iterate:
  free (list);
}

#endif

/* --------------------- gl_list_iterator_t Data Type --------------------- */

static gl_list_iterator_t
gl_tree_iterator (gl_list_t list)
{
  gl_list_iterator_t result;
  gl_list_node_t node;

  result.vtable = list->base.vtable;
  result.list = list;
  /* Start node is the leftmost node.  */
  node = list->root;
  if (node != NULL)
    while (node->left != NULL)
      node = node->left;
  result.p = node;
  /* End point is past the rightmost node.  */
  result.q = NULL;
#ifdef lint
  result.i = 0;
  result.j = 0;
  result.count = 0;
#endif

  return result;
}

static gl_list_iterator_t
gl_tree_iterator_from_to (gl_list_t list, size_t start_index, size_t end_index)
{
  size_t count = (list->root != NULL ? list->root->branch_size : 0);
  gl_list_iterator_t result;

  if (!(start_index <= end_index && end_index <= count))
    /* Invalid arguments.  */
    abort ();
  result.vtable = list->base.vtable;
  result.list = list;
  /* Start node is the node at position start_index.  */
  result.p = (start_index < count ? node_at (list->root, start_index) : NULL);
  /* End point is the node at position end_index.  */
  result.q = (end_index < count ? node_at (list->root, end_index) : NULL);
#ifdef lint
  result.i = 0;
  result.j = 0;
  result.count = 0;
#endif

  return result;
}

static bool
gl_tree_iterator_next (gl_list_iterator_t *iterator,
                       const void **eltp, gl_list_node_t *nodep)
{
  if (iterator->p != iterator->q)
    {
      gl_list_node_t node = (gl_list_node_t) iterator->p;
      *eltp = node->value;
      if (nodep != NULL)
        *nodep = node;
      /* Advance to the next node.  */
      if (node->right != NULL)
        {
          node = node->right;
          while (node->left != NULL)
            node = node->left;
        }
      else
        {
          while (node->parent != NULL && node->parent->right == node)
            node = node->parent;
          node = node->parent;
        }
      iterator->p = node;
      return true;
    }
  else
    return false;
}

static void
gl_tree_iterator_free (gl_list_iterator_t *iterator)
{
}

/* ---------------------- Sorted gl_list_t Data Type ---------------------- */

static gl_list_node_t
gl_tree_sortedlist_search (gl_list_t list, gl_listelement_compar_fn compar,
                           const void *elt)
{
  gl_list_node_t node;

  for (node = list->root; node != NULL; )
    {
      int cmp = compar (node->value, elt);

      if (cmp < 0)
        node = node->right;
      else if (cmp > 0)
        node = node->left;
      else /* cmp == 0 */
        {
          /* We have an element equal to ELT.  But we need the leftmost such
             element.  */
          gl_list_node_t found = node;
          node = node->left;
          for (; node != NULL; )
            {
              int cmp2 = compar (node->value, elt);

              if (cmp2 < 0)
                node = node->right;
              else if (cmp2 > 0)
                /* The list was not sorted.  */
                abort ();
              else /* cmp2 == 0 */
                {
                  found = node;
                  node = node->left;
                }
            }
          return found;
        }
    }
  return NULL;
}

static gl_list_node_t
gl_tree_sortedlist_search_from_to (gl_list_t list,
                                   gl_listelement_compar_fn compar,
                                   size_t low, size_t high,
                                   const void *elt)
{
  gl_list_node_t node;

  if (!(low <= high
        && high <= (list->root != NULL ? list->root->branch_size : 0)))
    /* Invalid arguments.  */
    abort ();

  for (node = list->root; node != NULL; )
    {
      size_t left_branch_size =
        (node->left != NULL ? node->left->branch_size : 0);

      if (low > left_branch_size)
        {
          low -= left_branch_size + 1;
          high -= left_branch_size + 1;
          node = node->right;
        }
      else if (high <= left_branch_size)
        node = node->left;
      else
        {
          /* Here low <= left_branch_size < high.  */
          int cmp = compar (node->value, elt);

          if (cmp < 0)
            {
              low = 0;
              high -= left_branch_size + 1;
              node = node->right;
            }
          else if (cmp > 0)
            node = node->left;
          else /* cmp == 0 */
            {
              /* We have an element equal to ELT.  But we need the leftmost
                 such element.  */
              gl_list_node_t found = node;
              node = node->left;
              for (; node != NULL; )
                {
                  size_t left_branch_size2 =
                    (node->left != NULL ? node->left->branch_size : 0);

                  if (low > left_branch_size2)
                    {
                      low -= left_branch_size2 + 1;
                      node = node->right;
                    }
                  else
                    {
                      /* Here low <= left_branch_size2.  */
                      int cmp2 = compar (node->value, elt);

