summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/modified_bessel_func.tcc
blob: 98aab8d4f97038e99f388ca2f275d506954aeca5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// Special functions -*- C++ -*-

// Copyright (C) 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
//
// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file tr1/modified_bessel_func.tcc
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland.
//
// References:
//   (1) Handbook of Mathematical Functions,
//       Ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 9, pp. 355-434, Section 10 pp. 435-478
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 246-249.

#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1

#include "special_function_util.h"

namespace std
{
namespace tr1
{

  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {

    /**
     *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
     *           @f$ K_\nu(x) @f$ and their first derivatives
     *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
     *           These four functions are computed together for numerical
     *           stability.
     *
     *   @param  __nu  The order of the Bessel functions.
     *   @param  __x   The argument of the Bessel functions.
     *   @param  __Inu  The output regular modified Bessel function.
     *   @param  __Knu  The output irregular modified Bessel function.
     *   @param  __Ipnu  The output derivative of the regular
     *                   modified Bessel function.
     *   @param  __Kpnu  The output derivative of the irregular
     *                   modified Bessel function.
     */
    template <typename _Tp>
    void
    __bessel_ik(const _Tp __nu, const _Tp __x,
                _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
    {
      if (__x == _Tp(0))
        {
          if (__nu == _Tp(0))
            {
              __Inu = _Tp(1);
              __Ipnu = _Tp(0);
            }
          else if (__nu == _Tp(1))
            {
              __Inu = _Tp(0);
              __Ipnu = _Tp(0.5L);
            }
          else
            {
              __Inu = _Tp(0);
              __Ipnu = _Tp(0);
            }
          __Knu = std::numeric_limits<_Tp>::infinity();
          __Kpnu = -std::numeric_limits<_Tp>::infinity();
          return;
        }

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
      const int __max_iter = 15000;
      const _Tp __x_min = _Tp(2);

      const int __nl = static_cast<int>(__nu + _Tp(0.5L));

      const _Tp __mu = __nu - __nl;
      const _Tp __mu2 = __mu * __mu;
      const _Tp __xi = _Tp(1) / __x;
      const _Tp __xi2 = _Tp(2) * __xi;
      _Tp __h = __nu * __xi;
      if ( __h < __fp_min )
        __h = __fp_min;
      _Tp __b = __xi2 * __nu;
      _Tp __d = _Tp(0);
      _Tp __c = __h;
      int __i;
      for ( __i = 1; __i <= __max_iter; ++__i )
        {
          __b += __xi2;
          __d = _Tp(1) / (__b + __d);
          __c = __b + _Tp(1) / __c;
          const _Tp __del = __c * __d;
          __h *= __del;
          if (std::abs(__del - _Tp(1)) < __eps)
            break;
        }
      if (__i > __max_iter)
        std::__throw_runtime_error(__N("Argument x too large "
                                       "in __bessel_jn; "
                                       "try asymptotic expansion."));
      _Tp __Inul = __fp_min;
      _Tp __Ipnul = __h * __Inul;
      _Tp __Inul1 = __Inul;
      _Tp __Ipnu1 = __Ipnul;
      _Tp __fact = __nu * __xi;
      for (int __l = __nl; __l >= 1; --__l)
        {
          const _Tp __Inutemp = __fact * __Inul + __Ipnul;
          __fact -= __xi;
          __Ipnul = __fact * __Inutemp + __Inul;
          __Inul = __Inutemp;
        }
      _Tp __f = __Ipnul / __Inul;
      _Tp __Kmu, __Knu1;
      if (__x < __x_min)
        {
          const _Tp __x2 = __x / _Tp(2);
          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
          const _Tp __fact = (std::abs(__pimu) < __eps
                            ? _Tp(1) : __pimu / std::sin(__pimu));
          _Tp __d = -std::log(__x2);
          _Tp __e = __mu * __d;
          const _Tp __fact2 = (std::abs(__e) < __eps
                            ? _Tp(1) : std::sinh(__e) / __e);
          _Tp __gam1, __gam2, __gampl, __gammi;
          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
          _Tp __ff = __fact
                   * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
          _Tp __sum = __ff;
          __e = std::exp(__e);
          _Tp __p = __e / (_Tp(2) * __gampl);
          _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
          _Tp __c = _Tp(1);
          __d = __x2 * __x2;
          _Tp __sum1 = __p;
          int __i;
          for (__i = 1; __i <= __max_iter; ++__i)
            {
              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
              __c *= __d / __i;
              __p /= __i - __mu;
              __q /= __i + __mu;
              const _Tp __del = __c * __ff;
              __sum += __del; 
              const _Tp __del1 = __c * (__p - __i * __ff);
              __sum1 += __del1;
              if (std::abs(__del) < __eps * std::abs(__sum))
                break;
            }
          if (__i > __max_iter)
            std::__throw_runtime_error(__N("Bessel k series failed to converge "
                                           "in __bessel_jn."));
          __Kmu = __sum;
          __Knu1 = __sum1 * __xi2;
        }
      else
        {
          _Tp __b = _Tp(2) * (_Tp(1) + __x);
          _Tp __d = _Tp(1) / __b;
          _Tp __delh = __d;
          _Tp __h = __delh;
          _Tp __q1 = _Tp(0);
          _Tp __q2 = _Tp(1);
          _Tp __a1 = _Tp(0.25L) - __mu2;
          _Tp __q = __c = __a1;
          _Tp __a = -__a1;
          _Tp __s = _Tp(1) + __q * __delh;
          int __i;
          for (__i = 2; __i <= __max_iter; ++__i)
            {
              __a -= 2 * (__i - 1);
              __c = -__a * __c / __i;
              const _Tp __qnew = (__q1 - __b * __q2) / __a;
              __q1 = __q2;
              __q2 = __qnew;
              __q += __c * __qnew;
              __b += _Tp(2);
              __d = _Tp(1) / (__b + __a * __d);
              __delh = (__b * __d - _Tp(1)) * __delh;
              __h += __delh;
              const _Tp __dels = __q * __delh;
              __s += __dels;
              if ( std::abs(__dels / __s) < __eps )
                break;
            }
          if (__i > __max_iter)
            std::__throw_runtime_error(__N("Steed's method failed "
                                           "in __bessel_jn."));
          __h = __a1 * __h;
          __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
                * std::exp(-__x) / __s;
          __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
        }

