summaryrefslogtreecommitdiff
path: root/libstdc++-v3/src/c++17/ryu/d2s.c
blob: 3225808c463ddca258bf2ebf7202830dd26a90a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
//
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
//     depending on your compiler.
//
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
//     required power of 5, only store every 26th entry, and compute
//     intermediate values with a multiplication. This reduces the lookup table
//     size by about 10x (only one case, and only double) at the cost of some
//     performance. Currently requires MSVC intrinsics.



#ifdef RYU_DEBUG
#endif


// Include either the small or the full lookup tables depending on the mode.
#if defined(RYU_OPTIMIZE_SIZE)
#else
#endif

#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_BIAS 1023

static inline uint32_t decimalLength17(const uint64_t v) {
  // This is slightly faster than a loop.
  // The average output length is 16.38 digits, so we check high-to-low.
  // Function precondition: v is not an 18, 19, or 20-digit number.
  // (17 digits are sufficient for round-tripping.)
  assert(v < 100000000000000000L);
  if (v >= 10000000000000000L) { return 17; }
  if (v >= 1000000000000000L) { return 16; }
  if (v >= 100000000000000L) { return 15; }
  if (v >= 10000000000000L) { return 14; }
  if (v >= 1000000000000L) { return 13; }
  if (v >= 100000000000L) { return 12; }
  if (v >= 10000000000L) { return 11; }
  if (v >= 1000000000L) { return 10; }
  if (v >= 100000000L) { return 9; }
  if (v >= 10000000L) { return 8; }
  if (v >= 1000000L) { return 7; }
  if (v >= 100000L) { return 6; }
  if (v >= 10000L) { return 5; }
  if (v >= 1000L) { return 4; }
  if (v >= 100L) { return 3; }
  if (v >= 10L) { return 2; }
  return 1;
}

// A floating decimal representing m * 10^e.
typedef struct floating_decimal_64 {
  uint64_t mantissa;
  // Decimal exponent's range is -324 to 308
  // inclusive, and can fit in a short if needed.
  int32_t exponent;
  bool sign;
} floating_decimal_64;

static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
  int32_t e2;
  uint64_t m2;
  if (ieeeExponent == 0) {
    // We subtract 2 so that the bounds computation has 2 additional bits.
    e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
    m2 = ieeeMantissa;
  } else {
    e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
    m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
  }
  const bool even = (m2 & 1) == 0;
  const bool acceptBounds = even;

#ifdef RYU_DEBUG
  printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
#endif

  // Step 2: Determine the interval of valid decimal representations.
  const uint64_t mv = 4 * m2;
  // Implicit bool -> int conversion. True is 1, false is 0.
  const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
  // We would compute mp and mm like this:
  // uint64_t mp = 4 * m2 + 2;
  // uint64_t mm = mv - 1 - mmShift;

  // Step 3: Convert to a decimal power base using 128-bit arithmetic.
  uint64_t vr, vp, vm;
  int32_t e10;
  bool vmIsTrailingZeros = false;
  bool vrIsTrailingZeros = false;
  if (e2 >= 0) {
    // I tried special-casing q == 0, but there was no effect on performance.
    // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
    const uint32_t q = log10Pow2(e2) - (e2 > 3);
    e10 = (int32_t) q;
    const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
    const int32_t i = -e2 + (int32_t) q + k;
#if defined(RYU_OPTIMIZE_SIZE)
    uint64_t pow5[2];
    double_computeInvPow5(q, pow5);
    vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
#else
    vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
    printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
    if (q <= 21) {
      // This should use q <= 22, but I think 21 is also safe. Smaller values
      // may still be safe, but it's more difficult to reason about them.
      // Only one of mp, mv, and mm can be a multiple of 5, if any.
      const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
      if (mvMod5 == 0) {
        vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
      } else if (acceptBounds) {
        // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
        // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
        // <=> true && pow5Factor(mm) >= q, since e2 >= q.
        vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
      } else {
        // Same as min(e2 + 1, pow5Factor(mp)) >= q.
        vp -= multipleOfPowerOf5(mv + 2, q);
      }
    }
  } else {
    // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
    const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
    e10 = (int32_t) q + e2;
    const int32_t i = -e2 - (int32_t) q;
    const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
    const int32_t j = (int32_t) q - k;
#if defined(RYU_OPTIMIZE_SIZE)
    uint64_t pow5[2];
    double_computePow5(i, pow5);
    vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
#else
    vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
    printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
    printf("%u %d %d %d\n", q, i, k, j);
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
    if (q <= 1) {
      // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
      // mv = 4 * m2, so it always has at least two trailing 0 bits.
      vrIsTrailingZeros = true;
      if (acceptBounds) {
        // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
        vmIsTrailingZeros = mmShift == 1;
      } else {
        // mp = mv + 2, so it always has at least one trailing 0 bit.
        --vp;
      }
    } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
      // We want to know if the full product has at least q trailing zeros.
      // We need to compute min(p2(mv), p5(mv) - e2) >= q
      // <=> p2(mv) >= q && p5(mv) - e2 >= q
      // <=> p2(mv) >= q (because -e2 >= q)
      vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
#ifdef RYU_DEBUG
      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    }
  }
#ifdef RYU_DEBUG
  printf("e10=%d\n", e10);
  printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
  printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
  printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif

  // Step 4: Find the shortest decimal representation in the interval of valid representations.
  int32_t removed = 0;
  uint8_t lastRemovedDigit = 0;
  uint64_t output;
  // On average, we remove ~2 digits.
  if (vmIsTrailingZeros || vrIsTrailingZeros) {
    // General case, which happens rarely (~0.7%).
    for (;;) {
      const uint64_t vpDiv10 = div10(vp);
      const uint64_t vmDiv10 = div10(vm);
      if (vpDiv10 <= vmDiv10) {
        break;
      }
      const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
      const uint64_t vrDiv10 = div10(vr);
      const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
      vmIsTrailingZeros &= vmMod10 == 0;
      vrIsTrailingZeros &= lastRemovedDigit == 0;
      lastRemovedDigit = (uint8_t) vrMod10;
      vr = vrDiv10;
      vp = vpDiv10;
      vm = vmDiv10;
      ++removed;
    }
#ifdef RYU_DEBUG
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
    printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
    if (vmIsTrailingZeros) {
      for (;;) {
        const uint64_t vmDiv10 = div10(vm);
        const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
        if (vmMod10 != 0) {
          break;
        }
        const uint64_t vpDiv10 = div10(vp);
        const uint64_t vrDiv10 = div10(vr);
        const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
        vrIsTrailingZeros &= lastRemovedDigit == 0;
        lastRemovedDigit = (uint8_t) vrMod10;
        vr = vrDiv10;
        vp = vpDiv10;
        vm = vmDiv10;
        ++removed;
      }
    }
#ifdef RYU_DEBUG
    printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
      // Round even if the exact number is .....50..0.
      lastRemovedDigit = 4;
    }
    // We need to take vr + 1 if vr is outside bounds or we need to round up.
    output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
  } else {
    // Specialized for the common case (~99.3%). Percentages below are relative to this.
    bool roundUp = false;
    const uint64_t vpDiv100 = div100(vp);
    const uint64_t vmDiv100 = div100(vm);
    if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
      const uint64_t vrDiv100 = div100(vr);
      const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
      roundUp = vrMod100 >= 50;
      vr = vrDiv100;
      vp = vpDiv100;
      vm = vmDiv100;
      removed += 2;
    }
    // Loop iterations below (approximately), without optimization above:
    // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
    // Loop iterations below (approximately), with optimization above:
    // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
    for (;;) {
      const uint64_t vpDiv10 = div10(vp);
      const uint64_t vmDiv10 = div10(vm);
      if (vpDiv10 <= vmDiv10) {
        break;
      }
      const uint64_t vrDiv10 = div10(vr);
      const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
      roundUp = vrMod10 >= 5;
      vr = vrDiv10;
      vp = vpDiv10;
      vm = vmDiv10;
      ++removed;
    }
#ifdef RYU_DEBUG
    printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
    // We need to take vr + 1 if vr is outside bounds or we need to round up.
    output = vr + (vr == vm || roundUp);
  }
  const int32_t exp = e10 + removed;

#ifdef RYU_DEBUG
  printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
  printf("O=%" PRIu64 "\n", output);
  printf("EXP=%d\n", exp);
#endif

  floating_decimal_64 fd;
  fd.exponent = exp;
  fd.mantissa = output;
  fd.sign = ieeeSign;
  return fd;
}

static inline int to_chars(const floating_decimal_64 v, char* const result) {
  // Step 5: Print the decimal representation.
  int index = 0;
  if (v.sign) {
    result[index++] = '-';
  }

  uint64_t output = v.mantissa;
  const uint32_t olength = decimalLength17(output);

#ifdef RYU_DEBUG
  printf("DIGITS=%" PRIu64 "\n", v.mantissa);
  printf("OLEN=%u\n", olength);
  printf("EXP=%u\n", v.exponent + olength);
#endif

