summaryrefslogtreecommitdiff
path: root/gettext-tools/gnulib-lib/hash.c
blob: 4202f79b1fb9ec1ecf0452462541dc1f46cd9eb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* hash - implement simple hashing table with string based keys.
   Copyright (C) 1994-1995, 2000-2006, 2015-2016 Free Software Foundation, Inc.
   Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, October 1994.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include "hash.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <sys/types.h>

/* Since this simple implementation of hash tables allows only insertion, no
   removal of entries, the right data structure for the memory holding all keys
   is an obstack.  */
#include "obstack.h"

/* Use checked memory allocation.  */
#include "xalloc.h"

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free


typedef struct hash_entry
{
  unsigned long used;  /* Hash code of the key, or 0 for an unused entry.  */
  const void *key;     /* Key.  */
  size_t keylen;
  void *data;          /* Value.  */
  struct hash_entry *next;
}
hash_entry;


/* Given an odd CANDIDATE > 1, return true if it is a prime number.  */
static int
is_prime (unsigned long int candidate)
{
  /* No even number and none less than 10 will be passed here.  */
  unsigned long int divn = 3;
  unsigned long int sq = divn * divn;

  while (sq < candidate && candidate % divn != 0)
    {
      ++divn;
      sq += 4 * divn;
      ++divn;
    }

  return candidate % divn != 0;
}


/* Given SEED > 1, return the smallest odd prime number >= SEED.  */
unsigned long
next_prime (unsigned long int seed)
{
  /* Make it definitely odd.  */
  seed |= 1;

  while (!is_prime (seed))
    seed += 2;

  return seed;
}


/* Initialize a hash table.  INIT_SIZE > 1 is the initial number of available
   entries.
   Return 0 upon successful completion, -1 upon memory allocation error.  */
int
hash_init (hash_table *htab, unsigned long int init_size)
{
  /* We need the size to be a prime.  */
  init_size = next_prime (init_size);

  /* Initialize the data structure.  */
  htab->size = init_size;
  htab->filled = 0;
  htab->first = NULL;
  htab->table = XCALLOC (init_size + 1, hash_entry);

  obstack_init (&htab->mem_pool);

  return 0;
}


/* Delete a hash table's contents.
   Return 0 always.  */
int
hash_destroy (hash_table *htab)
{
  free (htab->table);
  obstack_free (&htab->mem_pool, NULL);
  return 0;
}


/* Compute a hash code for a key consisting of KEYLEN bytes starting at KEY
   in memory.  */
static unsigned long
compute_hashval (const void *key, size_t keylen)
{
  size_t cnt;
  unsigned long int hval;

  /* Compute the hash value for the given string.  The algorithm
     is taken from [Aho,Sethi,Ullman], fixed according to
     http://www.haible.de/bruno/hashfunc.html.  */
  cnt = 0;
  hval = keylen;
  while (cnt < keylen)
    {
      hval = (hval << 9) | (hval >> (sizeof (unsigned long) * CHAR_BIT - 9));
      hval += (unsigned long int) *(((const char *) key) + cnt++);
    }
  return hval != 0 ? hval : ~((unsigned long) 0);
}


/* References:
   [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
   [Knuth]            The Art of Computer Programming, part3 (6.4) */

/* Look up a given key in the hash table.
   Return the index of the entry, if present, or otherwise the index a free
   entry where it could be inserted.  */
static size_t
lookup (hash_table *htab,
        const void *key, size_t keylen,
        unsigned long int hval)
{
  unsigned long int hash;
  size_t idx;
  hash_entry *table = htab->table;

  /* First hash function: simply take the modul but prevent zero.  */
  hash = 1 + hval % htab->size;

  idx = hash;

  if (table[idx].used)
    {
      if (table[idx].used == hval && table[idx].keylen == keylen
          && memcmp (table[idx].key, key, keylen) == 0)
        return idx;

      /* Second hash function as suggested in [Knuth].  */
      hash = 1 + hval % (htab->size - 2);

      do
        {
          if (idx <= hash)
            idx = htab->size + idx - hash;
          else
            idx -= hash;

          /* If entry is found use it.  */
          if (table[idx].used == hval && table[idx].keylen == keylen
              && memcmp (table[idx].key, key, keylen) == 0)
            return idx;
        }
      while (table[idx].used);
    }
  return idx;
}


/* Look up the value of a key in the given table.
   If found, return 0 and set *RESULT to it.  Otherwise return -1.  */
int
hash_find_entry (hash_table *htab, const void *key, size_t keylen,
                 void **result)
{
  hash_entry *table = htab->table;
  size_t idx = lookup (htab, key, keylen, compute_hashval (key, keylen));

  if (table[idx].used == 0)
    return -1;