      _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
      _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
      __Inu = __Inumu * __Inul1 / __Inul;
      __Ipnu = __Inumu * __Ipnu1 / __Inul;
      for ( __i = 1; __i <= __nl; ++__i )
        {
          const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
          __Kmu = __Knu1;
          __Knu1 = __Knutemp;
        }
      __Knu = __Kmu;
      __Kpnu = __nu * __xi * __Kmu - __Knu1;
  
      return;
    }


    /**
     *   @brief  Return the regular modified Bessel function of order
     *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
     *
     *   The regular modified cylindrical Bessel function is:
     *   @f[
     *    I_{\nu}(x) = \sum_{k=0}^{\infty}
     *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
     *   @f]
     *
     *   @param  __nu  The order of the regular modified Bessel function.
     *   @param  __x   The argument of the regular modified Bessel function.
     *   @return  The output regular modified Bessel function.
     */
    template<typename _Tp>
    _Tp
    __cyl_bessel_i(const _Tp __nu, const _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_bessel_i."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
        return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
      else
        {
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          return __I_nu;
        }
    }


    /**
     *   @brief  Return the irregular modified Bessel function
     *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
     *
     *   The irregular modified Bessel function is defined by:
     *   @f[
     *      K_{\nu}(x) = \frac{\pi}{2}
     *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
     *   @f]
     *   where for integral \f$ \nu = n \f$ a limit is taken:
     *   \f$ lim_{\nu \to n} \f$.
     *
     *   @param  __nu  The order of the irregular modified Bessel function.
     *   @param  __x   The argument of the irregular modified Bessel function.
     *   @return  The output irregular modified Bessel function.
     */
    template<typename _Tp>
    _Tp
    __cyl_bessel_k(const _Tp __nu, const _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_bessel_k."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else
        {
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          return __K_nu;
        }
    }


    /**
     *   @brief  Compute the spherical modified Bessel functions
     *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
     *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
     *           respectively.
     *
     *   @param  __n  The order of the modified spherical Bessel function.
     *   @param  __x  The argument of the modified spherical Bessel function.
     *   @param  __i_n  The output regular modified spherical Bessel function.
     *   @param  __k_n  The output irregular modified spherical
     *                  Bessel function.
     *   @param  __ip_n  The output derivative of the regular modified
     *                   spherical Bessel function.
     *   @param  __kp_n  The output derivative of the irregular modified
     *                   spherical Bessel function.
     */
    template <typename _Tp>
    void
    __sph_bessel_ik(const unsigned int __n, const _Tp __x,
                    _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
    {
      const _Tp __nu = _Tp(__n) + _Tp(0.5L);

      _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
      __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);

      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
                         / std::sqrt(__x);

      __i_n = __factor * __I_nu;
      __k_n = __factor * __K_nu;
      __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
      __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);

      return;
    }


    /**
     *   @brief  Compute the Airy functions
     *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
     *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
     *           respectively.
     *
     *   @param  __n  The order of the Airy functions.
     *   @param  __x  The argument of the Airy functions.
     *   @param  __i_n  The output Airy function.
     *   @param  __k_n  The output Airy function.
     *   @param  __ip_n  The output derivative of the Airy function.
     *   @param  __kp_n  The output derivative of the Airy function.
     */
    template <typename _Tp>
    void
    __airy(const _Tp __x,
           _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
    {
      const _Tp __absx = std::abs(__x);
      const _Tp __rootx = std::sqrt(__absx);
      const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);

      if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x > _Tp(0))
        {
          _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;

          __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          __Ai = __rootx * __K_nu
               / (__numeric_constants<_Tp>::__sqrt3()
                * __numeric_constants<_Tp>::__pi());
          __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
                 + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());

          __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          __Aip = -__x * __K_nu
                / (__numeric_constants<_Tp>::__sqrt3()
                 * __numeric_constants<_Tp>::__pi());
          __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
                      + _Tp(2) * __I_nu
                      / __numeric_constants<_Tp>::__sqrt3());
        }
      else if (__x < _Tp(0))
        {
          _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;

          __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          __Ai = __rootx * (__J_nu
                    - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
          __Bi = -__rootx * (__N_nu
                    + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);

          __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
                          + __J_nu) / _Tp(2);
          __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
                          - __N_nu) / _Tp(2);
        }
      else
        {
          //  Reference:
          //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
          //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
          __Ai = _Tp(0.35502805388781723926L);
          __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();

          //  Reference:
          //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
          //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
          __Aip = -_Tp(0.25881940379280679840L);
          __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
        }

      return;
    }

  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC