summaryrefslogtreecommitdiff
path: root/lib/exp2.c
blob: 5967015eb11f708c9e2b0313a998bd8bf84271ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/* Exponential base 2 function.
   Copyright (C) 2012-2015 Free Software Foundation, Inc.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include <math.h>

#include <float.h>

/* Best possible approximation of log(2) as a 'double'.  */
#define LOG2 0.693147180559945309417232121458176568075

/* Best possible approximation of 1/log(2) as a 'double'.  */
#define LOG2_INVERSE 1.44269504088896340735992468100189213743

/* Best possible approximation of log(2)/256 as a 'double'.  */
#define LOG2_BY_256 0.00270760617406228636491106297444600221904

/* Best possible approximation of 256/log(2) as a 'double'.  */
#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181

double
exp2 (double x)
{
  /* exp2(x) = exp(x*log(2)).
     If we would compute it like this, there would be rounding errors for
     integer or near-integer values of x.  To avoid these, we inline the
     algorithm for exp(), and the multiplication with log(2) cancels a
     division by log(2).  */

  if (isnand (x))
    return x;

  if (x > (double) DBL_MAX_EXP)
    /* x > DBL_MAX_EXP
       hence exp2(x) > 2^DBL_MAX_EXP, overflows to Infinity.  */
    return HUGE_VAL;

  if (x < (double) (DBL_MIN_EXP - 1 - DBL_MANT_DIG))
    /* x < (DBL_MIN_EXP - 1 - DBL_MANT_DIG)
       hence exp2(x) < 2^(DBL_MIN_EXP-1-DBL_MANT_DIG),
       underflows to zero.  */
    return 0.0;

  /* Decompose x into
       x = n + m/256 + y/log(2)
     where
       n is an integer,
       m is an integer, -128 <= m <= 128,
       y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
     Then
       exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
     The first factor is an ldexpl() call.
     The second factor is a table lookup.
     The third factor is computed
     - either as sinh(y) + cosh(y)
       where sinh(y) is computed through the power series:
         sinh(y) = y + y^3/3! + y^5/5! + ...
       and cosh(y) is computed as hypot(1, sinh(y)),
     - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
       where z = y/2
       and tanh(z) is computed through its power series:
         tanh(z) = z
                   - 1/3 * z^3
                   + 2/15 * z^5
                   - 17/315 * z^7
                   + 62/2835 * z^9
                   - 1382/155925 * z^11
                   + 21844/6081075 * z^13
                   - 929569/638512875 * z^15
                   + ...
       Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
       z^7 term is < 0.0007^6 < 2^-60 <= 2^-DBL_MANT_DIG, therefore we can
       truncate the series after the z^5 term.  */

  {
    double nm = round (x * 256.0); /* = 256 * n + m */
    double z = (x * 256.0 - nm) * (LOG2_BY_256 * 0.5);

/* Coefficients of the power series for tanh(z).  */
#define TANH_COEFF_1   1.0
#define TANH_COEFF_3  -0.333333333333333333333333333333333333334
#define TANH_COEFF_5   0.133333333333333333333333333333333333334
#define TANH_COEFF_7  -0.053968253968253968253968253968253968254
#define TANH_COEFF_9   0.0218694885361552028218694885361552028218
#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886
#define TANH_COEFF_13  0.00359212803657248101692546136990581435026
#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904

    double z2 = z * z;
    double tanh_z =
      ((TANH_COEFF_5
        * z2 + TANH_COEFF_3)
       * z2 + TANH_COEFF_1)
      * z;

    double exp_y = (1.0 + tanh_z) / (1.0 - tanh_z);

    int n = (int) round (nm * (1.0 / 256.0));
    int m = (int) nm - 256 * n;

