summaryrefslogtreecommitdiff
path: root/libstdc++-v3/src/c++17/ryu/f2s.c
blob: 5e635958aa19d9ee61629ec94f7bed9a2fc1115f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.



#ifdef RYU_DEBUG
#endif


#define FLOAT_MANTISSA_BITS 23
#define FLOAT_EXPONENT_BITS 8
#define FLOAT_BIAS 127

// A floating decimal representing m * 10^e.
typedef struct floating_decimal_32 {
  uint32_t mantissa;
  // Decimal exponent's range is -45 to 38
  // inclusive, and can fit in a short if needed.
  int32_t exponent;
  bool sign;
} floating_decimal_32;

static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
  int32_t e2;
  uint32_t m2;
  if (ieeeExponent == 0) {
    // We subtract 2 so that the bounds computation has 2 additional bits.
    e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
    m2 = ieeeMantissa;
  } else {
    e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
    m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
  }
  const bool even = (m2 & 1) == 0;
  const bool acceptBounds = even;

#ifdef RYU_DEBUG
  printf("-> %u * 2^%d\n", m2, e2 + 2);
#endif

  // Step 2: Determine the interval of valid decimal representations.
  const uint32_t mv = 4 * m2;
  const uint32_t mp = 4 * m2 + 2;
  // Implicit bool -> int conversion. True is 1, false is 0.
  const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
  const uint32_t mm = 4 * m2 - 1 - mmShift;

  // Step 3: Convert to a decimal power base using 64-bit arithmetic.
  uint32_t vr, vp, vm;
  int32_t e10;
  bool vmIsTrailingZeros = false;
  bool vrIsTrailingZeros = false;
  uint8_t lastRemovedDigit = 0;
  if (e2 >= 0) {
    const uint32_t q = log10Pow2(e2);
    e10 = (int32_t) q;
    const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
    const int32_t i = -e2 + (int32_t) q + k;
    vr = mulPow5InvDivPow2(mv, q, i);
    vp = mulPow5InvDivPow2(mp, q, i);
    vm = mulPow5InvDivPow2(mm, q, i);
#ifdef RYU_DEBUG
    printf("%u * 2^%d / 10^%u\n", mv, e2, q);
    printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
#endif
    if (q != 0 && (vp - 1) / 10 <= vm / 10) {
      // We need to know one removed digit even if we are not going to loop below. We could use
      // q = X - 1 above, except that would require 33 bits for the result, and we've found that
      // 32-bit arithmetic is faster even on 64-bit machines.
      const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1;
      lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10);
    }
    if (q <= 9) {
      // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
      // Only one of mp, mv, and mm can be a multiple of 5, if any.
      if (mv % 5 == 0) {
        vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q);
      } else if (acceptBounds) {
        vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q);
      } else {
        vp -= multipleOfPowerOf5_32(mp, q);
      }
    }
  } else {
    const uint32_t q = log10Pow5(-e2);
    e10 = (int32_t) q + e2;
    const int32_t i = -e2 - (int32_t) q;
    const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
    int32_t j = (int32_t) q - k;
    vr = mulPow5divPow2(mv, (uint32_t) i, j);
    vp = mulPow5divPow2(mp, (uint32_t) i, j);
    vm = mulPow5divPow2(mm, (uint32_t) i, j);
#ifdef RYU_DEBUG
    printf("%u * 5^%d / 10^%u\n", mv, -e2, q);
    printf("%u %d %d %d\n", q, i, k, j);
    printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
#endif
    if (q != 0 && (vp - 1) / 10 <= vm / 10) {
      j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
      lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10);
    }
    if (q <= 1) {
      // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
      // mv = 4 * m2, so it always has at least two trailing 0 bits.
      vrIsTrailingZeros = true;
      if (acceptBounds) {
        // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
        vmIsTrailingZeros = mmShift == 1;
      } else {
        // mp = mv + 2, so it always has at least one trailing 0 bit.
        --vp;
      }
    } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here.
      vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1);
#ifdef RYU_DEBUG
      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    }
  }
#ifdef RYU_DEBUG
  printf("e10=%d\n", e10);
  printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
  printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
  printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif

  // Step 4: Find the shortest decimal representation in the interval of valid representations.
  int32_t removed = 0;
  uint32_t output;
  if (vmIsTrailingZeros || vrIsTrailingZeros) {
    // General case, which happens rarely (~4.0%).
    while (vp / 10 > vm / 10) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106
      // The compiler does not realize that vm % 10 can be computed from vm / 10
      // as vm - (vm / 10) * 10.
      vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
#else
      vmIsTrailingZeros &= vm % 10 == 0;
#endif
      vrIsTrailingZeros &= lastRemovedDigit == 0;
      lastRemovedDigit = (uint8_t) (vr % 10);
      vr /= 10;
      vp /= 10;
      vm /= 10;
      ++removed;
    }
#ifdef RYU_DEBUG
    printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
    printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
    if (vmIsTrailingZeros) {
      while (vm % 10 == 0) {
        vrIsTrailingZeros &= lastRemovedDigit == 0;
        lastRemovedDigit = (uint8_t) (vr % 10);
        vr /= 10;
        vp /= 10;
        vm /= 10;
        ++removed;
      }
    }
#ifdef RYU_DEBUG
    printf("%u %d\n", vr, lastRemovedDigit);
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
      // Round even if the exact number is .....50..0.
      lastRemovedDigit = 4;
    }
    // We need to take vr + 1 if vr is outside bounds or we need to round up.
    output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
  } else {
    // Specialized for the common case (~96.0%). Percentages below are relative to this.
    // Loop iterations below (approximately):
    // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
    while (vp / 10 > vm / 10) {
      lastRemovedDigit = (uint8_t) (vr % 10);
      vr /= 10;
      vp /= 10;
      vm /= 10;
      ++removed;
    }
#ifdef RYU_DEBUG
    printf("%u %d\n", vr, lastRemovedDigit);
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    // We need to take vr + 1 if vr is outside bounds or we need to round up.
    output = vr + (vr == vm || lastRemovedDigit >= 5);
  }
  const int32_t exp = e10 + removed;

#ifdef RYU_DEBUG
  printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
  printf("O=%u\n", output);
  printf("EXP=%d\n", exp);
#endif

  floating_decimal_32 fd;
  fd.exponent = exp;
  fd.mantissa = output;
  fd.sign = ieeeSign;
  return fd;
}

static inline int to_chars(const floating_decimal_32 v, char* const result) {
  // Step 5: Print the decimal representation.
  int index = 0;
  if (v.sign) {
    result[index++] = '-';
  }

  uint32_t output = v.mantissa;
  const uint32_t olength = decimalLength9(output);

#ifdef RYU_DEBUG
  printf("DIGITS=%u\n", v.mantissa);
  printf("OLEN=%u\n", olength);
  printf("EXP=%u\n", v.exponent + olength);
#endif

  // Print the decimal digits.
  // The following code is equivalent to:
  // for (uint32_t i = 0; i < olength - 1; ++i) {
  //   const uint32_t c = output % 10; output /= 10;
  //   result[index + olength - i] = (char) ('0' + c);
  // }
  // result[index] = '0' + output % 10;
  uint32_t i = 0;
  while (output >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
    const uint32_t c = output - 10000 * (output / 10000);
#else
    const uint32_t c = output % 10000;
#endif
    output /= 10000;
    const uint32_t c0 = (c % 100) << 1;
    const uint32_t c1 = (c / 100) << 1;
    memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
    memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
    i += 4;
  }
  if (output >= 100) {
    const uint32_t c = (output % 100) << 1;
    output /= 100;
    memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
    i += 2;
  }
  if (output >= 10) {
    const uint32_t c = output << 1;
    // We can't use memcpy here: the decimal dot goes between these two digits.
    result[index + olength - i] = DIGIT_TABLE[c + 1];
    result[index] = DIGIT_TABLE[c];
  } else {
    result[index] = (char) ('0' + output);
  }

  // Print decimal point if needed.
  if (olength > 1) {
    result[index + 1] = '.';
    index += olength + 1;
  } else {
    ++index;
  }

  // Print the exponent.
  result[index++] = 'e';
  int32_t exp = v.exponent + (int32_t) olength - 1;
  if (exp < 0) {
    result[index++] = '-';
    exp = -exp;
  } else {
    result[index++] = '+';
  }

  memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
  index += 2;

  return index;
}

floating_decimal_32 floating_to_fd32(float f) {
  // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
  const uint32_t bits = float_to_bits(f);

#ifdef RYU_DEBUG
  printf("IN=");
  for (int32_t bit = 31; bit >= 0; --bit) {
    printf("%u", (bits >> bit) & 1);
  }
  printf("\n");
#endif

  // Decode bits into sign, mantissa, and exponent.
  const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
  const uint32_t ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
  const uint32_t ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);

  // Case distinction; exit early for the easy cases.
  if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
    __builtin_abort();
  }

  const floating_decimal_32 v = f2d(ieeeMantissa, ieeeExponent, ieeeSign);
  return v;
}