summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/std/type_traits
blob: bc6982f9e645116f6846c6608ae1bfdbf16828da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
// C++11 <type_traits> -*- C++ -*-

// Copyright (C) 2007-2023 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/type_traits
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_TYPE_TRAITS
#define _GLIBCXX_TYPE_TRAITS 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#include <bits/c++config.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _Tp>
    class reference_wrapper;

  /**
   * @defgroup metaprogramming Metaprogramming
   * @ingroup utilities
   *
   * Template utilities for compile-time introspection and modification,
   * including type classification traits, type property inspection traits
   * and type transformation traits.
   *
   * @since C++11
   *
   * @{
   */

  /// integral_constant
  template<typename _Tp, _Tp __v>
    struct integral_constant
    {
      static constexpr _Tp                  value = __v;
      typedef _Tp                           value_type;
      typedef integral_constant<_Tp, __v>   type;
      constexpr operator value_type() const noexcept { return value; }
#if __cplusplus > 201103L

#define __cpp_lib_integral_constant_callable 201304L

      constexpr value_type operator()() const noexcept { return value; }
#endif
    };

#if ! __cpp_inline_variables
  template<typename _Tp, _Tp __v>
    constexpr _Tp integral_constant<_Tp, __v>::value;
#endif

  /// The type used as a compile-time boolean with true value.
  using true_type =  integral_constant<bool, true>;

  /// The type used as a compile-time boolean with false value.
  using false_type = integral_constant<bool, false>;

  /// @cond undocumented
  /// bool_constant for C++11
  template<bool __v>
    using __bool_constant = integral_constant<bool, __v>;
  /// @endcond

#if __cplusplus >= 201703L
# define __cpp_lib_bool_constant 201505L
  /// Alias template for compile-time boolean constant types.
  /// @since C++17
  template<bool __v>
    using bool_constant = integral_constant<bool, __v>;
#endif

  // Metaprogramming helper types.

  // Primary template.
  /// Define a member typedef `type` only if a boolean constant is true.
  template<bool, typename _Tp = void>
    struct enable_if
    { };

  // Partial specialization for true.
  template<typename _Tp>
    struct enable_if<true, _Tp>
    { typedef _Tp type; };

  // __enable_if_t (std::enable_if_t for C++11)
  template<bool _Cond, typename _Tp = void>
    using __enable_if_t = typename enable_if<_Cond, _Tp>::type;

  template<bool>
    struct __conditional
    {
      template<typename _Tp, typename>
	using type = _Tp;
    };

  template<>
    struct __conditional<false>
    {
      template<typename, typename _Up>
	using type = _Up;
    };

  // More efficient version of std::conditional_t for internal use (and C++11)
  template<bool _Cond, typename _If, typename _Else>
    using __conditional_t
      = typename __conditional<_Cond>::template type<_If, _Else>;

  /// @cond undocumented
  template <typename _Type>
    struct __type_identity
    { using type = _Type; };

  template<typename _Tp>
    using __type_identity_t = typename __type_identity<_Tp>::type;

  namespace __detail
  {
    // A variadic alias template that resolves to its first argument.
    template<typename _Tp, typename...>
      using __first_t = _Tp;

    // These are deliberately not defined.
    template<typename... _Bn>
      auto __or_fn(int) -> __first_t<false_type,
				     __enable_if_t<!bool(_Bn::value)>...>;

    template<typename... _Bn>
      auto __or_fn(...) -> true_type;

    template<typename... _Bn>
      auto __and_fn(int) -> __first_t<true_type,
				      __enable_if_t<bool(_Bn::value)>...>;

    template<typename... _Bn>
      auto __and_fn(...) -> false_type;
  } // namespace detail

  // Like C++17 std::dis/conjunction, but usable in C++11 and resolves
  // to either true_type or false_type which allows for a more efficient
  // implementation that avoids recursive class template instantiation.
  template<typename... _Bn>
    struct __or_
    : decltype(__detail::__or_fn<_Bn...>(0))
    { };

  template<typename... _Bn>
    struct __and_
    : decltype(__detail::__and_fn<_Bn...>(0))
    { };

  template<typename _Pp>
    struct __not_
    : __bool_constant<!bool(_Pp::value)>
    { };
  /// @endcond

#if __cplusplus >= 201703L

  /// @cond undocumented
  template<typename... _Bn>
    inline constexpr bool __or_v = __or_<_Bn...>::value;
  template<typename... _Bn>
    inline constexpr bool __and_v = __and_<_Bn...>::value;

  namespace __detail
  {
    template<typename /* = void */, typename _B1, typename... _Bn>
      struct __disjunction_impl
      { using type = _B1; };

    template<typename _B1, typename _B2, typename... _Bn>
      struct __disjunction_impl<__enable_if_t<!bool(_B1::value)>, _B1, _B2, _Bn...>
      { using type = typename __disjunction_impl<void, _B2, _Bn...>::type; };

    template<typename /* = void */, typename _B1, typename... _Bn>
      struct __conjunction_impl
      { using type = _B1; };

    template<typename _B1, typename _B2, typename... _Bn>
      struct __conjunction_impl<__enable_if_t<bool(_B1::value)>, _B1, _B2, _Bn...>
      { using type = typename __conjunction_impl<void, _B2, _Bn...>::type; };
  } // namespace __detail
  /// @endcond

#define __cpp_lib_logical_traits 201510L

  template<typename... _Bn>
    struct conjunction
    : __detail::__conjunction_impl<void, _Bn...>::type
    { };

  template<>
    struct conjunction<>
    : true_type
    { };

  template<typename... _Bn>
    struct disjunction
    : __detail::__disjunction_impl<void, _Bn...>::type
    { };

  template<>
    struct disjunction<>
    : false_type
    { };

  template<typename _Pp>
    struct negation
    : __not_<_Pp>::type
    { };

  /** @ingroup variable_templates
   * @{
   */
  template<typename... _Bn>
    inline constexpr bool conjunction_v = conjunction<_Bn...>::value;

  template<typename... _Bn>
    inline constexpr bool disjunction_v = disjunction<_Bn...>::value;

  template<typename _Pp>
    inline constexpr bool negation_v = negation<_Pp>::value;
  /// @}

#endif // C++17

  // Forward declarations
  template<typename>
    struct is_reference;
  template<typename>
    struct is_function;
  template<typename>
    struct is_void;
  template<typename>
    struct remove_cv;
  template<typename>
    struct is_const;

  /// @cond undocumented
  template<typename>
    struct __is_array_unknown_bounds;

  // Helper functions that return false_type for incomplete classes,
  // incomplete unions and arrays of known bound from those.

  template <typename _Tp, size_t = sizeof(_Tp)>
    constexpr true_type __is_complete_or_unbounded(__type_identity<_Tp>)
    { return {}; }

  template <typename _TypeIdentity,
      typename _NestedType = typename _TypeIdentity::type>
    constexpr typename __or_<
      is_reference<_NestedType>,
      is_function<_NestedType>,
      is_void<_NestedType>,
      __is_array_unknown_bounds<_NestedType>
    >::type __is_complete_or_unbounded(_TypeIdentity)
    { return {}; }

  // __remove_cv_t (std::remove_cv_t for C++11).
  template<typename _Tp>
    using __remove_cv_t = typename remove_cv<_Tp>::type;
  /// @endcond

  // Primary type categories.

