summaryrefslogtreecommitdiff
path: root/glib/gthread-posix.c
blob: 721dea5c2bd9432e3b74e5c5451f6ce9e37e90fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * gthread.c: posix thread system implementation
 * Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
 *
 * SPDX-License-Identifier: LGPL-2.1-or-later
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/.
 */

/* The GMutex, GCond and GPrivate implementations in this file are some
 * of the lowest-level code in GLib.  All other parts of GLib (messages,
 * memory, slices, etc) assume that they can freely use these facilities
 * without risking recursion.
 *
 * As such, these functions are NOT permitted to call any other part of
 * GLib.
 *
 * The thread manipulation functions (create, exit, join, etc.) have
 * more freedom -- they can do as they please.
 */

#include "config.h"

#include "gthread.h"

#include "gmain.h"
#include "gmessages.h"
#include "gslice.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#include "gthreadprivate.h"
#include "gutils.h"

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>

#include <sys/time.h>
#include <unistd.h>

#ifdef HAVE_PTHREAD_SET_NAME_NP
#include <pthread_np.h>
#endif
#ifdef HAVE_SCHED_H
#include <sched.h>
#endif
#ifdef G_OS_WIN32
#include <windows.h>
#endif

#if defined(HAVE_SYS_SCHED_GETATTR)
#include <sys/syscall.h>
#endif

#if (defined(HAVE_FUTEX) || defined(HAVE_FUTEX_TIME64)) && \
    (defined(HAVE_STDATOMIC_H) || defined(__ATOMIC_SEQ_CST))
#define USE_NATIVE_MUTEX
#endif

static void
g_thread_abort (gint         status,
                const gchar *function)
{
  fprintf (stderr, "GLib (gthread-posix.c): Unexpected error from C library during '%s': %s.  Aborting.\n",
           function, strerror (status));
  g_abort ();
}

/* {{{1 GMutex */

#if !defined(USE_NATIVE_MUTEX)

static pthread_mutex_t *
g_mutex_impl_new (void)
{
  pthread_mutexattr_t *pattr = NULL;
  pthread_mutex_t *mutex;
  gint status;
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
  pthread_mutexattr_t attr;
#endif

  mutex = malloc (sizeof (pthread_mutex_t));
  if G_UNLIKELY (mutex == NULL)
    g_thread_abort (errno, "malloc");

#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
  pthread_mutexattr_init (&attr);
  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
  pattr = &attr;
#endif

  if G_UNLIKELY ((status = pthread_mutex_init (mutex, pattr)) != 0)
    g_thread_abort (status, "pthread_mutex_init");

#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
  pthread_mutexattr_destroy (&attr);
#endif

  return mutex;
}

static void
g_mutex_impl_free (pthread_mutex_t *mutex)
{
  pthread_mutex_destroy (mutex);
  free (mutex);
}

static inline pthread_mutex_t *
g_mutex_get_impl (GMutex *mutex)
{
  pthread_mutex_t *impl = g_atomic_pointer_get (&mutex->p);

  if G_UNLIKELY (impl == NULL)
    {
      impl = g_mutex_impl_new ();
      if (!g_atomic_pointer_compare_and_exchange (&mutex->p, NULL, impl))
        g_mutex_impl_free (impl);
      impl = mutex->p;
    }

  return impl;
}


/**
 * g_mutex_init:
 * @mutex: an uninitialized #GMutex
 *
 * Initializes a #GMutex so that it can be used.
 *
 * This function is useful to initialize a mutex that has been
 * allocated on the stack, or as part of a larger structure.
 * It is not necessary to initialize a mutex that has been
 * statically allocated.
 *
 * |[<!-- language="C" --> 
 *   typedef struct {
 *     GMutex m;
 *     ...
 *   } Blob;
 *
 * Blob *b;
 *
 * b = g_new (Blob, 1);
 * g_mutex_init (&b->m);
 * ]|
 *
 * To undo the effect of g_mutex_init() when a mutex is no longer
 * needed, use g_mutex_clear().
 *
 * Calling g_mutex_init() on an already initialized #GMutex leads
 * to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_mutex_init (GMutex *mutex)
{
  mutex->p = g_mutex_impl_new ();
}

/**
 * g_mutex_clear:
 * @mutex: an initialized #GMutex
 *
 * Frees the resources allocated to a mutex with g_mutex_init().
 *
 * This function should not be used with a #GMutex that has been
 * statically allocated.
 *
 * Calling g_mutex_clear() on a locked mutex leads to undefined
 * behaviour.
 *
 * Since: 2.32
 */
void
g_mutex_clear (GMutex *mutex)
{
  g_mutex_impl_free (mutex->p);
}

/**
 * g_mutex_lock:
 * @mutex: a #GMutex
 *
 * Locks @mutex. If @mutex is already locked by another thread, the
 * current thread will block until @mutex is unlocked by the other
 * thread.
 *
 * #GMutex is neither guaranteed to be recursive nor to be
 * non-recursive.  As such, calling g_mutex_lock() on a #GMutex that has
 * already been locked by the same thread results in undefined behaviour
 * (including but not limited to deadlocks).
 */
void
g_mutex_lock (GMutex *mutex)
{
  gint status;

  if G_UNLIKELY ((status = pthread_mutex_lock (g_mutex_get_impl (mutex))) != 0)
    g_thread_abort (status, "pthread_mutex_lock");
}

/**
 * g_mutex_unlock:
 * @mutex: a #GMutex
 *
 * Unlocks @mutex. If another thread is blocked in a g_mutex_lock()
 * call for @mutex, it will become unblocked and can lock @mutex itself.
 *
 * Calling g_mutex_unlock() on a mutex that is not locked by the
 * current thread leads to undefined behaviour.
 */
void
g_mutex_unlock (GMutex *mutex)
{
  gint status;

  if G_UNLIKELY ((status = pthread_mutex_unlock (g_mutex_get_impl (mutex))) != 0)
    g_thread_abort (status, "pthread_mutex_unlock");
}