    /* exp_table[i] = exp((i - 128) * log(2)/256).
       Computed in GNU clisp through
         (setf (long-float-digits) 128)
         (setq a 0L0)
         (setf (long-float-digits) 256)
         (dotimes (i 257)
           (format t "        ~D,~%"
                   (float (exp (* (/ (- i 128) 256) (log 2L0))) a)))  */
    static const double exp_table[257] =
      {
        0.707106781186547524400844362104849039284,
        0.709023942160207598920563322257676190836,
        0.710946301084582779904674297352120049962,
        0.71287387205274715340350157671438300618,
        0.714806669195985005617532889137569953044,
        0.71674470668389442125974978427737336719,
        0.71868799872449116280161304224785251353,
        0.720636559564312831364255957304947586072,
        0.72259040348852331001850312073583545284,
        0.724549544821017490259402705487111270714,
        0.726513997924526282423036245842287293786,
        0.728483777200721910815451524818606761737,
        0.730458897090323494325651445155310766577,
        0.732439372073202913296664682112279175616,
        0.734425216668490963430822513132890712652,
        0.736416445434683797507470506133110286942,
        0.738413072969749655693453740187024961962,
        0.740415113911235885228829945155951253966,
        0.742422582936376250272386395864403155277,
        0.744435494762198532693663597314273242753,
        0.746453864145632424600321765743336770838,
        0.748477705883617713391824861712720862423,
        0.750507034813212760132561481529764324813,
        0.752541865811703272039672277899716132493,
        0.75458221379671136988300977551659676571,
        0.756628093726304951096818488157633113612,
        0.75867952059910734940489114658718937343,
        0.760736509454407291763130627098242426467,
        0.762799075372269153425626844758470477304,
        0.76486723347364351194254345936342587308,
        0.766940998920478000900300751753859329456,
        0.769020386915828464216738479594307884331,
        0.771105412703970411806145931045367420652,
        0.773196091570510777431255778146135325272,
        0.77529243884249997956151370535341912283,
        0.777394469888544286059157168801667390437,
        0.779502200118918483516864044737428940745,
        0.781615644985678852072965367573877941354,
        0.783734819982776446532455855478222575498,
        0.78585974064617068462428149076570281356,
        0.787990422553943243227635080090952504452,
        0.790126881326412263402248482007960521995,
        0.79226913262624686505993407346567890838,
        0.794417192158581972116898048814333564685,
        0.796571075671133448968624321559534367934,
        0.798730798954313549131410147104316569576,
        0.800896377841346676896923120795476813684,
        0.803067828208385462848443946517563571584,
        0.805245165974627154089760333678700291728,
        0.807428407102430320039984581575729114268,
        0.809617567597431874649880866726368203972,
        0.81181266350866441589760797777344082227,
        0.814013710928673883424109261007007338614,
        0.816220725993637535170713864466769240053,
        0.818433724883482243883852017078007231025,
        0.82065272382200311435413206848451310067,
        0.822877739076982422259378362362911222833,
        0.825108786960308875483586738272485101678,
        0.827345883828097198786118571797909120834,
        0.829589046080808042697824787210781231927,
        0.831838290163368217523168228488195222638,
        0.834093632565291253329796170708536192903,
        0.836355089820798286809404612069230711295,
        0.83862267850893927589613232455870870518,
        0.84089641525371454303112547623321489504,
        0.84317631672419664796432298771385230143,
        0.84546239963465259098692866759361830709,
        0.84775468074466634749045860363936420312,
        0.850053176859261734750681286748751167545,
        0.852357904829025611837203530384718316326,
        0.854668881550231413551897437515331498025,
        0.856986123964963019301812477839166009452,
        0.859309649061238957814672188228156252257,
        0.861639473873136948607517116872358729753,
        0.863975615480918781121524414614366207052,
        0.866318091011155532438509953514163469652,
        0.868666917636853124497101040936083380124,
        0.871022112577578221729056715595464682243,
        0.873383693099584470038708278290226842228,
        0.875751676515939078050995142767930296012,
