1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
# Migration Style Guide
When writing migrations for GitLab, you have to take into account that
these will be ran by hundreds of thousands of organizations of all sizes, some with
many years of data in their database.
In addition, having to take a server offline for a a upgrade small or big is a
big burden for most organizations. For this reason it is important that your
migrations are written carefully, can be applied online and adhere to the style
guide below.
Migrations are **not** allowed to require GitLab installations to be taken
offline unless _absolutely necessary_. Downtime assumptions should be based on
the behaviour of a migration when performed using PostgreSQL, as various
operations in MySQL may require downtime without there being alternatives.
When downtime is necessary the migration has to be approved by:
1. The VP of Engineering
1. A Backend Lead
1. A Database Specialist
An up-to-date list of people holding these titles can be found at
<https://about.gitlab.com/team/>.
The document ["What Requires Downtime?"](what_requires_downtime.md) specifies
various database operations, whether they require downtime and how to
work around that whenever possible.
When writing your migrations, also consider that databases might have stale data
or inconsistencies and guard for that. Try to make as few assumptions as
possible about the state of the database.
Please don't depend on GitLab-specific code since it can change in future
versions. If needed copy-paste GitLab code into the migration to make it forward
compatible.
## Commit Guidelines
Each migration **must** be added in its own commit with a descriptive commit
message. If a commit adds a migration it _should only_ include the migration and
any corresponding changes to `db/schema.rb`. This makes it easy to revert a
database migration without accidentally reverting other changes.
## Downtime Tagging
Every migration must specify if it requires downtime or not, and if it should
require downtime it must also specify a reason for this. This is required even
if 99% of the migrations won't require downtime as this makes it easier to find
the migrations that _do_ require downtime.
To tag a migration, add the following two constants to the migration class'
body:
* `DOWNTIME`: a boolean that when set to `true` indicates the migration requires
downtime.
* `DOWNTIME_REASON`: a String containing the reason for the migration requiring
downtime. This constant **must** be set when `DOWNTIME` is set to `true`.
For example:
```ruby
class MyMigration < ActiveRecord::Migration
DOWNTIME = true
DOWNTIME_REASON = 'This migration requires downtime because ...'
def change
...
end
end
```
It is an error (that is, CI will fail) if the `DOWNTIME` constant is missing
from a migration class.
## Reversibility
Your migration **must be** reversible. This is very important, as it should
be possible to downgrade in case of a vulnerability or bugs.
In your migration, add a comment describing how the reversibility of the
migration was tested.
## Multi Threading
Sometimes a migration might need to use multiple Ruby threads to speed up a
migration. For this to work your migration needs to include the module
`Gitlab::Database::MultiThreadedMigration`:
```ruby
class MyMigration < ActiveRecord::Migration
include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration
end
```
You can then use the method `with_multiple_threads` to perform work in separate
threads. For example:
```ruby
class MyMigration < ActiveRecord::Migration
include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration
def up
with_multiple_threads(4) do
disable_statement_timeout
# ...
end
end
end
```
Here the call to `disable_statement_timeout` will use the connection local to
the `with_multiple_threads` block, instead of re-using the global connection
pool. This ensures each thread has its own connection object, and won't time
out when trying to obtain one.
**NOTE:** PostgreSQL has a maximum amount of connections that it allows. This
limit can vary from installation to installation. As a result it's recommended
you do not use more than 32 threads in a single migration. Usually 4-8 threads
should be more than enough.
## Removing indices
When removing an index make sure to use the method `remove_concurrent_index` instead
of the regular `remove_index` method. The `remove_concurrent_index` method
automatically drops concurrent indexes when using PostgreSQL, removing the
need for downtime. To use this method you must disable transactions by calling
the method `disable_ddl_transaction!` in the body of your migration class like
so:
```ruby
class MyMigration < ActiveRecord::Migration
include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!
def up
remove_concurrent_index :table_name, :column_name if index_exists?(:table_name, :column_name)
end
end
```
## Adding indices
If you need to add a unique index please keep in mind there is the possibility
of existing duplicates being present in the database. This means that should
always _first_ add a migration that removes any duplicates, before adding the
unique index.
When adding an index make sure to use the method `add_concurrent_index` instead
of the regular `add_index` method. The `add_concurrent_index` method
automatically creates concurrent indexes when using PostgreSQL, removing the
need for downtime. To use this method you must disable transactions by calling
the method `disable_ddl_transaction!` in the body of your migration class like
so:
```ruby
class MyMigration < ActiveRecord::Migration
include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!
def up
add_concurrent_index :table, :column
end
def down
remove_index :table, :column if index_exists?(:table, :column)
end
end
```
## Adding Columns With Default Values
When adding columns with default values you must use the method
`add_column_with_default`. This method ensures the table is updated without
requiring downtime. This method is not reversible so you must manually define
the `up` and `down` methods in your migration class.
For example, to add the column `foo` to the `projects` table with a default
value of `10` you'd write the following:
```ruby
class MyMigration < ActiveRecord::Migration
include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!
def up
add_column_with_default(:projects, :foo, :integer, default: 10)
end
def down
remove_column(:projects, :foo)
end
end
```
Keep in mind that this operation can easily take 10-15 minutes to complete on
larger installations (e.g. GitLab.com). As a result you should only add default
values if absolutely necessary.
## Integer column type
By default, an integer column can hold up to a 4-byte (32-bit) number. That is
a max value of 2,147,483,647. Be aware of this when creating a column that will
hold file sizes in byte units. If you are tracking file size in bytes this
restricts the maximum file size to just over 2GB.
To allow an integer column to hold up to an 8-byte (64-bit) number, explicitly
set the limit to 8-bytes. This will allow the column to hold a value up to
9,223,372,036,854,775,807.
Rails migration example:
```ruby
add_column_with_default(:projects, :foo, :integer, default: 10, limit: 8)
# or
add_column(:projects, :foo, :integer, default: 10, limit: 8)
```
## Testing
Make sure that your migration works with MySQL and PostgreSQL with data. An
empty database does not guarantee that your migration is correct.
Make sure your migration can be reversed.
## Data migration
Please prefer Arel and plain SQL over usual ActiveRecord syntax. In case of
using plain SQL you need to quote all input manually with `quote_string` helper.
Example with Arel:
```ruby
users = Arel::Table.new(:users)
users.group(users[:user_id]).having(users[:id].count.gt(5))
#update other tables with these results
```
Example with plain SQL and `quote_string` helper:
```ruby
select_all("SELECT name, COUNT(id) as cnt FROM tags GROUP BY name HAVING COUNT(id) > 1").each do |tag|
tag_name = quote_string(tag["name"])
duplicate_ids = select_all("SELECT id FROM tags WHERE name = '#{tag_name}'").map{|tag| tag["id"]}
origin_tag_id = duplicate_ids.first
duplicate_ids.delete origin_tag_id
execute("UPDATE taggings SET tag_id = #{origin_tag_id} WHERE tag_id IN(#{duplicate_ids.join(",")})")
execute("DELETE FROM tags WHERE id IN(#{duplicate_ids.join(",")})")
end
```
If you need more complex logic you can define and use models local to a
migration. For example:
```ruby
class MyMigration < ActiveRecord::Migration
class Project < ActiveRecord::Base
self.table_name = 'projects'
end
end
```
When doing so be sure to explicitly set the model's table name so it's not
derived from the class name or namespace.
|