/**
 * g_mutex_trylock:
 * @mutex: a #GMutex
 *
 * Tries to lock @mutex. If @mutex is already locked by another thread,
 * it immediately returns %FALSE. Otherwise it locks @mutex and returns
 * %TRUE.
 *
 * #GMutex is neither guaranteed to be recursive nor to be
 * non-recursive.  As such, calling g_mutex_lock() on a #GMutex that has
 * already been locked by the same thread results in undefined behaviour
 * (including but not limited to deadlocks or arbitrary return values).
 *
 * Returns: %TRUE if @mutex could be locked
 */
gboolean
g_mutex_trylock (GMutex *mutex)
{
  gint status;

  if G_LIKELY ((status = pthread_mutex_trylock (g_mutex_get_impl (mutex))) == 0)
    return TRUE;

  if G_UNLIKELY (status != EBUSY)
    g_thread_abort (status, "pthread_mutex_trylock");

  return FALSE;
}

#endif /* !defined(USE_NATIVE_MUTEX) */

/* {{{1 GRecMutex */

static pthread_mutex_t *
g_rec_mutex_impl_new (void)
{
  pthread_mutexattr_t attr;
  pthread_mutex_t *mutex;

  mutex = malloc (sizeof (pthread_mutex_t));
  if G_UNLIKELY (mutex == NULL)
    g_thread_abort (errno, "malloc");

  pthread_mutexattr_init (&attr);
  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
  pthread_mutex_init (mutex, &attr);
  pthread_mutexattr_destroy (&attr);

  return mutex;
}

static void
g_rec_mutex_impl_free (pthread_mutex_t *mutex)
{
  pthread_mutex_destroy (mutex);
  free (mutex);
}

static inline pthread_mutex_t *
g_rec_mutex_get_impl (GRecMutex *rec_mutex)
{
  pthread_mutex_t *impl = g_atomic_pointer_get (&rec_mutex->p);

  if G_UNLIKELY (impl == NULL)
    {
      impl = g_rec_mutex_impl_new ();
      if (!g_atomic_pointer_compare_and_exchange (&rec_mutex->p, NULL, impl))
        g_rec_mutex_impl_free (impl);
      impl = rec_mutex->p;
    }

  return impl;
}

/**
 * g_rec_mutex_init:
 * @rec_mutex: an uninitialized #GRecMutex
 *
 * Initializes a #GRecMutex so that it can be used.
 *
 * This function is useful to initialize a recursive mutex
 * that has been allocated on the stack, or as part of a larger
 * structure.
 *
 * It is not necessary to initialise a recursive mutex that has been
 * statically allocated.
 *
 * |[<!-- language="C" --> 
 *   typedef struct {
 *     GRecMutex m;
 *     ...
 *   } Blob;
 *
 * Blob *b;
 *
 * b = g_new (Blob, 1);
 * g_rec_mutex_init (&b->m);
 * ]|
 *
 * Calling g_rec_mutex_init() on an already initialized #GRecMutex
 * leads to undefined behaviour.
 *
 * To undo the effect of g_rec_mutex_init() when a recursive mutex
 * is no longer needed, use g_rec_mutex_clear().
 *
 * Since: 2.32
 */
void
g_rec_mutex_init (GRecMutex *rec_mutex)
{
  rec_mutex->p = g_rec_mutex_impl_new ();
}

/**
 * g_rec_mutex_clear:
 * @rec_mutex: an initialized #GRecMutex
 *
 * Frees the resources allocated to a recursive mutex with
 * g_rec_mutex_init().
 *
 * This function should not be used with a #GRecMutex that has been
 * statically allocated.
 *
 * Calling g_rec_mutex_clear() on a locked recursive mutex leads
 * to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rec_mutex_clear (GRecMutex *rec_mutex)
{
  g_rec_mutex_impl_free (rec_mutex->p);
}

/**
 * g_rec_mutex_lock:
 * @rec_mutex: a #GRecMutex
 *
 * Locks @rec_mutex. If @rec_mutex is already locked by another
 * thread, the current thread will block until @rec_mutex is
 * unlocked by the other thread. If @rec_mutex is already locked
 * by the current thread, the 'lock count' of @rec_mutex is increased.
 * The mutex will only become available again when it is unlocked
 * as many times as it has been locked.
 *
 * Since: 2.32
 */
void
g_rec_mutex_lock (GRecMutex *mutex)
{
  pthread_mutex_lock (g_rec_mutex_get_impl (mutex));
}

/**
 * g_rec_mutex_unlock:
 * @rec_mutex: a #GRecMutex
 *
 * Unlocks @rec_mutex. If another thread is blocked in a
 * g_rec_mutex_lock() call for @rec_mutex, it will become unblocked
 * and can lock @rec_mutex itself.
 *
 * Calling g_rec_mutex_unlock() on a recursive mutex that is not
 * locked by the current thread leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rec_mutex_unlock (GRecMutex *rec_mutex)
{
  pthread_mutex_unlock (rec_mutex->p);
}