        0.878126080186649741556080309687656610647,
        0.880506921518791912081045787323636256171,
        0.882894217966636410521691124969260937028,
        0.885287987031777386769987907431242017412,
        0.88768824626326062627527960009966160388,
        0.89009501325771220447985955243623523504,
        0.892508305659467490072110281986409916153,
        0.8949281411607004980029443898876582985,
        0.897354537501553593213851621063890907178,
        0.899787512470267546027427696662514569756,
        0.902227083903311940153838631655504844215,
        0.904673269685515934269259325789226871994,
        0.907126087750199378124917300181170171233,
        0.909585556079304284147971563828178746372,
        0.91205169270352665549806275316460097744,
        0.914524515702448671545983912696158354092,
        0.91700404320467123174354159479414442804,
        0.919490293387946858856304371174663918816,
        0.921983284479312962533570386670938449637,
        0.92448303475522546419252726694739603678,
        0.92698956254169278419622653516884831976,
        0.929502886214410192307650717745572682403,
        0.932023024198894522404814545597236289343,
        0.934549994970619252444512104439799143264,
        0.93708381705514995066499947497722326722,
        0.93962450902828008902058735120448448827,
        0.942172089516167224843810351983745154882,
        0.944726577195469551733539267378681531548,
        0.947287990793482820670109326713462307376,
        0.949856349088277632361251759806996099924,
        0.952431670908837101825337466217860725517,
        0.955013975135194896221170529572799135168,
        0.957603280698573646936305635147915443924,
        0.960199606581523736948607188887070611744,
        0.962802971818062464478519115091191368377,
        0.965413395493813583952272948264534783197,
        0.968030896746147225299027952283345762418,
        0.970655494764320192607710617437589705184,
        0.973287208789616643172102023321302921373,
        0.97592605811548914795551023340047499377,
        0.978572062087700134509161125813435745597,
        0.981225240104463713381244885057070325016,
        0.983885611616587889056366801238014683926,
        0.98655319612761715646797006813220671315,
        0.989228013193975484129124959065583667775,
        0.99191008242510968492991311132615581644,
        0.994599423483633175652477686222166314457,
        0.997296056085470126257659913847922601123,
        1.0,
        1.00271127505020248543074558845036204047,
        1.0054299011128028213513839559347998147,
        1.008155898118417515783094890817201039276,
        1.01088928605170046002040979056186052439,
        1.013630084951489438840258929063939929597,
        1.01637831491095303794049311378629406276,
        1.0191339960777379496848780958207928794,
        1.02189714865411667823448013478329943978,
        1.02466779289713564514828907627081492763,
        1.0274459491187636965388611939222137815,
        1.030231637686041012871707902453904567093,
        1.033024879021228422500108283970460918086,
        1.035825693601957120029983209018081371844,
        1.03863410196137879061243669795463973258,
        1.04145012468831614126454607901189312648,
        1.044273782427413840321966478739929008784,
        1.04710509587928986612990725022711224056,
        1.04994408580068726608203812651590790906,
        1.05279077300462632711989120298074630319,
        1.05564517836055715880834132515293865216,
        1.058507322794512690105772109683716645074,
        1.061377227289262080950567678003883726294,
        1.06425491288446454978861125700158022068,
        1.06714040067682361816952112099280916261,
        1.0700337118202417735424119367576235685,
        1.072934867525975551385035450873827585343,
        1.075843889062791037803228648476057074063,
        1.07876079775711979374068003743848295849,
        1.081685614993215201942115594422531125643,
        1.08461836221330923781610517190661434161,
        1.087559060917769665346797830944039707867,
        1.09050773266525765920701065576070797899,
        1.09346439907288585422822014625044716208,
        1.096429081816376823386138295859248481766,
        1.09940180263022198546369696823882990404,
        1.10238258330784094355641420942564685751,
        1.10537144570174125558827469625695031104,
        1.108368411723678638009423649426619850137,
        1.111373503344817603850149254228916637444,
        1.1143867425958925363088129569196030678,
        1.11740815156736919905457996308578026665,