  /// is_void
  template<typename _Tp>
    struct is_void
    : public false_type { };

  template<>
    struct is_void<void>
    : public true_type { };

  template<>
    struct is_void<const void>
    : public true_type { };

  template<>
    struct is_void<volatile void>
    : public true_type { };

  template<>
    struct is_void<const volatile void>
    : public true_type { };

  /// @cond undocumented
  template<typename>
    struct __is_integral_helper
    : public false_type { };

  template<>
    struct __is_integral_helper<bool>
    : public true_type { };

  template<>
    struct __is_integral_helper<char>
    : public true_type { };

  template<>
    struct __is_integral_helper<signed char>
    : public true_type { };

  template<>
    struct __is_integral_helper<unsigned char>
    : public true_type { };

  // We want is_integral<wchar_t> to be true (and make_signed/unsigned to work)
  // even when libc doesn't provide working <wchar.h> and related functions,
  // so don't check _GLIBCXX_USE_WCHAR_T here.
  template<>
    struct __is_integral_helper<wchar_t>
    : public true_type { };

#ifdef _GLIBCXX_USE_CHAR8_T
  template<>
    struct __is_integral_helper<char8_t>
    : public true_type { };
#endif

  template<>
    struct __is_integral_helper<char16_t>
    : public true_type { };

  template<>
    struct __is_integral_helper<char32_t>
    : public true_type { };

  template<>
    struct __is_integral_helper<short>
    : public true_type { };

  template<>
    struct __is_integral_helper<unsigned short>
    : public true_type { };

  template<>
    struct __is_integral_helper<int>
    : public true_type { };

  template<>
    struct __is_integral_helper<unsigned int>
    : public true_type { };

  template<>
    struct __is_integral_helper<long>
    : public true_type { };

  template<>
    struct __is_integral_helper<unsigned long>
    : public true_type { };

  template<>
    struct __is_integral_helper<long long>
    : public true_type { };

  template<>
    struct __is_integral_helper<unsigned long long>
    : public true_type { };

  // Conditionalizing on __STRICT_ANSI__ here will break any port that
  // uses one of these types for size_t.
#if defined(__GLIBCXX_TYPE_INT_N_0)
  __extension__
  template<>
    struct __is_integral_helper<__GLIBCXX_TYPE_INT_N_0>
    : public true_type { };

  __extension__
  template<>
    struct __is_integral_helper<unsigned __GLIBCXX_TYPE_INT_N_0>
    : public true_type { };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_1)
  __extension__
  template<>
    struct __is_integral_helper<__GLIBCXX_TYPE_INT_N_1>
    : public true_type { };

  __extension__
  template<>
    struct __is_integral_helper<unsigned __GLIBCXX_TYPE_INT_N_1>
    : public true_type { };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_2)
  __extension__
  template<>
    struct __is_integral_helper<__GLIBCXX_TYPE_INT_N_2>
    : public true_type { };

  __extension__
  template<>
    struct __is_integral_helper<unsigned __GLIBCXX_TYPE_INT_N_2>
    : public true_type { };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_3)
  __extension__
  template<>
    struct __is_integral_helper<__GLIBCXX_TYPE_INT_N_3>
    : public true_type { };

  __extension__
  template<>
    struct __is_integral_helper<unsigned __GLIBCXX_TYPE_INT_N_3>
    : public true_type { };
#endif
  /// @endcond

  /// is_integral
  template<typename _Tp>
    struct is_integral
    : public __is_integral_helper<__remove_cv_t<_Tp>>::type
    { };

  /// @cond undocumented
  template<typename>
    struct __is_floating_point_helper
    : public false_type { };

  template<>
    struct __is_floating_point_helper<float>
    : public true_type { };

  template<>
    struct __is_floating_point_helper<double>
    : public true_type { };

  template<>
    struct __is_floating_point_helper<long double>
    : public true_type { };

#ifdef __STDCPP_FLOAT16_T__
  template<>
    struct __is_floating_point_helper<_Float16>
    : public true_type { };
#endif

#ifdef __STDCPP_FLOAT32_T__
  template<>
    struct __is_floating_point_helper<_Float32>
    : public true_type { };
#endif

#ifdef __STDCPP_FLOAT64_T__
  template<>
    struct __is_floating_point_helper<_Float64>
    : public true_type { };
#endif

#ifdef __STDCPP_FLOAT128_T__
  template<>
    struct __is_floating_point_helper<_Float128>
    : public true_type { };
#endif

#ifdef __STDCPP_BFLOAT16_T__
  template<>
    struct __is_floating_point_helper<__gnu_cxx::__bfloat16_t>
    : public true_type { };
#endif

#if !defined(__STRICT_ANSI__) && defined(_GLIBCXX_USE_FLOAT128)
  template<>
    struct __is_floating_point_helper<__float128>
    : public true_type { };
#endif
  /// @endcond

  /// is_floating_point
  template<typename _Tp>
    struct is_floating_point
    : public __is_floating_point_helper<__remove_cv_t<_Tp>>::type
    { };

  /// is_array
  template<typename>
    struct is_array
    : public false_type { };

  template<typename _Tp, std::size_t _Size>
    struct is_array<_Tp[_Size]>
    : public true_type { };

  template<typename _Tp>
    struct is_array<_Tp[]>
    : public true_type { };

  template<typename>
    struct __is_pointer_helper
    : public false_type { };

  template<typename _Tp>
    struct __is_pointer_helper<_Tp*>
    : public true_type { };

  /// is_pointer
  template<typename _Tp>
    struct is_pointer
    : public __is_pointer_helper<__remove_cv_t<_Tp>>::type
    { };

  /// is_lvalue_reference
  template<typename>
    struct is_lvalue_reference
    : public false_type { };

  template<typename _Tp>
    struct is_lvalue_reference<_Tp&>
    : public true_type { };

  /// is_rvalue_reference
  template<typename>
    struct is_rvalue_reference
    : public false_type { };

  template<typename _Tp>
    struct is_rvalue_reference<_Tp&&>
    : public true_type { };

  template<typename>
    struct __is_member_object_pointer_helper
    : public false_type { };

  template<typename _Tp, typename _Cp>
    struct __is_member_object_pointer_helper<_Tp _Cp::*>
    : public __not_<is_function<_Tp>>::type { };

  /// is_member_object_pointer
  template<typename _Tp>
    struct is_member_object_pointer
    : public __is_member_object_pointer_helper<__remove_cv_t<_Tp>>::type
    { };

  template<typename>
    struct __is_member_function_pointer_helper
    : public false_type { };

  template<typename _Tp, typename _Cp>
    struct __is_member_function_pointer_helper<_Tp _Cp::*>
    : public is_function<_Tp>::type { };

  /// is_member_function_pointer
  template<typename _Tp>
    struct is_member_function_pointer
    : public __is_member_function_pointer_helper<__remove_cv_t<_Tp>>::type
    { };

  /// is_enum
  template<typename _Tp>
    struct is_enum
    : public __bool_constant<__is_enum(_Tp)>
    { };

  /// is_union
  template<typename _Tp>
    struct is_union
    : public __bool_constant<__is_union(_Tp)>
    { };

  /// is_class
  template<typename _Tp>
    struct is_class
    : public __bool_constant<__is_class(_Tp)>
    { };

  /// is_function
  template<typename _Tp>
    struct is_function
    : public __bool_constant<!is_const<const _Tp>::value> { };

  template<typename _Tp>
    struct is_function<_Tp&>
    : public false_type { };

  template<typename _Tp>
    struct is_function<_Tp&&>
    : public false_type { };

#define __cpp_lib_is_null_pointer 201309L

  /// is_null_pointer (LWG 2247).
  template<typename _Tp>
    struct is_null_pointer
    : public false_type { };

  template<>
    struct is_null_pointer<std::nullptr_t>
    : public true_type { };

  template<>
    struct is_null_pointer<const std::nullptr_t>
    : public true_type { };

  template<>
    struct is_null_pointer<volatile std::nullptr_t>
    : public true_type { };

  template<>
    struct is_null_pointer<const volatile std::nullptr_t>
    : public true_type { };

  /// __is_nullptr_t (deprecated extension).
  /// @deprecated Non-standard. Use `is_null_pointer` instead.
  template<typename _Tp>
    struct __is_nullptr_t
    : public is_null_pointer<_Tp>
    { } _GLIBCXX_DEPRECATED_SUGGEST("std::is_null_pointer");

  // Composite type categories.

