1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#ifndef RYU_D2S_INTRINSICS_H
#define RYU_D2S_INTRINSICS_H
// Defines RYU_32_BIT_PLATFORM if applicable.
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
// Let's do the same for now.
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
#define HAS_UINT128
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define HAS_64_BIT_INTRINSICS
#endif
#if defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
return _umul128(a, b, productHi);
}
// Returns the lower 64 bits of (hi*2^64 + lo) >> dist, with 0 < dist < 64.
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// For the __shiftright128 intrinsic, the shift value is always
// modulo 64.
// In the current implementation of the double-precision version
// of Ryu, the shift value is always < 64. (In the case
// RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
// Otherwise in the range [2, 59].)
// However, this function is now also called by s2d, which requires supporting
// the larger shift range (TODO: what is the actual range?).
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert(dist < 64);
return __shiftright128(lo, hi, (unsigned char) dist);
}
#else // defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
// The casts here help MSVC to avoid calls to the __allmul library function.
const uint32_t aLo = (uint32_t)a;
const uint32_t aHi = (uint32_t)(a >> 32);
const uint32_t bLo = (uint32_t)b;
const uint32_t bHi = (uint32_t)(b >> 32);
const uint64_t b00 = (uint64_t)aLo * bLo;
const uint64_t b01 = (uint64_t)aLo * bHi;
const uint64_t b10 = (uint64_t)aHi * bLo;
const uint64_t b11 = (uint64_t)aHi * bHi;
const uint32_t b00Lo = (uint32_t)b00;
const uint32_t b00Hi = (uint32_t)(b00 >> 32);
const uint64_t mid1 = b10 + b00Hi;
const uint32_t mid1Lo = (uint32_t)(mid1);
const uint32_t mid1Hi = (uint32_t)(mid1 >> 32);
const uint64_t mid2 = b01 + mid1Lo;
const uint32_t mid2Lo = (uint32_t)(mid2);
const uint32_t mid2Hi = (uint32_t)(mid2 >> 32);
const uint64_t pHi = b11 + mid1Hi + mid2Hi;
const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo;
*productHi = pHi;
return pLo;
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// We don't need to handle the case dist >= 64 here (see above).
assert(dist < 64);
assert(dist > 0);
return (hi << (64 - dist)) | (lo >> dist);
}
#endif // defined(HAS_64_BIT_INTRINSICS)
#if defined(RYU_32_BIT_PLATFORM)
// Returns the high 64 bits of the 128-bit product of a and b.
static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
// Reuse the umul128 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
uint64_t hi;
umul128(a, b, &hi);
return hi;
}
// On 32-bit platforms, compilers typically generate calls to library
// functions for 64-bit divisions, even if the divisor is a constant.
//
// E.g.:
// https://bugs.llvm.org/show_bug.cgi?id=37932
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
//
// The functions here perform division-by-constant using multiplications
// in the same way as 64-bit compilers would do.
//
// NB:
// The multipliers and shift values are the ones generated by clang x64
// for expressions like x/5, x/10, etc.
static inline uint64_t div5(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
}
static inline uint64_t div10(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
}
static inline uint64_t div100(const uint64_t x) {
return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
}
static inline uint64_t div1e8(const uint64_t x) {
return umulh(x, 0xABCC77118461CEFDu) >> 26;
}
static inline uint64_t div1e9(const uint64_t x) {
return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
}
static inline uint32_t mod1e9(const uint64_t x) {
// Avoid 64-bit math as much as possible.
// Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
// perform 32x64-bit multiplication and 64-bit subtraction.
// x and 1000000000 * div1e9(x) are guaranteed to differ by
// less than 10^9, so their highest 32 bits must be identical,
// so we can truncate both sides to uint32_t before subtracting.
// We can also simplify (uint32_t) (1000000000 * div1e9(x)).
// We can truncate before multiplying instead of after, as multiplying
// the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
}
#else // defined(RYU_32_BIT_PLATFORM)
static inline uint64_t div5(const uint64_t x) {
return x / 5;
}
static inline uint64_t div10(const uint64_t x) {
return x / 10;
}
static inline uint64_t div100(const uint64_t x) {
return x / 100;
}
static inline uint64_t div1e8(const uint64_t x) {
return x / 100000000;
}
static inline uint64_t div1e9(const uint64_t x) {
return x / 1000000000;
}
static inline uint32_t mod1e9(const uint64_t x) {
return (uint32_t) (x - 1000000000 * div1e9(x));
}
#endif // defined(RYU_32_BIT_PLATFORM)
static inline uint32_t pow5Factor(uint64_t value) {
const uint64_t m_inv_5 = 14757395258967641293u; // 5 * m_inv_5 = 1 (mod 2^64)
const uint64_t n_div_5 = 3689348814741910323u; // #{ n | n = 0 (mod 2^64) } = 2^64 / 5
uint32_t count = 0;
for (;;) {
assert(value != 0);
value *= m_inv_5;
if (value > n_div_5)
break;
++count;
}
return count;
}
// Returns true if value is divisible by 5^p.
static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
// I tried a case distinction on p, but there was no performance difference.
return pow5Factor(value) >= p;
}
// Returns true if value is divisible by 2^p.
static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
assert(value != 0);
assert(p < 64);
// __builtin_ctzll doesn't appear to be faster here.
return (value & ((1ull << p) - 1)) == 0;
}
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
// Multiplication:
// The 64-bit factor is variable and passed in, the 128-bit factor comes
// from a lookup table. We know that the 64-bit factor only has 55
// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
// factor only has 124 significant bits (i.e., the 4 topmost bits are
// zeros).
