1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/* Copyright (C) 1992, 1993, 1995 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper, <drepper@gnu.ai.mit.edu>, August 1995.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
/* In the Linux/ELF world, C symbols are asm symbols. */
#define NO_UNDERSCORES
/* There is some commonality. */
#include <sysdeps/unix/i386/sysdep.h>
/* For Linux we can use the system call table in the header file
/usr/include/asm/unistd.h
of the kernel. But these symbols do not follow the SYS_* syntax
so we have to redefine the `SYS_ify' macro here. */
#undef SYS_ify
#ifdef __STDC__
# define SYS_ify(syscall_name) __NR_##syscall_name
#else
# define SYS_ify(syscall_name) __NR_/**/syscall_name
#endif
#ifdef ASSEMBLER
/* Linux uses a negative return value to indicate syscall errors, unlike
most Unices, which use the condition codes' carry flag. */
#undef PSEUDO
#define PSEUDO(name, syscall_name, args) \
.text; \
.globl syscall_error; \
ENTRY (name) \
movl $SYS_ify (syscall_name), %eax; \
DO_CALL (args); \
testl %eax, %eax; \
jl JUMPTARGET (syscall_error)
/* We define our own ENTRY macro because the alignment should be 16 for ELF. */
#undef ENTRY
#define ENTRY(name) \
ASM_GLOBAL_DIRECTIVE C_SYMBOL_NAME (name); \
ASM_TYPE_DIRECTIVE (C_SYMBOL_NAME (name), @function) \
.align 16; \
C_LABEL (name)
/* Linux takes system call arguments in registers:
syscall number %eax call-clobbered
arg 1 %ebx call-saved
arg 2 %ecx call-clobbered
arg 3 %edx call-clobbered
arg 4 %esi call-saved
arg 5 %edi call-saved
The stack layout upon entering the function is:
20(%esp) Arg# 5
16(%esp) Arg# 4
12(%esp) Arg# 3
8(%esp) Arg# 2
4(%esp) Arg# 1
(%esp) Return address
(Of course a function with say 3 arguments does not have entries for
arguments 4 and 5.)
The following code tries hard to be optimal. A general assuption
(which is true accoriding to the data books I have) is that
2 * xchg is more expensive than pushl + movl + popl
Beside this a neat trick is used. The calling conventions for Linux
tell that among the registers used for parameters %ecx and %edx need
not be saved. Beside this we may clobber this registers even when
they are not used for parameter passing.
As a result one can see below that we save the content of the %ebx
register in the %edx register when we have less than 3 arguments
(2 * movl is less expensive than pushl + popl).
Second unlike for the other registers we don't save the content of
%ecx and %edx when we have than 1 and 2 registers resp. */
#undef DO_CALL
#define DO_CALL(args) \
DOARGS_##args \
int $0x80; \
UNDOARGS_##args
#define DOARGS_0 /* No arguments to frob. */
#define UNDOARGS_0 /* No arguments to unfrob. */
#define _DOARGS_0(n) /* No arguments to frob. */
#define _UNDOARGS_0 /* No arguments to unfrob. */
#define DOARGS_1 movl %ebx, %edx; movl 4(%esp), %ebx; DOARGS_0
#define UNDOARGS_1 UNDOARGS_0; movl %edx, %ebx
#define _DOARGS_1(n) pushl %ebx; movl n+4(%esp), %ebx; _DOARGS_0 (n)
#define _UNDOARGS_1 _UNDOARGS_0; popl %ebx
#define DOARGS_2 movl 8(%esp), %ecx; DOARGS_1
#define UNDOARGS_2 UNDOARGS_1
#define _DOARGS_2(n) movl n(%esp), %ecx; _DOARGS_1 (n-4)
#define _UNDOARGS_2 _UNDOARGS_1
#define DOARGS_3 _DOARGS_3 (12)
#define UNDOARGS_3 _UNDOARGS_3
#define _DOARGS_3(n) movl n(%esp), %edx; _DOARGS_2 (n-4)
#define _UNDOARGS_3 _UNDOARGS_2
#define DOARGS_4 _DOARGS_4 (16)
#define UNDOARGS_4 _UNDOARGS_4
#define _DOARGS_4(n) pushl %esi; movl n+4(%esp), %esi; _DOARGS_3 (n)
#define _UNDOARGS_4 _UNDOARGS_3; popl %esi
#define DOARGS_5 _DOARGS_5 (20)
#define UNDOARGS_5 _UNDOARGS_5
#define _DOARGS_5(n) pushl %edi; movl n+4(%esp), %edi; _DOARGS_4 (n)
#define _UNDOARGS_5 _UNDOARGS_4; popl %edi
#endif /* ASSEMBLER */
|