  /// is_reference
  template<typename _Tp>
    struct is_reference
    : public false_type
    { };

  template<typename _Tp>
    struct is_reference<_Tp&>
    : public true_type
    { };

  template<typename _Tp>
    struct is_reference<_Tp&&>
    : public true_type
    { };

  /// is_arithmetic
  template<typename _Tp>
    struct is_arithmetic
    : public __or_<is_integral<_Tp>, is_floating_point<_Tp>>::type
    { };

  /// is_fundamental
  template<typename _Tp>
    struct is_fundamental
    : public __or_<is_arithmetic<_Tp>, is_void<_Tp>,
		   is_null_pointer<_Tp>>::type
    { };

  /// is_object
  template<typename _Tp>
    struct is_object
    : public __not_<__or_<is_function<_Tp>, is_reference<_Tp>,
                          is_void<_Tp>>>::type
    { };

  template<typename>
    struct is_member_pointer;

  /// is_scalar
  template<typename _Tp>
    struct is_scalar
    : public __or_<is_arithmetic<_Tp>, is_enum<_Tp>, is_pointer<_Tp>,
                   is_member_pointer<_Tp>, is_null_pointer<_Tp>>::type
    { };

  /// is_compound
  template<typename _Tp>
    struct is_compound
    : public __not_<is_fundamental<_Tp>>::type { };

  /// @cond undocumented
  template<typename _Tp>
    struct __is_member_pointer_helper
    : public false_type { };

  template<typename _Tp, typename _Cp>
    struct __is_member_pointer_helper<_Tp _Cp::*>
    : public true_type { };
  /// @endcond

  /// is_member_pointer
  template<typename _Tp>
    struct is_member_pointer
    : public __is_member_pointer_helper<__remove_cv_t<_Tp>>::type
    { };

  template<typename, typename>
    struct is_same;

  /// @cond undocumented
  template<typename _Tp, typename... _Types>
    using __is_one_of = __or_<is_same<_Tp, _Types>...>;

  // Check if a type is one of the signed integer types.
  __extension__
  template<typename _Tp>
    using __is_signed_integer = __is_one_of<__remove_cv_t<_Tp>,
	  signed char, signed short, signed int, signed long,
	  signed long long
#if defined(__GLIBCXX_TYPE_INT_N_0)
	  , signed __GLIBCXX_TYPE_INT_N_0
#endif
#if defined(__GLIBCXX_TYPE_INT_N_1)
	  , signed __GLIBCXX_TYPE_INT_N_1
#endif
#if defined(__GLIBCXX_TYPE_INT_N_2)
	  , signed __GLIBCXX_TYPE_INT_N_2
#endif
#if defined(__GLIBCXX_TYPE_INT_N_3)
	  , signed __GLIBCXX_TYPE_INT_N_3
#endif
	  >;

  // Check if a type is one of the unsigned integer types.
  __extension__
  template<typename _Tp>
    using __is_unsigned_integer = __is_one_of<__remove_cv_t<_Tp>,
	  unsigned char, unsigned short, unsigned int, unsigned long,
	  unsigned long long
#if defined(__GLIBCXX_TYPE_INT_N_0)
	  , unsigned __GLIBCXX_TYPE_INT_N_0
#endif
#if defined(__GLIBCXX_TYPE_INT_N_1)
	  , unsigned __GLIBCXX_TYPE_INT_N_1
#endif
#if defined(__GLIBCXX_TYPE_INT_N_2)
	  , unsigned __GLIBCXX_TYPE_INT_N_2
#endif
#if defined(__GLIBCXX_TYPE_INT_N_3)
	  , unsigned __GLIBCXX_TYPE_INT_N_3
#endif
	  >;

  // Check if a type is one of the signed or unsigned integer types.
  template<typename _Tp>
    using __is_standard_integer
      = __or_<__is_signed_integer<_Tp>, __is_unsigned_integer<_Tp>>;

  // __void_t (std::void_t for C++11)
  template<typename...> using __void_t = void;
  /// @endcond

  // Type properties.

  /// is_const
  template<typename>
    struct is_const
    : public false_type { };

  template<typename _Tp>
    struct is_const<_Tp const>
    : public true_type { };

  /// is_volatile
  template<typename>
    struct is_volatile
    : public false_type { };

  template<typename _Tp>
    struct is_volatile<_Tp volatile>
    : public true_type { };

  /// is_trivial
  template<typename _Tp>
    struct is_trivial
    : public __bool_constant<__is_trivial(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_copyable
  template<typename _Tp>
    struct is_trivially_copyable
    : public __bool_constant<__is_trivially_copyable(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_standard_layout
  template<typename _Tp>
    struct is_standard_layout
    : public __bool_constant<__is_standard_layout(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /** is_pod
   * @deprecated Deprecated in C++20.
   * Use `is_standard_layout && is_trivial` instead.
   */
  // Could use is_standard_layout && is_trivial instead of the builtin.
  template<typename _Tp>
    struct
    _GLIBCXX20_DEPRECATED_SUGGEST("is_standard_layout && is_trivial")
    is_pod
    : public __bool_constant<__is_pod(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /** is_literal_type
   * @deprecated Deprecated in C++17, removed in C++20.
   * The idea of a literal type isn't useful.
   */
  template<typename _Tp>
    struct
    _GLIBCXX17_DEPRECATED
    is_literal_type
    : public __bool_constant<__is_literal_type(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_empty
  template<typename _Tp>
    struct is_empty
    : public __bool_constant<__is_empty(_Tp)>
    { };

  /// is_polymorphic
  template<typename _Tp>
    struct is_polymorphic
    : public __bool_constant<__is_polymorphic(_Tp)>
    { };

#if __cplusplus >= 201402L
#define __cpp_lib_is_final 201402L
  /// is_final
  /// @since C++14
  template<typename _Tp>
    struct is_final
    : public __bool_constant<__is_final(_Tp)>
    { };
#endif

  /// is_abstract
  template<typename _Tp>
    struct is_abstract
    : public __bool_constant<__is_abstract(_Tp)>
    { };

  /// @cond undocumented
  template<typename _Tp,
	   bool = is_arithmetic<_Tp>::value>
    struct __is_signed_helper
    : public false_type { };

  template<typename _Tp>
    struct __is_signed_helper<_Tp, true>
    : public __bool_constant<_Tp(-1) < _Tp(0)>
    { };
  /// @endcond

  /// is_signed
  template<typename _Tp>
    struct is_signed
    : public __is_signed_helper<_Tp>::type
    { };

  /// is_unsigned
  template<typename _Tp>
    struct is_unsigned
    : public __and_<is_arithmetic<_Tp>, __not_<is_signed<_Tp>>>::type
    { };

  /// @cond undocumented
  template<typename _Tp, typename _Up = _Tp&&>
    _Up
    __declval(int);

  template<typename _Tp>
    _Tp
    __declval(long);
  /// @endcond

  template<typename _Tp>
    auto declval() noexcept -> decltype(__declval<_Tp>(0));

  template<typename>
    struct remove_all_extents;

  /// @cond undocumented
  template<typename _Tp>
    struct __is_array_known_bounds
    : public false_type
    { };

  template<typename _Tp, size_t _Size>
    struct __is_array_known_bounds<_Tp[_Size]>
    : public true_type
    { };

  template<typename _Tp>
    struct __is_array_unknown_bounds
    : public false_type
    { };

  template<typename _Tp>
    struct __is_array_unknown_bounds<_Tp[]>
    : public true_type
    { };

  // Destructible and constructible type properties.