        1.12043775240960668442900387986631301277,
        1.123475567333019800733729739775321431954,
        1.12652161860824189979479864378703477763,
        1.129575928566288145997264988840249825907,
        1.13263851959871922798707372367762308438,
        1.13570941415780551424039033067611701343,
        1.13878863475669165370383028384151125472,
        1.14187620396956162271229760828788093894,
        1.14497214443180421939441388822291589579,
        1.14807647884017900677879966269734268003,
        1.15118922995298270581775963520198253612,
        1.154310420590216039548221528724806960684,
        1.157440073633751029613085766293796821106,
        1.16057821202749874636945947257609098625,
        1.16372485877757751381357359909218531234,
        1.166880036952481570555516298414089287834,
        1.170043769683250188080259035792738573,
        1.17321608016363724753480435451324538889,
        1.176396991650281276284645728483848641054,
        1.17958652746287594548610056676944051898,
        1.182784710984341029924457204693850757966,
        1.18599156566099383137126564953421556374,
        1.18920711500272106671749997056047591529,
        1.19243138258315122214272755814543101148,
        1.195664392039827374583837049865451975705,
        1.19890616707438048177030255797630020695,
        1.202156731452703142096396957497765876003,
        1.205416109005123825604211432558411335666,
        1.208684323626581577354792255889216998484,
        1.21196139927680119446816891773249304545,
        1.215247359980468878116520251338798457624,
        1.218542229827408361758207148117394510724,
        1.221846032972757516903891841911570785836,
        1.225158793637145437709464594384845353707,
        1.22848053610687000569400895779278184036,
        1.2318112847340759358845566532127948166,
        1.235151063936933305692912507415415760294,
        1.238499898199816567833368865859612431545,
        1.24185781207348404859367746872659560551,
        1.24522483017525793277520496748615267417,
        1.24860097718920473662176609730249554519,
        1.25198627786631627006020603178920359732,
        1.255380757024691089579390657442301194595,
        1.25878443954971644307786044181516261876,
        1.26219735039425070801401025851841645967,
        1.265619514578806324196273999873453036296,
        1.26905095719173322255441908103233800472,
        1.27249170338940275123669204418460217677,
        1.27594177839639210038120243475928938891,
        1.27940120750566922691358797002785254596,
        1.28287001607877828072666978102151405111,
        1.286348229546025533601482208069738348355,
        1.28983587340666581223274729549155218968,
        1.293332973229089436725559789048704304684,
        1.296839554651009665933754117792451159835,
        1.30035564337965065101414056707091779129,
        1.30388126519193589857452364895199736833,
        1.30741644593467724479715157747196172848,
        1.310961211524764341922991786330755849366,
        1.314515587949354658485983613383997794965,
        1.318079601266063994690185647066116617664,
        1.32165327760315751432651181233060922616,
        1.32523664315974129462953709549872167411,
        1.32882972420595439547865089632866510792,
        1.33243254708316144935164337949073577407,
        1.33604513820414577344262790437186975929,
        1.33966752405330300536003066972435257602,
        1.34329973118683526382421714618163087542,
        1.346941786232945835788173713229537282075,
        1.35059371589203439140852219606013396004,
        1.35425554693689272829801474014070280434,
        1.357927306212901046494536695671766697446,
        1.36160902063822475558553593883194147464,
        1.36530071720401181543069836033754285543,
        1.36900242297459061192960113298219283217,
        1.37271416508766836928499785714471721579,
        1.37643597075453010021632280551868696026,
        1.380167867260238095581945274358283464697,
        1.383909881963831954872659527265192818,
        1.387662042298529159042861017950775988896,
        1.39142437577192618714983552956624344668,
        1.395196909966200178275574599249220994716,
        1.398979672538311140209528136715194969206,
        1.40277269122020470637471352433337881711,
        1.40657599381901544248361973255451684411,
        1.410389608217270704414375128268675481145,
        1.41421356237309504880168872420969807857
      };

    return ldexp (exp_table[128 + m] * exp_y, n);
  }
}