/**
 * g_rec_mutex_trylock:
 * @rec_mutex: a #GRecMutex
 *
 * Tries to lock @rec_mutex. If @rec_mutex is already locked
 * by another thread, it immediately returns %FALSE. Otherwise
 * it locks @rec_mutex and returns %TRUE.
 *
 * Returns: %TRUE if @rec_mutex could be locked
 *
 * Since: 2.32
 */
gboolean
g_rec_mutex_trylock (GRecMutex *rec_mutex)
{
  if (pthread_mutex_trylock (g_rec_mutex_get_impl (rec_mutex)) != 0)
    return FALSE;

  return TRUE;
}

/* {{{1 GRWLock */

static pthread_rwlock_t *
g_rw_lock_impl_new (void)
{
  pthread_rwlock_t *rwlock;
  gint status;

  rwlock = malloc (sizeof (pthread_rwlock_t));
  if G_UNLIKELY (rwlock == NULL)
    g_thread_abort (errno, "malloc");

  if G_UNLIKELY ((status = pthread_rwlock_init (rwlock, NULL)) != 0)
    g_thread_abort (status, "pthread_rwlock_init");

  return rwlock;
}

static void
g_rw_lock_impl_free (pthread_rwlock_t *rwlock)
{
  pthread_rwlock_destroy (rwlock);
  free (rwlock);
}

static inline pthread_rwlock_t *
g_rw_lock_get_impl (GRWLock *lock)
{
  pthread_rwlock_t *impl = g_atomic_pointer_get (&lock->p);

  if G_UNLIKELY (impl == NULL)
    {
      impl = g_rw_lock_impl_new ();
      if (!g_atomic_pointer_compare_and_exchange (&lock->p, NULL, impl))
        g_rw_lock_impl_free (impl);
      impl = lock->p;
    }

  return impl;
}

/**
 * g_rw_lock_init:
 * @rw_lock: an uninitialized #GRWLock
 *
 * Initializes a #GRWLock so that it can be used.
 *
 * This function is useful to initialize a lock that has been
 * allocated on the stack, or as part of a larger structure.  It is not
 * necessary to initialise a reader-writer lock that has been statically
 * allocated.
 *
 * |[<!-- language="C" --> 
 *   typedef struct {
 *     GRWLock l;
 *     ...
 *   } Blob;
 *
 * Blob *b;
 *
 * b = g_new (Blob, 1);
 * g_rw_lock_init (&b->l);
 * ]|
 *
 * To undo the effect of g_rw_lock_init() when a lock is no longer
 * needed, use g_rw_lock_clear().
 *
 * Calling g_rw_lock_init() on an already initialized #GRWLock leads
 * to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rw_lock_init (GRWLock *rw_lock)
{
  rw_lock->p = g_rw_lock_impl_new ();
}

/**
 * g_rw_lock_clear:
 * @rw_lock: an initialized #GRWLock
 *
 * Frees the resources allocated to a lock with g_rw_lock_init().
 *
 * This function should not be used with a #GRWLock that has been
 * statically allocated.
 *
 * Calling g_rw_lock_clear() when any thread holds the lock
 * leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rw_lock_clear (GRWLock *rw_lock)
{
  g_rw_lock_impl_free (rw_lock->p);
}

/**
 * g_rw_lock_writer_lock:
 * @rw_lock: a #GRWLock
 *
 * Obtain a write lock on @rw_lock. If another thread currently holds
 * a read or write lock on @rw_lock, the current thread will block
 * until all other threads have dropped their locks on @rw_lock.
 *
 * Calling g_rw_lock_writer_lock() while the current thread already
 * owns a read or write lock on @rw_lock leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rw_lock_writer_lock (GRWLock *rw_lock)
{
  int retval = pthread_rwlock_wrlock (g_rw_lock_get_impl (rw_lock));

  if (retval != 0)
    g_critical ("Failed to get RW lock %p: %s", rw_lock, g_strerror (retval));
}

/**
 * g_rw_lock_writer_trylock:
 * @rw_lock: a #GRWLock
 *
 * Tries to obtain a write lock on @rw_lock. If another thread
 * currently holds a read or write lock on @rw_lock, it immediately
 * returns %FALSE.
 * Otherwise it locks @rw_lock and returns %TRUE.
 *
 * Returns: %TRUE if @rw_lock could be locked
 *
 * Since: 2.32
 */
gboolean
g_rw_lock_writer_trylock (GRWLock *rw_lock)
{
  if (pthread_rwlock_trywrlock (g_rw_lock_get_impl (rw_lock)) != 0)
    return FALSE;

  return TRUE;
}

/**
 * g_rw_lock_writer_unlock:
 * @rw_lock: a #GRWLock
 *
 * Release a write lock on @rw_lock.
 *
 * Calling g_rw_lock_writer_unlock() on a lock that is not held
 * by the current thread leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rw_lock_writer_unlock (GRWLock *rw_lock)
{
  pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
}

/**
 * g_rw_lock_reader_lock:
 * @rw_lock: a #GRWLock
 *
 * Obtain a read lock on @rw_lock. If another thread currently holds
 * the write lock on @rw_lock, the current thread will block until the
 * write lock was (held and) released. If another thread does not hold
 * the write lock, but is waiting for it, it is implementation defined
 * whether the reader or writer will block. Read locks can be taken
 * recursively.
 *
 * Calling g_rw_lock_reader_lock() while the current thread already
 * owns a write lock leads to undefined behaviour. Read locks however
 * can be taken recursively, in which case you need to make sure to
 * call g_rw_lock_reader_unlock() the same amount of times.
 *
 * It is implementation-defined how many read locks are allowed to be
 * held on the same lock simultaneously. If the limit is hit,
 * or if a deadlock is detected, a critical warning will be emitted.
 *
 * Since: 2.32
 */
void
g_rw_lock_reader_lock (GRWLock *rw_lock)
{
  int retval = pthread_rwlock_rdlock (g_rw_lock_get_impl (rw_lock));

  if (retval != 0)
    g_critical ("Failed to get RW lock %p: %s", rw_lock, g_strerror (retval));
}