  *result = table[idx].data;
  return 0;
}


/* Insert the pair (KEY[0..KEYLEN-1], DATA) in the hash table at index IDX.
   HVAL is the key's hash code.  IDX depends on it.  The table entry at index
   IDX is known to be unused.  */
static void
insert_entry_2 (hash_table *htab,
                const void *key, size_t keylen,
                unsigned long int hval, size_t idx, void *data)
{
  hash_entry *table = htab->table;

  table[idx].used = hval;
  table[idx].key = key;
  table[idx].keylen = keylen;
  table[idx].data = data;

  /* List the new value in the list.  */
  if (htab->first == NULL)
    {
      table[idx].next = &table[idx];
      htab->first = &table[idx];
    }
  else
    {
      table[idx].next = htab->first->next;
      htab->first->next = &table[idx];
      htab->first = &table[idx];
    }

  ++htab->filled;
}


/* Grow the hash table.  */
static void
resize (hash_table *htab)
{
  unsigned long int old_size = htab->size;
  hash_entry *table = htab->table;
  size_t idx;

  htab->size = next_prime (htab->size * 2);
  htab->filled = 0;
  htab->first = NULL;
  htab->table = XCALLOC (1 + htab->size, hash_entry);

  for (idx = 1; idx <= old_size; ++idx)
    if (table[idx].used)
      insert_entry_2 (htab, table[idx].key, table[idx].keylen,
                      table[idx].used,
                      lookup (htab, table[idx].key, table[idx].keylen,
                              table[idx].used),
                      table[idx].data);

  free (table);
}


/* Try to insert the pair (KEY[0..KEYLEN-1], DATA) in the hash table.
   Return non-NULL (more precisely, the address of the KEY inside the table's
   memory pool) if successful, or NULL if there is already an entry with the
   given key.  */
const void *
hash_insert_entry (hash_table *htab,
                   const void *key, size_t keylen,
                   void *data)
{
  unsigned long int hval = compute_hashval (key, keylen);
  hash_entry *table = htab->table;
  size_t idx = lookup (htab, key, keylen, hval);

  if (table[idx].used)
    /* We don't want to overwrite the old value.  */
    return NULL;
  else
    {
      /* An empty bucket has been found.  */
      void *keycopy = obstack_copy (&htab->mem_pool, key, keylen);
      insert_entry_2 (htab, keycopy, keylen, hval, idx, data);
      if (100 * htab->filled > 75 * htab->size)
        /* Table is filled more than 75%.  Resize the table.  */
        resize (htab);
      return keycopy;
    }
}


/* Insert the pair (KEY[0..KEYLEN-1], DATA) in the hash table.
   Return 0.  */
int
hash_set_value (hash_table *htab,
                const void *key, size_t keylen,
                void *data)
{
  unsigned long int hval = compute_hashval (key, keylen);
  hash_entry *table = htab->table;
  size_t idx = lookup (htab, key, keylen, hval);

  if (table[idx].used)
    {
      /* Overwrite the old value.  */
      table[idx].data = data;
      return 0;
    }
  else
    {
      /* An empty bucket has been found.  */
      void *keycopy = obstack_copy (&htab->mem_pool, key, keylen);
      insert_entry_2 (htab, keycopy, keylen, hval, idx, data);
      if (100 * htab->filled > 75 * htab->size)
        /* Table is filled more than 75%.  Resize the table.  */
        resize (htab);
      return 0;
    }
}


/* Steps *PTR forward to the next used entry in the given hash table.  *PTR
   should be initially set to NULL.  Store information about the next entry
   in *KEY, *KEYLEN, *DATA.
   Return 0 normally, -1 when the whole hash table has been traversed.  */
int
hash_iterate (hash_table *htab, void **ptr, const void **key, size_t *keylen,
              void **data)
{
  hash_entry *curr;

  if (*ptr == NULL)
    {
      if (htab->first == NULL)
        return -1;
      curr = htab->first;
    }
  else
    {
      if (*ptr == htab->first)
        return -1;
      curr = (hash_entry *) *ptr;
    }
  curr = curr->next;
  *ptr = (void *) curr;

  *key = curr->key;
  *keylen = curr->keylen;
  *data = curr->data;
  return 0;
}


/* Steps *PTR forward to the next used entry in the given hash table.  *PTR
   should be initially set to NULL.  Store information about the next entry
   in *KEY, *KEYLEN, *DATAP.  *DATAP is set to point to the storage of the
   value; modifying **DATAP will modify the value of the entry.
   Return 0 normally, -1 when the whole hash table has been traversed.  */
int
hash_iterate_modify (hash_table *htab, void **ptr,
                     const void **key, size_t *keylen,
                     void ***datap)
{
  hash_entry *curr;

  if (*ptr == NULL)
    {
      if (htab->first == NULL)
        return -1;
      curr = htab->first;
    }
  else
    {
      if (*ptr == htab->first)
        return -1;
      curr = (hash_entry *) *ptr;
    }
  curr = curr->next;
  *ptr = (void *) curr;

  *key = curr->key;
  *keylen = curr->keylen;
  *datap = &curr->data;
  return 0;
}