  // In N3290 is_destructible does not say anything about function
  // types and abstract types, see LWG 2049. This implementation
  // describes function types as non-destructible and all complete
  // object types as destructible, iff the explicit destructor
  // call expression is wellformed.
  struct __do_is_destructible_impl
  {
    template<typename _Tp, typename = decltype(declval<_Tp&>().~_Tp())>
      static true_type __test(int);

    template<typename>
      static false_type __test(...);
  };

  template<typename _Tp>
    struct __is_destructible_impl
    : public __do_is_destructible_impl
    {
      typedef decltype(__test<_Tp>(0)) type;
    };

  template<typename _Tp,
           bool = __or_<is_void<_Tp>,
                        __is_array_unknown_bounds<_Tp>,
                        is_function<_Tp>>::value,
           bool = __or_<is_reference<_Tp>, is_scalar<_Tp>>::value>
    struct __is_destructible_safe;

  template<typename _Tp>
    struct __is_destructible_safe<_Tp, false, false>
    : public __is_destructible_impl<typename
               remove_all_extents<_Tp>::type>::type
    { };

  template<typename _Tp>
    struct __is_destructible_safe<_Tp, true, false>
    : public false_type { };

  template<typename _Tp>
    struct __is_destructible_safe<_Tp, false, true>
    : public true_type { };
  /// @endcond

  /// is_destructible
  template<typename _Tp>
    struct is_destructible
    : public __is_destructible_safe<_Tp>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented

  // is_nothrow_destructible requires that is_destructible is
  // satisfied as well.  We realize that by mimicing the
  // implementation of is_destructible but refer to noexcept(expr)
  // instead of decltype(expr).
  struct __do_is_nt_destructible_impl
  {
    template<typename _Tp>
      static __bool_constant<noexcept(declval<_Tp&>().~_Tp())>
      __test(int);

    template<typename>
      static false_type __test(...);
  };

  template<typename _Tp>
    struct __is_nt_destructible_impl
    : public __do_is_nt_destructible_impl
    {
      typedef decltype(__test<_Tp>(0)) type;
    };

  template<typename _Tp,
           bool = __or_<is_void<_Tp>,
                        __is_array_unknown_bounds<_Tp>,
                        is_function<_Tp>>::value,
           bool = __or_<is_reference<_Tp>, is_scalar<_Tp>>::value>
    struct __is_nt_destructible_safe;

  template<typename _Tp>
    struct __is_nt_destructible_safe<_Tp, false, false>
    : public __is_nt_destructible_impl<typename
               remove_all_extents<_Tp>::type>::type
    { };

  template<typename _Tp>
    struct __is_nt_destructible_safe<_Tp, true, false>
    : public false_type { };

  template<typename _Tp>
    struct __is_nt_destructible_safe<_Tp, false, true>
    : public true_type { };
  /// @endcond

  /// is_nothrow_destructible
  template<typename _Tp>
    struct is_nothrow_destructible
    : public __is_nt_destructible_safe<_Tp>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename... _Args>
    using __is_constructible_impl
      = __bool_constant<__is_constructible(_Tp, _Args...)>;
  /// @endcond

  /// is_constructible
  template<typename _Tp, typename... _Args>
    struct is_constructible
      : public __is_constructible_impl<_Tp, _Args...>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_default_constructible
  template<typename _Tp>
    struct is_default_constructible
    : public __is_constructible_impl<_Tp>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename = void>
    struct __add_lvalue_reference_helper
    { using type = _Tp; };

  template<typename _Tp>
    struct __add_lvalue_reference_helper<_Tp, __void_t<_Tp&>>
    { using type = _Tp&; };

  template<typename _Tp>
    using __add_lval_ref_t = typename __add_lvalue_reference_helper<_Tp>::type;
  /// @endcond

  /// is_copy_constructible
  template<typename _Tp>
    struct is_copy_constructible
    : public __is_constructible_impl<_Tp, __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename = void>
    struct __add_rvalue_reference_helper
    { using type = _Tp; };

  template<typename _Tp>
    struct __add_rvalue_reference_helper<_Tp, __void_t<_Tp&&>>
    { using type = _Tp&&; };

  template<typename _Tp>
    using __add_rval_ref_t = typename __add_rvalue_reference_helper<_Tp>::type;
  /// @endcond

  /// is_move_constructible
  template<typename _Tp>
    struct is_move_constructible
    : public __is_constructible_impl<_Tp, __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename... _Args>
    using __is_nothrow_constructible_impl
      = __bool_constant<__is_nothrow_constructible(_Tp, _Args...)>;
  /// @endcond

  /// is_nothrow_constructible
  template<typename _Tp, typename... _Args>
    struct is_nothrow_constructible
    : public __is_nothrow_constructible_impl<_Tp, _Args...>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_default_constructible
  template<typename _Tp>
    struct is_nothrow_default_constructible
    : public __is_nothrow_constructible_impl<_Tp>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_copy_constructible
  template<typename _Tp>
    struct is_nothrow_copy_constructible
    : public __is_nothrow_constructible_impl<_Tp, __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_move_constructible
  template<typename _Tp>
    struct is_nothrow_move_constructible
    : public __is_nothrow_constructible_impl<_Tp, __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename _Up>
    using __is_assignable_impl = __bool_constant<__is_assignable(_Tp, _Up)>;
  /// @endcond

  /// is_assignable
  template<typename _Tp, typename _Up>
    struct is_assignable
    : public __is_assignable_impl<_Tp, _Up>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_copy_assignable
  template<typename _Tp>
    struct is_copy_assignable
    : public __is_assignable_impl<__add_lval_ref_t<_Tp>,
				  __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_move_assignable
  template<typename _Tp>
    struct is_move_assignable
    : public __is_assignable_impl<__add_lval_ref_t<_Tp>, __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename _Up>
    using __is_nothrow_assignable_impl
      = __bool_constant<__is_nothrow_assignable(_Tp, _Up)>;
  /// @endcond

  /// is_nothrow_assignable
  template<typename _Tp, typename _Up>
    struct is_nothrow_assignable
    : public __is_nothrow_assignable_impl<_Tp, _Up>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_copy_assignable
  template<typename _Tp>
    struct is_nothrow_copy_assignable
    : public __is_nothrow_assignable_impl<__add_lval_ref_t<_Tp>,
					  __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_move_assignable
  template<typename _Tp>
    struct is_nothrow_move_assignable
    : public __is_nothrow_assignable_impl<__add_lval_ref_t<_Tp>,
					  __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename... _Args>
    using __is_trivially_constructible_impl
      = __bool_constant<__is_trivially_constructible(_Tp, _Args...)>;
  /// @endcond

  /// is_trivially_constructible
  template<typename _Tp, typename... _Args>
    struct is_trivially_constructible
    : public __is_trivially_constructible_impl<_Tp, _Args...>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_default_constructible
  template<typename _Tp>
    struct is_trivially_default_constructible
    : public __is_trivially_constructible_impl<_Tp>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  struct __do_is_implicitly_default_constructible_impl
  {
    template <typename _Tp>
    static void __helper(const _Tp&);

    template <typename _Tp>
    static true_type __test(const _Tp&,
                            decltype(__helper<const _Tp&>({}))* = 0);

    static false_type __test(...);
  };

  template<typename _Tp>
    struct __is_implicitly_default_constructible_impl
    : public __do_is_implicitly_default_constructible_impl
    {
      typedef decltype(__test(declval<_Tp>())) type;
    };

  template<typename _Tp>
    struct __is_implicitly_default_constructible_safe
    : public __is_implicitly_default_constructible_impl<_Tp>::type
    { };

  template <typename _Tp>
    struct __is_implicitly_default_constructible
    : public __and_<__is_constructible_impl<_Tp>,
		    __is_implicitly_default_constructible_safe<_Tp>>::type
    { };