/**
 * g_rw_lock_reader_trylock:
 * @rw_lock: a #GRWLock
 *
 * Tries to obtain a read lock on @rw_lock and returns %TRUE if
 * the read lock was successfully obtained. Otherwise it
 * returns %FALSE.
 *
 * Returns: %TRUE if @rw_lock could be locked
 *
 * Since: 2.32
 */
gboolean
g_rw_lock_reader_trylock (GRWLock *rw_lock)
{
  if (pthread_rwlock_tryrdlock (g_rw_lock_get_impl (rw_lock)) != 0)
    return FALSE;

  return TRUE;
}

/**
 * g_rw_lock_reader_unlock:
 * @rw_lock: a #GRWLock
 *
 * Release a read lock on @rw_lock.
 *
 * Calling g_rw_lock_reader_unlock() on a lock that is not held
 * by the current thread leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_rw_lock_reader_unlock (GRWLock *rw_lock)
{
  pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
}

/* {{{1 GCond */

#if !defined(USE_NATIVE_MUTEX)

static pthread_cond_t *
g_cond_impl_new (void)
{
  pthread_condattr_t attr;
  pthread_cond_t *cond;
  gint status;

  pthread_condattr_init (&attr);

#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
  if G_UNLIKELY ((status = pthread_condattr_setclock (&attr, CLOCK_MONOTONIC)) != 0)
    g_thread_abort (status, "pthread_condattr_setclock");
#else
#error Cannot support GCond on your platform.
#endif

  cond = malloc (sizeof (pthread_cond_t));
  if G_UNLIKELY (cond == NULL)
    g_thread_abort (errno, "malloc");

  if G_UNLIKELY ((status = pthread_cond_init (cond, &attr)) != 0)
    g_thread_abort (status, "pthread_cond_init");

  pthread_condattr_destroy (&attr);

  return cond;
}

static void
g_cond_impl_free (pthread_cond_t *cond)
{
  pthread_cond_destroy (cond);
  free (cond);
}

static inline pthread_cond_t *
g_cond_get_impl (GCond *cond)
{
  pthread_cond_t *impl = g_atomic_pointer_get (&cond->p);

  if G_UNLIKELY (impl == NULL)
    {
      impl = g_cond_impl_new ();
      if (!g_atomic_pointer_compare_and_exchange (&cond->p, NULL, impl))
        g_cond_impl_free (impl);
      impl = cond->p;
    }

  return impl;
}

/**
 * g_cond_init:
 * @cond: an uninitialized #GCond
 *
 * Initialises a #GCond so that it can be used.
 *
 * This function is useful to initialise a #GCond that has been
 * allocated as part of a larger structure.  It is not necessary to
 * initialise a #GCond that has been statically allocated.
 *
 * To undo the effect of g_cond_init() when a #GCond is no longer
 * needed, use g_cond_clear().
 *
 * Calling g_cond_init() on an already-initialised #GCond leads
 * to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_cond_init (GCond *cond)
{
  cond->p = g_cond_impl_new ();
}

/**
 * g_cond_clear:
 * @cond: an initialised #GCond
 *
 * Frees the resources allocated to a #GCond with g_cond_init().
 *
 * This function should not be used with a #GCond that has been
 * statically allocated.
 *
 * Calling g_cond_clear() for a #GCond on which threads are
 * blocking leads to undefined behaviour.
 *
 * Since: 2.32
 */
void
g_cond_clear (GCond *cond)
{
  g_cond_impl_free (cond->p);
}

/**
 * g_cond_wait:
 * @cond: a #GCond
 * @mutex: a #GMutex that is currently locked
 *
 * Atomically releases @mutex and waits until @cond is signalled.
 * When this function returns, @mutex is locked again and owned by the
 * calling thread.
 *
 * When using condition variables, it is possible that a spurious wakeup
 * may occur (ie: g_cond_wait() returns even though g_cond_signal() was
 * not called).  It's also possible that a stolen wakeup may occur.
 * This is when g_cond_signal() is called, but another thread acquires
 * @mutex before this thread and modifies the state of the program in
 * such a way that when g_cond_wait() is able to return, the expected
 * condition is no longer met.
 *
 * For this reason, g_cond_wait() must always be used in a loop.  See
 * the documentation for #GCond for a complete example.
 **/
void
g_cond_wait (GCond  *cond,
             GMutex *mutex)
{
  gint status;

  if G_UNLIKELY ((status = pthread_cond_wait (g_cond_get_impl (cond), g_mutex_get_impl (mutex))) != 0)
    g_thread_abort (status, "pthread_cond_wait");
}

/**
 * g_cond_signal:
 * @cond: a #GCond
 *
 * If threads are waiting for @cond, at least one of them is unblocked.
 * If no threads are waiting for @cond, this function has no effect.
 * It is good practice to hold the same lock as the waiting thread
 * while calling this function, though not required.
 */
void
g_cond_signal (GCond *cond)
{
  gint status;

  if G_UNLIKELY ((status = pthread_cond_signal (g_cond_get_impl (cond))) != 0)
    g_thread_abort (status, "pthread_cond_signal");
}

/**
 * g_cond_broadcast:
 * @cond: a #GCond
 *
 * If threads are waiting for @cond, all of them are unblocked.
 * If no threads are waiting for @cond, this function has no effect.
 * It is good practice to lock the same mutex as the waiting threads
 * while calling this function, though not required.
 */
void
g_cond_broadcast (GCond *cond)
{
  gint status;

  if G_UNLIKELY ((status = pthread_cond_broadcast (g_cond_get_impl (cond))) != 0)
    g_thread_abort (status, "pthread_cond_broadcast");
}