                      if (cmp2 < 0)
                        {
                          low = 0;
                          node = node->right;
                        }
                      else if (cmp2 > 0)
                        /* The list was not sorted.  */
                        abort ();
                      else /* cmp2 == 0 */
                        {
                          found = node;
                          node = node->left;
                        }
                    }
                }
              return found;
            }
        }
    }
  return NULL;
}

static size_t
gl_tree_sortedlist_indexof (gl_list_t list, gl_listelement_compar_fn compar,
                            const void *elt)
{
  gl_list_node_t node;
  size_t position;

  for (node = list->root, position = 0; node != NULL; )
    {
      int cmp = compar (node->value, elt);

      if (cmp < 0)
        {
          if (node->left != NULL)
            position += node->left->branch_size;
          position++;
          node = node->right;
        }
      else if (cmp > 0)
        node = node->left;
      else /* cmp == 0 */
        {
          /* We have an element equal to ELT.  But we need the leftmost such
             element.  */
          size_t found_position =
            position + (node->left != NULL ? node->left->branch_size : 0);
          node = node->left;
          for (; node != NULL; )
            {
              int cmp2 = compar (node->value, elt);

              if (cmp2 < 0)
                {
                  if (node->left != NULL)
                    position += node->left->branch_size;
                  position++;
                  node = node->right;
                }
              else if (cmp2 > 0)
                /* The list was not sorted.  */
                abort ();
              else /* cmp2 == 0 */
                {
                  found_position =
                    position
                    + (node->left != NULL ? node->left->branch_size : 0);
                  node = node->left;
                }
            }
          return found_position;
        }
    }
  return (size_t)(-1);
}

static size_t
gl_tree_sortedlist_indexof_from_to (gl_list_t list,
                                    gl_listelement_compar_fn compar,
                                    size_t low, size_t high,
                                    const void *elt)
{
  gl_list_node_t node;
  size_t position;

  if (!(low <= high
        && high <= (list->root != NULL ? list->root->branch_size : 0)))
    /* Invalid arguments.  */
    abort ();

  for (node = list->root, position = 0; node != NULL; )
    {
      size_t left_branch_size =
        (node->left != NULL ? node->left->branch_size : 0);

      if (low > left_branch_size)
        {
          low -= left_branch_size + 1;
          high -= left_branch_size + 1;
          position += left_branch_size + 1;
          node = node->right;
        }
      else if (high <= left_branch_size)
        node = node->left;
      else
        {
          /* Here low <= left_branch_size < high.  */
          int cmp = compar (node->value, elt);

          if (cmp < 0)
            {
              low = 0;
              high -= left_branch_size + 1;
              position += left_branch_size + 1;
              node = node->right;
            }
          else if (cmp > 0)
            node = node->left;
          else /* cmp == 0 */
            {
              /* We have an element equal to ELT.  But we need the leftmost
                 such element.  */
              size_t found_position =
                position + (node->left != NULL ? node->left->branch_size : 0);
              node = node->left;
              for (; node != NULL; )
                {
                  size_t left_branch_size2 =
                    (node->left != NULL ? node->left->branch_size : 0);

                  if (low > left_branch_size2)
                    {
                      low -= left_branch_size2 + 1;
                      node = node->right;
                    }
                  else
                    {
                      /* Here low <= left_branch_size2.  */
                      int cmp2 = compar (node->value, elt);

                      if (cmp2 < 0)
                        {
                          position += left_branch_size2 + 1;
                          node = node->right;
                        }
                      else if (cmp2 > 0)
                        /* The list was not sorted.  */
                        abort ();
                      else /* cmp2 == 0 */
                        {
                          found_position = position + left_branch_size2;
                          node = node->left;
                        }
                    }
                }
              return found_position;
            }
        }
    }
  return (size_t)(-1);
}

static gl_list_node_t
gl_tree_sortedlist_nx_add (gl_list_t list, gl_listelement_compar_fn compar,
                           const void *elt)
{
  gl_list_node_t node = list->root;

  if (node == NULL)
    return gl_tree_nx_add_first (list, elt);

  for (;;)
    {
      int cmp = compar (node->value, elt);

      if (cmp < 0)
        {
          if (node->right == NULL)
            return gl_tree_nx_add_after (list, node, elt);
          node = node->right;
        }
      else if (cmp > 0)
        {
          if (node->left == NULL)
            return gl_tree_nx_add_before (list, node, elt);
          node = node->left;
        }
      else /* cmp == 0 */
        return gl_tree_nx_add_before (list, node, elt);
    }
}

static bool
gl_tree_sortedlist_remove (gl_list_t list, gl_listelement_compar_fn compar,
                           const void *elt)
{
  gl_list_node_t node = gl_tree_sortedlist_search (list, compar, elt);
  if (node != NULL)
    return gl_tree_remove_node (list, node);
  else
    return false;
}