// Shift:
// In principle, the multiplication result requires 55 + 124 = 179 bits to
// represent. However, we then shift this value to the right by j, which is
// at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
// bits. This means that we only need the topmost 64 significant bits of
// the 64x128-bit multiplication.
//
// There are several ways to do this:
// 1. Best case: the compiler exposes a 128-bit type.
// We perform two 64x64-bit multiplications, add the higher 64 bits of the
// lower result to the higher result, and shift by j - 64 bits.
//
// We explicitly cast from 64-bit to 128-bit, so the compiler can tell
// that these are only 64-bit inputs, and can map these to the best
// possible sequence of assembly instructions.
// x64 machines happen to have matching assembly instructions for
// 64x64-bit multiplications and 128-bit shifts.
//
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
// instructions mentioned in 1.
//
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
// the result, i.e., we have to use plain C.
// Our inputs are less than the full width, so we have three options:
// a. Ignore this fact and just implement the intrinsics manually.
// b. Split both into 31-bit pieces, which guarantees no internal overflow,
// but requires extra work upfront (unless we change the lookup table).
// c. Split only the first factor into 31-bit pieces, which also guarantees
// no internal overflow, but requires extra work since the intermediate
// results are not perfectly aligned.
#if defined(HAS_UINT128)
// Best case: use 128-bit type.
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
const uint128_t b0 = ((uint128_t) m) * mul[0];
const uint128_t b2 = ((uint128_t) m) * mul[1];
return (uint64_t) (((b0 >> 64) + b2) >> (j - 64));
}
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
// m <<= 2;
// uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
// uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
//
// uint128_t hi = (b0 >> 64) + b2;
// uint128_t lo = b0 & 0xffffffffffffffffull;
// uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
// uint128_t vpLo = lo + (factor << 1);
// *vp = (uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
// uint128_t vmLo = lo - (factor << mmShift);
// *vm = (uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
// return (uint64_t) (hi >> (j - 64));
*vp = mulShift64(4 * m + 2, mul, j);
*vm = mulShift64(4 * m - 1 - mmShift, mul, j);
return mulShift64(4 * m, mul, j);
}
#elif defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
// m is maximum 55 bits
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high0; // 64
umul128(m, mul[0], &high0); // 0
const uint64_t sum = high0 + low1;
if (sum < high0) {
++high1; // overflow into high1
}
return shiftright128(sum, high1, j - 64);
}
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
*vp = mulShift64(4 * m + 2, mul, j);
*vm = mulShift64(4 * m - 1 - mmShift, mul, j);
return mulShift64(4 * m, mul, j);
}
#else // !defined(HAS_UINT128) && !defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
// m is maximum 55 bits
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high0; // 64
umul128(m, mul[0], &high0); // 0
const uint64_t sum = high0 + low1;
if (sum < high0) {
++high1; // overflow into high1
}
return shiftright128(sum, high1, j - 64);
}
// This is faster if we don't have a 64x64->128-bit multiplication.
static inline uint64_t mulShiftAll64(uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
m <<= 1;
// m is maximum 55 bits
uint64_t tmp;
const uint64_t lo = umul128(m, mul[0], &tmp);
uint64_t hi;
const uint64_t mid = tmp + umul128(m, mul[1], &hi);
hi += mid < tmp; // overflow into hi
const uint64_t lo2 = lo + mul[0];
const uint64_t mid2 = mid + mul[1] + (lo2 < lo);
const uint64_t hi2 = hi + (mid2 < mid);
*vp = shiftright128(mid2, hi2, (uint32_t) (j - 64 - 1));
if (mmShift == 1) {
const uint64_t lo3 = lo - mul[0];
const uint64_t mid3 = mid - mul[1] - (lo3 > lo);
const uint64_t hi3 = hi - (mid3 > mid);
*vm = shiftright128(mid3, hi3, (uint32_t) (j - 64 - 1));
} else {
const uint64_t lo3 = lo + lo;
const uint64_t mid3 = mid + mid + (lo3 < lo);
const uint64_t hi3 = hi + hi + (mid3 < mid);
const uint64_t lo4 = lo3 - mul[0];
const uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
const uint64_t hi4 = hi3 - (mid4 > mid3);
*vm = shiftright128(mid4, hi4, (uint32_t) (j - 64));
}
return shiftright128(mid, hi, (uint32_t) (j - 64 - 1));
}
#endif // HAS_64_BIT_INTRINSICS
#endif // RYU_D2S_INTRINSICS_H
|