/**
 * g_cond_wait_until:
 * @cond: a #GCond
 * @mutex: a #GMutex that is currently locked
 * @end_time: the monotonic time to wait until
 *
 * Waits until either @cond is signalled or @end_time has passed.
 *
 * As with g_cond_wait() it is possible that a spurious or stolen wakeup
 * could occur.  For that reason, waiting on a condition variable should
 * always be in a loop, based on an explicitly-checked predicate.
 *
 * %TRUE is returned if the condition variable was signalled (or in the
 * case of a spurious wakeup).  %FALSE is returned if @end_time has
 * passed.
 *
 * The following code shows how to correctly perform a timed wait on a
 * condition variable (extending the example presented in the
 * documentation for #GCond):
 *
 * |[<!-- language="C" --> 
 * gpointer
 * pop_data_timed (void)
 * {
 *   gint64 end_time;
 *   gpointer data;
 *
 *   g_mutex_lock (&data_mutex);
 *
 *   end_time = g_get_monotonic_time () + 5 * G_TIME_SPAN_SECOND;
 *   while (!current_data)
 *     if (!g_cond_wait_until (&data_cond, &data_mutex, end_time))
 *       {
 *         // timeout has passed.
 *         g_mutex_unlock (&data_mutex);
 *         return NULL;
 *       }
 *
 *   // there is data for us
 *   data = current_data;
 *   current_data = NULL;
 *
 *   g_mutex_unlock (&data_mutex);
 *
 *   return data;
 * }
 * ]|
 *
 * Notice that the end time is calculated once, before entering the
 * loop and reused.  This is the motivation behind the use of absolute
 * time on this API -- if a relative time of 5 seconds were passed
 * directly to the call and a spurious wakeup occurred, the program would
 * have to start over waiting again (which would lead to a total wait
 * time of more than 5 seconds).
 *
 * Returns: %TRUE on a signal, %FALSE on a timeout
 * Since: 2.32
 **/
gboolean
g_cond_wait_until (GCond  *cond,
                   GMutex *mutex,
                   gint64  end_time)
{
  struct timespec ts;
  gint status;

#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
  /* end_time is given relative to the monotonic clock as returned by
   * g_get_monotonic_time().
   *
   * Since this pthreads wants the relative time, convert it back again.
   */
  {
    gint64 now = g_get_monotonic_time ();
    gint64 relative;

    if (end_time <= now)
      return FALSE;

    relative = end_time - now;

    ts.tv_sec = relative / 1000000;
    ts.tv_nsec = (relative % 1000000) * 1000;

    if ((status = pthread_cond_timedwait_relative_np (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
      return TRUE;
  }
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
  /* This is the exact check we used during init to set the clock to
   * monotonic, so if we're in this branch, timedwait() will already be
   * expecting a monotonic clock.
   */
  {
    ts.tv_sec = end_time / 1000000;
    ts.tv_nsec = (end_time % 1000000) * 1000;

    if ((status = pthread_cond_timedwait (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
      return TRUE;
  }
#else
#error Cannot support GCond on your platform.
#endif

  if G_UNLIKELY (status != ETIMEDOUT)
    g_thread_abort (status, "pthread_cond_timedwait");

  return FALSE;
}

#endif /* defined(USE_NATIVE_MUTEX) */

/* {{{1 GPrivate */

/**
 * GPrivate:
 *
 * The #GPrivate struct is an opaque data structure to represent a
 * thread-local data key. It is approximately equivalent to the
 * pthread_setspecific()/pthread_getspecific() APIs on POSIX and to
 * TlsSetValue()/TlsGetValue() on Windows.
 *
 * If you don't already know why you might want this functionality,
 * then you probably don't need it.
 *
 * #GPrivate is a very limited resource (as far as 128 per program,
 * shared between all libraries). It is also not possible to destroy a
 * #GPrivate after it has been used. As such, it is only ever acceptable
 * to use #GPrivate in static scope, and even then sparingly so.
 *
 * See G_PRIVATE_INIT() for a couple of examples.
 *
 * The #GPrivate structure should be considered opaque.  It should only
 * be accessed via the g_private_ functions.
 */

/**
 * G_PRIVATE_INIT:
 * @notify: a #GDestroyNotify
 *
 * A macro to assist with the static initialisation of a #GPrivate.
 *
 * This macro is useful for the case that a #GDestroyNotify function
 * should be associated with the key.  This is needed when the key will be
 * used to point at memory that should be deallocated when the thread
 * exits.
 *
 * Additionally, the #GDestroyNotify will also be called on the previous
 * value stored in the key when g_private_replace() is used.
 *
 * If no #GDestroyNotify is needed, then use of this macro is not
 * required -- if the #GPrivate is declared in static scope then it will
 * be properly initialised by default (ie: to all zeros).  See the
 * examples below.
 *
 * |[<!-- language="C" --> 
 * static GPrivate name_key = G_PRIVATE_INIT (g_free);
 *
 * // return value should not be freed
 * const gchar *
 * get_local_name (void)
 * {
 *   return g_private_get (&name_key);
 * }
 *
 * void
 * set_local_name (const gchar *name)
 * {
 *   g_private_replace (&name_key, g_strdup (name));
 * }
 *
 *
 * static GPrivate count_key;   // no free function
 *
 * gint
 * get_local_count (void)
 * {
 *   return GPOINTER_TO_INT (g_private_get (&count_key));
 * }
 *
 * void
 * set_local_count (gint count)
 * {
 *   g_private_set (&count_key, GINT_TO_POINTER (count));
 * }
 * ]|
 *
 * Since: 2.32
 **/

static pthread_key_t *
g_private_impl_new (GDestroyNotify notify)
{
  pthread_key_t *key;
  gint status;

  key = malloc (sizeof (pthread_key_t));
  if G_UNLIKELY (key == NULL)
    g_thread_abort (errno, "malloc");
  status = pthread_key_create (key, notify);
  if G_UNLIKELY (status != 0)
    g_thread_abort (status, "pthread_key_create");

  return key;
}

static void
g_private_impl_free (pthread_key_t *key)
{
  gint status;

  status = pthread_key_delete (*key);
  if G_UNLIKELY (status != 0)
    g_thread_abort (status, "pthread_key_delete");
  free (key);
}