  // Print the decimal digits.
  // The following code is equivalent to:
  // for (uint32_t i = 0; i < olength - 1; ++i) {
  //   const uint32_t c = output % 10; output /= 10;
  //   result[index + olength - i] = (char) ('0' + c);
  // }
  // result[index] = '0' + output % 10;

  uint32_t i = 0;
  // We prefer 32-bit operations, even on 64-bit platforms.
  // We have at most 17 digits, and uint32_t can store 9 digits.
  // If output doesn't fit into uint32_t, we cut off 8 digits,
  // so the rest will fit into uint32_t.
  if ((output >> 32) != 0) {
    // Expensive 64-bit division.
    const uint64_t q = div1e8(output);
    uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
    output = q;

    const uint32_t c = output2 % 10000;
    output2 /= 10000;
    const uint32_t d = output2 % 10000;
    const uint32_t c0 = (c % 100) << 1;
    const uint32_t c1 = (c / 100) << 1;
    const uint32_t d0 = (d % 100) << 1;
    const uint32_t d1 = (d / 100) << 1;
    memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
    memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
    memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
    memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
    i += 8;
  }
  uint32_t output2 = (uint32_t) output;
  while (output2 >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
    const uint32_t c = output2 - 10000 * (output2 / 10000);
#else
    const uint32_t c = output2 % 10000;
#endif
    output2 /= 10000;
    const uint32_t c0 = (c % 100) << 1;
    const uint32_t c1 = (c / 100) << 1;
    memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
    memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
    i += 4;
  }
  if (output2 >= 100) {
    const uint32_t c = (output2 % 100) << 1;
    output2 /= 100;
    memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
    i += 2;
  }
  if (output2 >= 10) {
    const uint32_t c = output2 << 1;
    // We can't use memcpy here: the decimal dot goes between these two digits.
    result[index + olength - i] = DIGIT_TABLE[c + 1];
    result[index] = DIGIT_TABLE[c];
  } else {
    result[index] = (char) ('0' + output2);
  }

  // Print decimal point if needed.
  if (olength > 1) {
    result[index + 1] = '.';
    index += olength + 1;
  } else {
    ++index;
  }

  // Print the exponent.
  result[index++] = 'e';
  int32_t exp = v.exponent + (int32_t) olength - 1;
  if (exp < 0) {
    result[index++] = '-';
    exp = -exp;
  } else
    result[index++] = '+';

  if (exp >= 100) {
    const int32_t c = exp % 10;
    memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
    result[index + 2] = (char) ('0' + c);
    index += 3;
  } else {
    memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
    index += 2;
  }

  return index;
}

static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign,
  floating_decimal_64* const v) {
  const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
  const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;

  if (e2 > 0) {
    // f = m2 * 2^e2 >= 2^53 is an integer.
    // Ignore this case for now.
    return false;
  }

  if (e2 < -52) {
    // f < 1.
    return false;
  }

  // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
  // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
  const uint64_t mask = (1ull << -e2) - 1;
  const uint64_t fraction = m2 & mask;
  if (fraction != 0) {
    return false;
  }

  // f is an integer in the range [1, 2^53).
  // Note: mantissa might contain trailing (decimal) 0's.
  // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
  v->mantissa = m2 >> -e2;
  v->exponent = 0;
  v->sign = ieeeSign;
  return true;
}

floating_decimal_64 floating_to_fd64(double f) {
  // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
  const uint64_t bits = double_to_bits(f);

#ifdef RYU_DEBUG
  printf("IN=");
  for (int32_t bit = 63; bit >= 0; --bit) {
    printf("%d", (int) ((bits >> bit) & 1));
  }
  printf("\n");
#endif

  // Decode bits into sign, mantissa, and exponent.
  const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
  const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
  const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
  // Case distinction; exit early for the easy cases.
  if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
    __builtin_abort();
  }

  floating_decimal_64 v;
  const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, ieeeSign, &v);
  if (isSmallInt) {
    // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
    // For scientific notation we need to move these zeros into the exponent.
    // (This is not needed for fixed-point notation, so it might be beneficial to trim
    // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
    for (;;) {
      const uint64_t q = div10(v.mantissa);
      const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
      if (r != 0) {
        break;
      }
      v.mantissa = q;
      ++v.exponent;
    }
  } else {
    v = d2d(ieeeMantissa, ieeeExponent, ieeeSign);
  }

  return v;
}