static inline pthread_key_t *
g_private_get_impl (GPrivate *key)
{
  pthread_key_t *impl = g_atomic_pointer_get (&key->p);

  if G_UNLIKELY (impl == NULL)
    {
      impl = g_private_impl_new (key->notify);
      if (!g_atomic_pointer_compare_and_exchange (&key->p, NULL, impl))
        {
          g_private_impl_free (impl);
          impl = key->p;
        }
    }

  return impl;
}

/**
 * g_private_get:
 * @key: a #GPrivate
 *
 * Returns the current value of the thread local variable @key.
 *
 * If the value has not yet been set in this thread, %NULL is returned.
 * Values are never copied between threads (when a new thread is
 * created, for example).
 *
 * Returns: the thread-local value
 */
gpointer
g_private_get (GPrivate *key)
{
  /* quote POSIX: No errors are returned from pthread_getspecific(). */
  return pthread_getspecific (*g_private_get_impl (key));
}

/**
 * g_private_set:
 * @key: a #GPrivate
 * @value: the new value
 *
 * Sets the thread local variable @key to have the value @value in the
 * current thread.
 *
 * This function differs from g_private_replace() in the following way:
 * the #GDestroyNotify for @key is not called on the old value.
 */
void
g_private_set (GPrivate *key,
               gpointer  value)
{
  gint status;

  if G_UNLIKELY ((status = pthread_setspecific (*g_private_get_impl (key), value)) != 0)
    g_thread_abort (status, "pthread_setspecific");
}

/**
 * g_private_replace:
 * @key: a #GPrivate
 * @value: the new value
 *
 * Sets the thread local variable @key to have the value @value in the
 * current thread.
 *
 * This function differs from g_private_set() in the following way: if
 * the previous value was non-%NULL then the #GDestroyNotify handler for
 * @key is run on it.
 *
 * Since: 2.32
 **/
void
g_private_replace (GPrivate *key,
                   gpointer  value)
{
  pthread_key_t *impl = g_private_get_impl (key);
  gpointer old;
  gint status;

  old = pthread_getspecific (*impl);

  if G_UNLIKELY ((status = pthread_setspecific (*impl, value)) != 0)
    g_thread_abort (status, "pthread_setspecific");

  if (old && key->notify)
    key->notify (old);
}

/* {{{1 GThread */

#define posix_check_err(err, name) G_STMT_START{			\
  int error = (err); 							\
  if (error)	 		 		 			\
    g_error ("file %s: line %d (%s): error '%s' during '%s'",		\
           __FILE__, __LINE__, G_STRFUNC,				\
           g_strerror (error), name);					\
  }G_STMT_END

#define posix_check_cmd(cmd) posix_check_err (cmd, #cmd)

typedef struct
{
  GRealThread thread;

  pthread_t system_thread;
  gboolean  joined;
  GMutex    lock;

  void *(*proxy) (void *);
} GThreadPosix;

void
g_system_thread_free (GRealThread *thread)
{
  GThreadPosix *pt = (GThreadPosix *) thread;

  if (!pt->joined)
    pthread_detach (pt->system_thread);

  g_mutex_clear (&pt->lock);

  g_slice_free (GThreadPosix, pt);
}

GRealThread *
g_system_thread_new (GThreadFunc proxy,
                     gulong stack_size,
                     const char *name,
                     GThreadFunc func,
                     gpointer data,
                     GError **error)
{
  GThreadPosix *thread;
  GRealThread *base_thread;
  pthread_attr_t attr;
  gint ret;

  thread = g_slice_new0 (GThreadPosix);
  base_thread = (GRealThread*)thread;
  base_thread->ref_count = 2;
  base_thread->ours = TRUE;
  base_thread->thread.joinable = TRUE;
  base_thread->thread.func = func;
  base_thread->thread.data = data;
  base_thread->name = g_strdup (name);
  thread->proxy = proxy;

  posix_check_cmd (pthread_attr_init (&attr));

#ifdef HAVE_PTHREAD_ATTR_SETSTACKSIZE
  if (stack_size)
    {
#ifdef _SC_THREAD_STACK_MIN
      long min_stack_size = sysconf (_SC_THREAD_STACK_MIN);
      if (min_stack_size >= 0)
        stack_size = MAX ((gulong) min_stack_size, stack_size);
#endif /* _SC_THREAD_STACK_MIN */
      /* No error check here, because some systems can't do it and
       * we simply don't want threads to fail because of that. */
      pthread_attr_setstacksize (&attr, stack_size);
    }
#endif /* HAVE_PTHREAD_ATTR_SETSTACKSIZE */

#ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
    {
      /* While this is the default, better be explicit about it */
      pthread_attr_setinheritsched (&attr, PTHREAD_INHERIT_SCHED);
    }
#endif /* HAVE_PTHREAD_ATTR_SETINHERITSCHED */

  ret = pthread_create (&thread->system_thread, &attr, (void* (*)(void*))proxy, thread);

  posix_check_cmd (pthread_attr_destroy (&attr));

  if (ret == EAGAIN)
    {
      g_set_error (error, G_THREAD_ERROR, G_THREAD_ERROR_AGAIN, 
                   "Error creating thread: %s", g_strerror (ret));
      g_free (thread->thread.name);
      g_slice_free (GThreadPosix, thread);
      return NULL;
    }

  posix_check_err (ret, "pthread_create");

  g_mutex_init (&thread->lock);

  return (GRealThread *) thread;
}

/**
 * g_thread_yield:
 *
 * Causes the calling thread to voluntarily relinquish the CPU, so
 * that other threads can run.
 *
 * This function is often used as a method to make busy wait less evil.
 */
void
g_thread_yield (void)
{
  sched_yield ();
}

void
g_system_thread_wait (GRealThread *thread)
{
  GThreadPosix *pt = (GThreadPosix *) thread;

  g_mutex_lock (&pt->lock);

  if (!pt->joined)
    {
      posix_check_cmd (pthread_join (pt->system_thread, NULL));
      pt->joined = TRUE;
    }

  g_mutex_unlock (&pt->lock);
}

void
g_system_thread_exit (void)
{
  pthread_exit (NULL);
}

void
g_system_thread_set_name (const gchar *name)
{
#if defined(HAVE_PTHREAD_SETNAME_NP_WITHOUT_TID)
  pthread_setname_np (name); /* on OS X and iOS */
#elif defined(HAVE_PTHREAD_SETNAME_NP_WITH_TID)
  pthread_setname_np (pthread_self (), name); /* on Linux and Solaris */
#elif defined(HAVE_PTHREAD_SETNAME_NP_WITH_TID_AND_ARG)
  pthread_setname_np (pthread_self (), "%s", (gchar *) name); /* on NetBSD */
#elif defined(HAVE_PTHREAD_SET_NAME_NP)
  pthread_set_name_np (pthread_self (), name); /* on FreeBSD, DragonFlyBSD, OpenBSD */
#endif
}

/* {{{1 GMutex and GCond futex implementation */

#if defined(USE_NATIVE_MUTEX)
/* We should expand the set of operations available in gatomic once we
 * have better C11 support in GCC in common distributions (ie: 4.9).
 *
 * Before then, let's define a couple of useful things for our own
 * purposes...
 */

#ifdef HAVE_STDATOMIC_H

#include <stdatomic.h>

#define exchange_acquire(ptr, new) \
  atomic_exchange_explicit((atomic_uint *) (ptr), (new), __ATOMIC_ACQUIRE)
#define compare_exchange_acquire(ptr, old, new) \
  atomic_compare_exchange_strong_explicit((atomic_uint *) (ptr), (old), (new), \
                                          __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)

#define exchange_release(ptr, new) \
  atomic_exchange_explicit((atomic_uint *) (ptr), (new), __ATOMIC_RELEASE)
#define store_release(ptr, new) \
  atomic_store_explicit((atomic_uint *) (ptr), (new), __ATOMIC_RELEASE)

#else

#define exchange_acquire(ptr, new) \
  __atomic_exchange_4((ptr), (new), __ATOMIC_ACQUIRE)
#define compare_exchange_acquire(ptr, old, new) \
  __atomic_compare_exchange_4((ptr), (old), (new), 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)

#define exchange_release(ptr, new) \
  __atomic_exchange_4((ptr), (new), __ATOMIC_RELEASE)
#define store_release(ptr, new) \
  __atomic_store_4((ptr), (new), __ATOMIC_RELEASE)

#endif

/* Our strategy for the mutex is pretty simple:
 *
 *  0: not in use
 *
 *  1: acquired by one thread only, no contention
 *
 *  2: contended
 */

typedef enum {
  G_MUTEX_STATE_EMPTY = 0,
  G_MUTEX_STATE_OWNED,
  G_MUTEX_STATE_CONTENDED,
} GMutexState;

 /*
 * As such, attempting to acquire the lock should involve an increment.
 * If we find that the previous value was 0 then we can return
 * immediately.
 *
 * On unlock, we always store 0 to indicate that the lock is available.
 * If the value there was 1 before then we didn't have contention and
 * can return immediately.  If the value was something other than 1 then
 * we have the contended case and need to wake a waiter.
 *
 * If it was not 0 then there is another thread holding it and we must
 * wait.  We must always ensure that we mark a value >1 while we are
 * waiting in order to instruct the holder to do a wake operation on
 * unlock.
 */

void
g_mutex_init (GMutex *mutex)
{
  mutex->i[0] = G_MUTEX_STATE_EMPTY;
}

void
g_mutex_clear (GMutex *mutex)
{
  if G_UNLIKELY (mutex->i[0] != G_MUTEX_STATE_EMPTY)
    {
      fprintf (stderr, "g_mutex_clear() called on uninitialised or locked mutex\n");
      g_abort ();
    }
}

G_GNUC_NO_INLINE
static void
g_mutex_lock_slowpath (GMutex *mutex)
{
  /* Set to contended.  If it was empty before then we
   * just acquired the lock.
   *
   * Otherwise, sleep for as long as the contended state remains...
   */
  while (exchange_acquire (&mutex->i[0], G_MUTEX_STATE_CONTENDED) != G_MUTEX_STATE_EMPTY)
    {
      g_futex_simple (&mutex->i[0], (gsize) FUTEX_WAIT_PRIVATE,
                      G_MUTEX_STATE_CONTENDED, NULL);
    }
}

G_GNUC_NO_INLINE
static void
g_mutex_unlock_slowpath (GMutex *mutex,
                         guint   prev)
{
  /* We seem to get better code for the uncontended case by splitting
   * this out...
   */
  if G_UNLIKELY (prev == G_MUTEX_STATE_EMPTY)
    {
      fprintf (stderr, "Attempt to unlock mutex that was not locked\n");
      g_abort ();
    }

  g_futex_simple (&mutex->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) 1, NULL);
}

void
g_mutex_lock (GMutex *mutex)
{
  /* empty -> owned and we're done.  Anything else, and we need to wait... */
  if G_UNLIKELY (!g_atomic_int_compare_and_exchange (&mutex->i[0],
                                                     G_MUTEX_STATE_EMPTY,
                                                     G_MUTEX_STATE_OWNED))
    g_mutex_lock_slowpath (mutex);
}

void
g_mutex_unlock (GMutex *mutex)
{
  guint prev;

  prev = exchange_release (&mutex->i[0], G_MUTEX_STATE_EMPTY);

  /* 1-> 0 and we're done.  Anything else and we need to signal... */
  if G_UNLIKELY (prev != G_MUTEX_STATE_OWNED)
    g_mutex_unlock_slowpath (mutex, prev);
}

gboolean
g_mutex_trylock (GMutex *mutex)
{
  GMutexState empty = G_MUTEX_STATE_EMPTY;

  /* We don't want to touch the value at all unless we can move it from
   * exactly empty to owned.
   */
  return compare_exchange_acquire (&mutex->i[0], &empty, G_MUTEX_STATE_OWNED);
}

/* Condition variables are implemented in a rather simple way as well.
 * In many ways, futex() as an abstraction is even more ideally suited
 * to condition variables than it is to mutexes.
 *
 * We store a generation counter.  We sample it with the lock held and
 * unlock before sleeping on the futex.
 *
 * Signalling simply involves increasing the counter and making the
 * appropriate futex call.
 *
 * The only thing that is the slightest bit complicated is timed waits
 * because we must convert our absolute time to relative.
 */

void
g_cond_init (GCond *cond)
{
  cond->i[0] = 0;
}

void
g_cond_clear (GCond *cond)
{
}

void
g_cond_wait (GCond  *cond,
             GMutex *mutex)
{
  guint sampled = (guint) g_atomic_int_get (&cond->i[0]);

  g_mutex_unlock (mutex);
  g_futex_simple (&cond->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) sampled, NULL);
  g_mutex_lock (mutex);
}

void
g_cond_signal (GCond *cond)
{
  g_atomic_int_inc (&cond->i[0]);

  g_futex_simple (&cond->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) 1, NULL);
}

void
g_cond_broadcast (GCond *cond)
{
  g_atomic_int_inc (&cond->i[0]);

  g_futex_simple (&cond->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) INT_MAX, NULL);
}

gboolean
g_cond_wait_until (GCond  *cond,
                   GMutex *mutex,
                   gint64  end_time)
{
  struct timespec now;
  struct timespec span;

  guint sampled;
  int res;
  gboolean success;

  if (end_time < 0)
    return FALSE;

  clock_gettime (CLOCK_MONOTONIC, &now);
  span.tv_sec = (end_time / 1000000) - now.tv_sec;
  span.tv_nsec = ((end_time % 1000000) * 1000) - now.tv_nsec;
  if (span.tv_nsec < 0)
    {
      span.tv_nsec += 1000000000;
      span.tv_sec--;
    }

  if (span.tv_sec < 0)
    return FALSE;

  /* `struct timespec` as defined by the libc headers does not necessarily
   * have any relation to the one used by the kernel for the `futex` syscall.
   *
   * Specifically, the libc headers might use 64-bit `time_t` while the kernel
   * headers use 32-bit types on certain systems.
   *
   * To get around this problem we
   *   a) check if `futex_time64` is available, which only exists on 32-bit
   *      platforms and always uses 64-bit `time_t`.
   *   b) otherwise (or if that returns `ENOSYS`), we call the normal `futex`
   *      syscall with the `struct timespec` used by the kernel. By default, we
   *      use `__kernel_long_t` for both its fields, which is equivalent to
   *      `__kernel_old_time_t` and is available in the kernel headers for a
   *      longer time.
   *   c) With very old headers (~2.6.x), `__kernel_long_t` is not available, and
   *      we use an older definition that uses `__kernel_time_t` and `long`.
   *
   * Also some 32-bit systems do not define `__NR_futex` at all and only
   * define `__NR_futex_time64`.
   */

  sampled = cond->i[0];
  g_mutex_unlock (mutex);

#ifdef __NR_futex_time64
  {
    struct
    {
      gint64 tv_sec;
      gint64 tv_nsec;
    } span_arg;

    span_arg.tv_sec = span.tv_sec;
    span_arg.tv_nsec = span.tv_nsec;

    res = syscall (__NR_futex_time64, &cond->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) sampled, &span_arg);

    /* If the syscall does not exist (`ENOSYS`), we retry again below with the
     * normal `futex` syscall. This can happen if newer kernel headers are
     * used than the kernel that is actually running.
     */
#  ifdef __NR_futex
    if (res >= 0 || errno != ENOSYS)
#  endif /* defined(__NR_futex) */
      {
        success = (res < 0 && errno == ETIMEDOUT) ? FALSE : TRUE;
        g_mutex_lock (mutex);

        return success;
      }
  }
#endif

#ifdef __NR_futex
  {
#  ifdef __kernel_long_t
#    define KERNEL_SPAN_SEC_TYPE __kernel_long_t
    struct
    {
      __kernel_long_t tv_sec;
      __kernel_long_t tv_nsec;
    } span_arg;
#  else
    /* Very old kernel headers: version 2.6.32 and thereabouts */
#    define KERNEL_SPAN_SEC_TYPE __kernel_time_t
    struct
    {
      __kernel_time_t tv_sec;
      long            tv_nsec;
    } span_arg;
#  endif
    /* Make sure to only ever call this if the end time actually fits into the target type */
    if (G_UNLIKELY (sizeof (KERNEL_SPAN_SEC_TYPE) < 8 && span.tv_sec > G_MAXINT32))
      g_error ("%s: Can’t wait for more than %us", G_STRFUNC, G_MAXINT32);

    span_arg.tv_sec = span.tv_sec;
    span_arg.tv_nsec = span.tv_nsec;

    res = syscall (__NR_futex, &cond->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) sampled, &span_arg);
    success = (res < 0 && errno == ETIMEDOUT) ? FALSE : TRUE;
    g_mutex_lock (mutex);

    return success;
  }
#  undef KERNEL_SPAN_SEC_TYPE
#endif /* defined(__NR_futex) */

  /* We can't end up here because of the checks above */
  g_assert_not_reached ();
}

#endif

  /* {{{1 Epilogue */
/* vim:set foldmethod=marker: */