  /// is_trivially_copy_constructible
  template<typename _Tp>
    struct is_trivially_copy_constructible
    : public __is_trivially_constructible_impl<_Tp, __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_move_constructible
  template<typename _Tp>
    struct is_trivially_move_constructible
    : public __is_trivially_constructible_impl<_Tp, __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  template<typename _Tp, typename _Up>
    using __is_trivially_assignable_impl
      = __bool_constant<__is_trivially_assignable(_Tp, _Up)>;
  /// @endcond

  /// is_trivially_assignable
  template<typename _Tp, typename _Up>
    struct is_trivially_assignable
    : public __is_trivially_assignable_impl<_Tp, _Up>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_copy_assignable
  template<typename _Tp>
    struct is_trivially_copy_assignable
    : public __is_trivially_assignable_impl<__add_lval_ref_t<_Tp>,
					    __add_lval_ref_t<const _Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_move_assignable
  template<typename _Tp>
    struct is_trivially_move_assignable
    : public __is_trivially_assignable_impl<__add_lval_ref_t<_Tp>,
					    __add_rval_ref_t<_Tp>>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_trivially_destructible
  template<typename _Tp>
    struct is_trivially_destructible
    : public __and_<__is_destructible_safe<_Tp>,
		    __bool_constant<__has_trivial_destructor(_Tp)>>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };


  /// has_virtual_destructor
  template<typename _Tp>
    struct has_virtual_destructor
    : public __bool_constant<__has_virtual_destructor(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };


  // type property queries.

  /// alignment_of
  template<typename _Tp>
    struct alignment_of
    : public integral_constant<std::size_t, alignof(_Tp)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// rank
  template<typename>
    struct rank
    : public integral_constant<std::size_t, 0> { };

  template<typename _Tp, std::size_t _Size>
    struct rank<_Tp[_Size]>
    : public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };

  template<typename _Tp>
    struct rank<_Tp[]>
    : public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };

  /// extent
  template<typename, unsigned _Uint = 0>
    struct extent
    : public integral_constant<size_t, 0> { };

  template<typename _Tp, size_t _Size>
    struct extent<_Tp[_Size], 0>
    : public integral_constant<size_t, _Size> { };

  template<typename _Tp, unsigned _Uint, size_t _Size>
    struct extent<_Tp[_Size], _Uint>
    : public extent<_Tp, _Uint - 1>::type { };

  template<typename _Tp>
    struct extent<_Tp[], 0>
    : public integral_constant<size_t, 0> { };

  template<typename _Tp, unsigned _Uint>
    struct extent<_Tp[], _Uint>
    : public extent<_Tp, _Uint - 1>::type { };


  // Type relations.

  /// is_same
  template<typename _Tp, typename _Up>
    struct is_same
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_SAME
    : public __bool_constant<__is_same(_Tp, _Up)>
#else
    : public false_type
#endif
    { };

#ifndef _GLIBCXX_HAVE_BUILTIN_IS_SAME
  template<typename _Tp>
    struct is_same<_Tp, _Tp>
    : public true_type
    { };
#endif

  /// is_base_of
  template<typename _Base, typename _Derived>
    struct is_base_of
    : public __bool_constant<__is_base_of(_Base, _Derived)>
    { };

#if __has_builtin(__is_convertible)
  template<typename _From, typename _To>
    struct is_convertible
    : public __bool_constant<__is_convertible(_From, _To)>
    { };
#else
  template<typename _From, typename _To,
           bool = __or_<is_void<_From>, is_function<_To>,
                        is_array<_To>>::value>
    struct __is_convertible_helper
    {
      typedef typename is_void<_To>::type type;
    };

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wctor-dtor-privacy"
  template<typename _From, typename _To>
    class __is_convertible_helper<_From, _To, false>
    {
      template<typename _To1>
	static void __test_aux(_To1) noexcept;

      template<typename _From1, typename _To1,
	       typename = decltype(__test_aux<_To1>(std::declval<_From1>()))>
	static true_type
	__test(int);

      template<typename, typename>
	static false_type
	__test(...);

    public:
      typedef decltype(__test<_From, _To>(0)) type;
    };
#pragma GCC diagnostic pop

  /// is_convertible
  template<typename _From, typename _To>
    struct is_convertible
    : public __is_convertible_helper<_From, _To>::type
    { };
#endif

  // helper trait for unique_ptr<T[]>, shared_ptr<T[]>, and span<T, N>
  template<typename _ToElementType, typename _FromElementType>
    using __is_array_convertible
      = is_convertible<_FromElementType(*)[], _ToElementType(*)[]>;

#if __cplusplus >= 202002L
#define __cpp_lib_is_nothrow_convertible 201806L

#if __has_builtin(__is_nothrow_convertible)
  /// is_nothrow_convertible_v
  template<typename _From, typename _To>
    inline constexpr bool is_nothrow_convertible_v
      = __is_nothrow_convertible(_From, _To);

  /// is_nothrow_convertible
  template<typename _From, typename _To>
    struct is_nothrow_convertible
    : public bool_constant<is_nothrow_convertible_v<_From, _To>>
    { };
#else
  template<typename _From, typename _To,
           bool = __or_<is_void<_From>, is_function<_To>,
                        is_array<_To>>::value>
    struct __is_nt_convertible_helper
    : is_void<_To>
    { };

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wctor-dtor-privacy"
  template<typename _From, typename _To>
    class __is_nt_convertible_helper<_From, _To, false>
    {
      template<typename _To1>
	static void __test_aux(_To1) noexcept;

      template<typename _From1, typename _To1>
	static
	__bool_constant<noexcept(__test_aux<_To1>(std::declval<_From1>()))>
	__test(int);

      template<typename, typename>
	static false_type
	__test(...);

    public:
      using type = decltype(__test<_From, _To>(0));
    };
#pragma GCC diagnostic pop

  /// is_nothrow_convertible
  template<typename _From, typename _To>
    struct is_nothrow_convertible
    : public __is_nt_convertible_helper<_From, _To>::type
    { };

  /// is_nothrow_convertible_v
  template<typename _From, typename _To>
    inline constexpr bool is_nothrow_convertible_v
      = is_nothrow_convertible<_From, _To>::value;
#endif
#endif // C++2a

  // Const-volatile modifications.

  /// remove_const
  template<typename _Tp>
    struct remove_const
    { typedef _Tp     type; };

  template<typename _Tp>
    struct remove_const<_Tp const>
    { typedef _Tp     type; };

  /// remove_volatile
  template<typename _Tp>
    struct remove_volatile
    { typedef _Tp     type; };

  template<typename _Tp>
    struct remove_volatile<_Tp volatile>
    { typedef _Tp     type; };

  /// remove_cv
#if __has_builtin(__remove_cv)
  template<typename _Tp>
    struct remove_cv
    { using type = __remove_cv(_Tp); };
#else
  template<typename _Tp>
    struct remove_cv
    { using type = _Tp; };

  template<typename _Tp>
    struct remove_cv<const _Tp>
    { using type = _Tp; };

  template<typename _Tp>
    struct remove_cv<volatile _Tp>
    { using type = _Tp; };

  template<typename _Tp>
    struct remove_cv<const volatile _Tp>
    { using type = _Tp; };
#endif

  /// add_const
  template<typename _Tp>
    struct add_const
    { using type = _Tp const; };

  /// add_volatile
  template<typename _Tp>
    struct add_volatile
    { using type = _Tp volatile; };

  /// add_cv
  template<typename _Tp>
    struct add_cv
    { using type = _Tp const volatile; };

#if __cplusplus > 201103L

#define __cpp_lib_transformation_trait_aliases 201304L

  /// Alias template for remove_const
  template<typename _Tp>
    using remove_const_t = typename remove_const<_Tp>::type;

  /// Alias template for remove_volatile
  template<typename _Tp>
    using remove_volatile_t = typename remove_volatile<_Tp>::type;

  /// Alias template for remove_cv
  template<typename _Tp>
    using remove_cv_t = typename remove_cv<_Tp>::type;

  /// Alias template for add_const
  template<typename _Tp>
    using add_const_t = typename add_const<_Tp>::type;

  /// Alias template for add_volatile
  template<typename _Tp>
    using add_volatile_t = typename add_volatile<_Tp>::type;

  /// Alias template for add_cv
  template<typename _Tp>
    using add_cv_t = typename add_cv<_Tp>::type;
#endif

  // Reference transformations.

  /// remove_reference
#if __has_builtin(__remove_reference)
  template<typename _Tp>
    struct remove_reference
    { using type = __remove_reference(_Tp); };
#else
  template<typename _Tp>
    struct remove_reference
    { using type = _Tp; };

  template<typename _Tp>
    struct remove_reference<_Tp&>
    { using type = _Tp; };

  template<typename _Tp>
    struct remove_reference<_Tp&&>
    { using type = _Tp; };
#endif

  /// add_lvalue_reference
  template<typename _Tp>
    struct add_lvalue_reference
    { using type = __add_lval_ref_t<_Tp>; };

  /// add_rvalue_reference
  template<typename _Tp>
    struct add_rvalue_reference
    { using type = __add_rval_ref_t<_Tp>; };

#if __cplusplus > 201103L
  /// Alias template for remove_reference
  template<typename _Tp>
    using remove_reference_t = typename remove_reference<_Tp>::type;

  /// Alias template for add_lvalue_reference
  template<typename _Tp>
    using add_lvalue_reference_t = typename add_lvalue_reference<_Tp>::type;

  /// Alias template for add_rvalue_reference
  template<typename _Tp>
    using add_rvalue_reference_t = typename add_rvalue_reference<_Tp>::type;
#endif

  // Sign modifications.

  /// @cond undocumented

  // Utility for constructing identically cv-qualified types.
  template<typename _Unqualified, bool _IsConst, bool _IsVol>
    struct __cv_selector;

  template<typename _Unqualified>
    struct __cv_selector<_Unqualified, false, false>
    { typedef _Unqualified __type; };

  template<typename _Unqualified>
    struct __cv_selector<_Unqualified, false, true>
    { typedef volatile _Unqualified __type; };

  template<typename _Unqualified>
    struct __cv_selector<_Unqualified, true, false>
    { typedef const _Unqualified __type; };

  template<typename _Unqualified>
    struct __cv_selector<_Unqualified, true, true>
    { typedef const volatile _Unqualified __type; };

  template<typename _Qualified, typename _Unqualified,
	   bool _IsConst = is_const<_Qualified>::value,
	   bool _IsVol = is_volatile<_Qualified>::value>
    class __match_cv_qualifiers
    {
      typedef __cv_selector<_Unqualified, _IsConst, _IsVol> __match;

    public:
      typedef typename __match::__type __type;
    };

  // Utility for finding the unsigned versions of signed integral types.
  template<typename _Tp>
    struct __make_unsigned
    { typedef _Tp __type; };

  template<>
    struct __make_unsigned<char>
    { typedef unsigned char __type; };

  template<>
    struct __make_unsigned<signed char>
    { typedef unsigned char __type; };

  template<>
    struct __make_unsigned<short>
    { typedef unsigned short __type; };

  template<>
    struct __make_unsigned<int>
    { typedef unsigned int __type; };

  template<>
    struct __make_unsigned<long>
    { typedef unsigned long __type; };

  template<>
    struct __make_unsigned<long long>
    { typedef unsigned long long __type; };

#if defined(__GLIBCXX_TYPE_INT_N_0)
  __extension__
  template<>
    struct __make_unsigned<__GLIBCXX_TYPE_INT_N_0>
    { typedef unsigned __GLIBCXX_TYPE_INT_N_0 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_1)
  __extension__
  template<>
    struct __make_unsigned<__GLIBCXX_TYPE_INT_N_1>
    { typedef unsigned __GLIBCXX_TYPE_INT_N_1 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_2)
  __extension__
  template<>
    struct __make_unsigned<__GLIBCXX_TYPE_INT_N_2>
    { typedef unsigned __GLIBCXX_TYPE_INT_N_2 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_3)
  __extension__
  template<>
    struct __make_unsigned<__GLIBCXX_TYPE_INT_N_3>
    { typedef unsigned __GLIBCXX_TYPE_INT_N_3 __type; };
#endif

  // Select between integral and enum: not possible to be both.
  template<typename _Tp,
	   bool _IsInt = is_integral<_Tp>::value,
	   bool _IsEnum = is_enum<_Tp>::value>
    class __make_unsigned_selector;

  template<typename _Tp>
    class __make_unsigned_selector<_Tp, true, false>
    {
      using __unsigned_type
	= typename __make_unsigned<__remove_cv_t<_Tp>>::__type;

    public:
      using __type
	= typename __match_cv_qualifiers<_Tp, __unsigned_type>::__type;
    };

  class __make_unsigned_selector_base
  {
  protected:
    template<typename...> struct _List { };

    template<typename _Tp, typename... _Up>
      struct _List<_Tp, _Up...> : _List<_Up...>
      { static constexpr size_t __size = sizeof(_Tp); };

    template<size_t _Sz, typename _Tp, bool = (_Sz <= _Tp::__size)>
      struct __select;

    template<size_t _Sz, typename _Uint, typename... _UInts>
      struct __select<_Sz, _List<_Uint, _UInts...>, true>
      { using __type = _Uint; };

    template<size_t _Sz, typename _Uint, typename... _UInts>
      struct __select<_Sz, _List<_Uint, _UInts...>, false>
      : __select<_Sz, _List<_UInts...>>
      { };
  };

  // Choose unsigned integer type with the smallest rank and same size as _Tp
  template<typename _Tp>
    class __make_unsigned_selector<_Tp, false, true>
    : __make_unsigned_selector_base
    {
      // With -fshort-enums, an enum may be as small as a char.
      using _UInts = _List<unsigned char, unsigned short, unsigned int,
			   unsigned long, unsigned long long>;

      using __unsigned_type = typename __select<sizeof(_Tp), _UInts>::__type;

    public:
      using __type
	= typename __match_cv_qualifiers<_Tp, __unsigned_type>::__type;
    };

  // wchar_t, char8_t, char16_t and char32_t are integral types but are
  // neither signed integer types nor unsigned integer types, so must be
  // transformed to the unsigned integer type with the smallest rank.
  // Use the partial specialization for enumeration types to do that.
  template<>
    struct __make_unsigned<wchar_t>
    {
      using __type
	= typename __make_unsigned_selector<wchar_t, false, true>::__type;
    };

#ifdef _GLIBCXX_USE_CHAR8_T
  template<>
    struct __make_unsigned<char8_t>
    {
      using __type
	= typename __make_unsigned_selector<char8_t, false, true>::__type;
    };
#endif

  template<>
    struct __make_unsigned<char16_t>
    {
      using __type
	= typename __make_unsigned_selector<char16_t, false, true>::__type;
    };

  template<>
    struct __make_unsigned<char32_t>
    {
      using __type
	= typename __make_unsigned_selector<char32_t, false, true>::__type;
    };
  /// @endcond

  // Given an integral/enum type, return the corresponding unsigned
  // integer type.
  // Primary template.
  /// make_unsigned
  template<typename _Tp>
    struct make_unsigned
    { typedef typename __make_unsigned_selector<_Tp>::__type type; };

  // Integral, but don't define.
  template<> struct make_unsigned<bool>;
  template<> struct make_unsigned<bool const>;
  template<> struct make_unsigned<bool volatile>;
  template<> struct make_unsigned<bool const volatile>;

  /// @cond undocumented

  // Utility for finding the signed versions of unsigned integral types.
  template<typename _Tp>
    struct __make_signed
    { typedef _Tp __type; };

  template<>
    struct __make_signed<char>
    { typedef signed char __type; };

  template<>
    struct __make_signed<unsigned char>
    { typedef signed char __type; };

  template<>
    struct __make_signed<unsigned short>
    { typedef signed short __type; };

  template<>
    struct __make_signed<unsigned int>
    { typedef signed int __type; };

  template<>
    struct __make_signed<unsigned long>
    { typedef signed long __type; };

  template<>
    struct __make_signed<unsigned long long>
    { typedef signed long long __type; };

#if defined(__GLIBCXX_TYPE_INT_N_0)
  __extension__
  template<>
    struct __make_signed<unsigned __GLIBCXX_TYPE_INT_N_0>
    { typedef __GLIBCXX_TYPE_INT_N_0 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_1)
  __extension__
  template<>
    struct __make_signed<unsigned __GLIBCXX_TYPE_INT_N_1>
    { typedef __GLIBCXX_TYPE_INT_N_1 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_2)
  __extension__
  template<>
    struct __make_signed<unsigned __GLIBCXX_TYPE_INT_N_2>
    { typedef __GLIBCXX_TYPE_INT_N_2 __type; };
#endif
#if defined(__GLIBCXX_TYPE_INT_N_3)
  __extension__
  template<>
    struct __make_signed<unsigned __GLIBCXX_TYPE_INT_N_3>
    { typedef __GLIBCXX_TYPE_INT_N_3 __type; };
#endif

  // Select between integral and enum: not possible to be both.
  template<typename _Tp,
	   bool _IsInt = is_integral<_Tp>::value,
	   bool _IsEnum = is_enum<_Tp>::value>
    class __make_signed_selector;

  template<typename _Tp>
    class __make_signed_selector<_Tp, true, false>
    {
      using __signed_type
	= typename __make_signed<__remove_cv_t<_Tp>>::__type;

    public:
      using __type
	= typename __match_cv_qualifiers<_Tp, __signed_type>::__type;
    };

  // Choose signed integer type with the smallest rank and same size as _Tp
  template<typename _Tp>
    class __make_signed_selector<_Tp, false, true>
    {
      typedef typename __make_unsigned_selector<_Tp>::__type __unsigned_type;

    public:
      typedef typename __make_signed_selector<__unsigned_type>::__type __type;
    };

  // wchar_t, char16_t and char32_t are integral types but are neither
  // signed integer types nor unsigned integer types, so must be
  // transformed to the signed integer type with the smallest rank.
  // Use the partial specialization for enumeration types to do that.
  template<>
    struct __make_signed<wchar_t>
    {
      using __type
	= typename __make_signed_selector<wchar_t, false, true>::__type;
    };

#if defined(_GLIBCXX_USE_CHAR8_T)
  template<>
    struct __make_signed<char8_t>
    {
      using __type
	= typename __make_signed_selector<char8_t, false, true>::__type;
    };
#endif

  template<>
    struct __make_signed<char16_t>
    {
      using __type
	= typename __make_signed_selector<char16_t, false, true>::__type;
    };

  template<>
    struct __make_signed<char32_t>
    {
      using __type
	= typename __make_signed_selector<char32_t, false, true>::__type;
    };
  /// @endcond

  // Given an integral/enum type, return the corresponding signed
  // integer type.
  // Primary template.
  /// make_signed
  template<typename _Tp>
    struct make_signed
    { typedef typename __make_signed_selector<_Tp>::__type type; };

  // Integral, but don't define.
  template<> struct make_signed<bool>;
  template<> struct make_signed<bool const>;
  template<> struct make_signed<bool volatile>;
  template<> struct make_signed<bool const volatile>;

#if __cplusplus > 201103L
  /// Alias template for make_signed
  template<typename _Tp>
    using make_signed_t = typename make_signed<_Tp>::type;

  /// Alias template for make_unsigned
  template<typename _Tp>
    using make_unsigned_t = typename make_unsigned<_Tp>::type;
#endif

  // Array modifications.

  /// remove_extent
  template<typename _Tp>
    struct remove_extent
    { typedef _Tp     type; };

  template<typename _Tp, std::size_t _Size>
    struct remove_extent<_Tp[_Size]>
    { typedef _Tp     type; };

  template<typename _Tp>
    struct remove_extent<_Tp[]>
    { typedef _Tp     type; };

  /// remove_all_extents
  template<typename _Tp>
    struct remove_all_extents
    { typedef _Tp     type; };

  template<typename _Tp, std::size_t _Size>
    struct remove_all_extents<_Tp[_Size]>
    { typedef typename remove_all_extents<_Tp>::type     type; };

  template<typename _Tp>
    struct remove_all_extents<_Tp[]>
    { typedef typename remove_all_extents<_Tp>::type     type; };

#if __cplusplus > 201103L
  /// Alias template for remove_extent
  template<typename _Tp>
    using remove_extent_t = typename remove_extent<_Tp>::type;

  /// Alias template for remove_all_extents
  template<typename _Tp>
    using remove_all_extents_t = typename remove_all_extents<_Tp>::type;
#endif

  // Pointer modifications.

  template<typename _Tp, typename>
    struct __remove_pointer_helper
    { typedef _Tp     type; };

  template<typename _Tp, typename _Up>
    struct __remove_pointer_helper<_Tp, _Up*>
    { typedef _Up     type; };

  /// remove_pointer
  template<typename _Tp>
    struct remove_pointer
    : public __remove_pointer_helper<_Tp, __remove_cv_t<_Tp>>
    { };

  template<typename _Tp, typename = void>
    struct __add_pointer_helper
    { using type = _Tp; };

  template<typename _Tp>
    struct __add_pointer_helper<_Tp, __void_t<_Tp*>>
    { using type = _Tp*; };

  /// add_pointer
  template<typename _Tp>
    struct add_pointer
    : public __add_pointer_helper<_Tp>
    { };

  template<typename _Tp>
    struct add_pointer<_Tp&>
    { using type = _Tp*; };

  template<typename _Tp>
    struct add_pointer<_Tp&&>
    { using type = _Tp*; };

#if __cplusplus > 201103L
  /// Alias template for remove_pointer
  template<typename _Tp>
    using remove_pointer_t = typename remove_pointer<_Tp>::type;

  /// Alias template for add_pointer
  template<typename _Tp>
    using add_pointer_t = typename add_pointer<_Tp>::type;
#endif

  template<std::size_t _Len>
    struct __aligned_storage_msa
    {
      union __type
      {
	unsigned char __data[_Len];
	struct __attribute__((__aligned__)) { } __align;
      };
    };

  /**
   *  @brief Alignment type.
   *
   *  The value of _Align is a default-alignment which shall be the
   *  most stringent alignment requirement for any C++ object type
   *  whose size is no greater than _Len (3.9). The member typedef
   *  type shall be a POD type suitable for use as uninitialized
   *  storage for any object whose size is at most _Len and whose
   *  alignment is a divisor of _Align.
   *
   *  @deprecated Deprecated in C++23. Uses can be replaced by an
   *  array std::byte[_Len] declared with alignas(_Align).
  */
  template<std::size_t _Len, std::size_t _Align =
	   __alignof__(typename __aligned_storage_msa<_Len>::__type)>
    struct
    _GLIBCXX23_DEPRECATED
    aligned_storage
    {
      union type
      {
	unsigned char __data[_Len];
	struct __attribute__((__aligned__((_Align)))) { } __align;
      };
    };

  template <typename... _Types>
    struct __strictest_alignment
    {
      static const size_t _S_alignment = 0;
      static const size_t _S_size = 0;
    };

  template <typename _Tp, typename... _Types>
    struct __strictest_alignment<_Tp, _Types...>
    {
      static const size_t _S_alignment =
        alignof(_Tp) > __strictest_alignment<_Types...>::_S_alignment
	? alignof(_Tp) : __strictest_alignment<_Types...>::_S_alignment;
      static const size_t _S_size =
        sizeof(_Tp) > __strictest_alignment<_Types...>::_S_size
	? sizeof(_Tp) : __strictest_alignment<_Types...>::_S_size;
    };

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"

  /**
   *  @brief Provide aligned storage for types.
   *
   *  [meta.trans.other]
   *
   *  Provides aligned storage for any of the provided types of at
   *  least size _Len.
   *
   *  @see aligned_storage
   *
   *  @deprecated Deprecated in C++23.
   */
  template <size_t _Len, typename... _Types>
    struct
    _GLIBCXX23_DEPRECATED
    aligned_union
    {
    private:
      static_assert(sizeof...(_Types) != 0, "At least one type is required");

      using __strictest = __strictest_alignment<_Types...>;
      static const size_t _S_len = _Len > __strictest::_S_size
	? _Len : __strictest::_S_size;
    public:
      /// The value of the strictest alignment of _Types.
      static const size_t alignment_value = __strictest::_S_alignment;
      /// The storage.
      typedef typename aligned_storage<_S_len, alignment_value>::type type;
    };

  template <size_t _Len, typename... _Types>
    const size_t aligned_union<_Len, _Types...>::alignment_value;
#pragma GCC diagnostic pop

  /// @cond undocumented

  // Decay trait for arrays and functions, used for perfect forwarding
  // in make_pair, make_tuple, etc.
  template<typename _Up>
    struct __decay_selector
    : __conditional_t<is_const<const _Up>::value, // false for functions
		      remove_cv<_Up>,		  // N.B. DR 705.
		      add_pointer<_Up>>		  // function decays to pointer
    { };

  template<typename _Up, size_t _Nm>
    struct __decay_selector<_Up[_Nm]>
    { using type = _Up*; };

  template<typename _Up>
    struct __decay_selector<_Up[]>
    { using type = _Up*; };

  /// @endcond

  /// decay
  template<typename _Tp>
    struct decay
    { using type = typename __decay_selector<_Tp>::type; };

  template<typename _Tp>
    struct decay<_Tp&>
    { using type = typename __decay_selector<_Tp>::type; };

  template<typename _Tp>
    struct decay<_Tp&&>
    { using type = typename __decay_selector<_Tp>::type; };

  /// @cond undocumented

  // Helper which adds a reference to a type when given a reference_wrapper
  template<typename _Tp>
    struct __strip_reference_wrapper
    {
      typedef _Tp __type;
    };

  template<typename _Tp>
    struct __strip_reference_wrapper<reference_wrapper<_Tp> >
    {
      typedef _Tp& __type;
    };

  // __decay_t (std::decay_t for C++11).
  template<typename _Tp>
    using __decay_t = typename decay<_Tp>::type;

  template<typename _Tp>
    using __decay_and_strip = __strip_reference_wrapper<__decay_t<_Tp>>;
  /// @endcond

  /// @cond undocumented

  // Helper for SFINAE constraints
  template<typename... _Cond>
    using _Require = __enable_if_t<__and_<_Cond...>::value>;

  // __remove_cvref_t (std::remove_cvref_t for C++11).
  template<typename _Tp>
    using __remove_cvref_t
     = typename remove_cv<typename remove_reference<_Tp>::type>::type;
  /// @endcond

  // Primary template.
  /// Define a member typedef @c type to one of two argument types.
  template<bool _Cond, typename _Iftrue, typename _Iffalse>
    struct conditional
    { typedef _Iftrue type; };

  // Partial specialization for false.
  template<typename _Iftrue, typename _Iffalse>
    struct conditional<false, _Iftrue, _Iffalse>
    { typedef _Iffalse type; };

  /// common_type
  template<typename... _Tp>
    struct common_type;

  // Sfinae-friendly common_type implementation:

  /// @cond undocumented

  // For several sfinae-friendly trait implementations we transport both the
  // result information (as the member type) and the failure information (no
  // member type). This is very similar to std::enable_if, but we cannot use
  // that, because we need to derive from them as an implementation detail.

  template<typename _Tp>
    struct __success_type
    { typedef _Tp type; };

  struct __failure_type
  { };

  struct __do_common_type_impl
  {
    template<typename _Tp, typename _Up>
      using __cond_t
	= decltype(true ? std::declval<_Tp>() : std::declval<_Up>());

    // if decay_t<decltype(false ? declval<D1>() : declval<D2>())>
    // denotes a valid type, let C denote that type.
    template<typename _Tp, typename _Up>
      static __success_type<__decay_t<__cond_t<_Tp, _Up>>>
      _S_test(int);

#if __cplusplus > 201703L
    // Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type,
    // let C denote the type decay_t<COND-RES(CREF(D1), CREF(D2))>.
    template<typename _Tp, typename _Up>
      static __success_type<__remove_cvref_t<__cond_t<const _Tp&, const _Up&>>>
      _S_test_2(int);
#endif

    template<typename, typename>
      static __failure_type
      _S_test_2(...);

    template<typename _Tp, typename _Up>
      static decltype(_S_test_2<_Tp, _Up>(0))
      _S_test(...);
  };

  // If sizeof...(T) is zero, there shall be no member type.
  template<>
    struct common_type<>
    { };

  // If sizeof...(T) is one, the same type, if any, as common_type_t<T0, T0>.
  template<typename _Tp0>
    struct common_type<_Tp0>
    : public common_type<_Tp0, _Tp0>
    { };

  // If sizeof...(T) is two, ...
  template<typename _Tp1, typename _Tp2,
	   typename _Dp1 = __decay_t<_Tp1>, typename _Dp2 = __decay_t<_Tp2>>
    struct __common_type_impl
    {
      // If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false,
      // let C denote the same type, if any, as common_type_t<D1, D2>.
      using type = common_type<_Dp1, _Dp2>;
    };

  template<typename _Tp1, typename _Tp2>
    struct __common_type_impl<_Tp1, _Tp2, _Tp1, _Tp2>
    : private __do_common_type_impl
    {
      // Otherwise, if decay_t<decltype(false ? declval<D1>() : declval<D2>())>
      // denotes a valid type, let C denote that type.
      using type = decltype(_S_test<_Tp1, _Tp2>(0));
    };

  // If sizeof...(T) is two, ...
  template<typename _Tp1, typename _Tp2>
    struct common_type<_Tp1, _Tp2>
    : public __common_type_impl<_Tp1, _Tp2>::type
    { };

  template<typename...>
    struct __common_type_pack
    { };

  template<typename, typename, typename = void>
    struct __common_type_fold;

  // If sizeof...(T) is greater than two, ...
  template<typename _Tp1, typename _Tp2, typename... _Rp>
    struct common_type<_Tp1, _Tp2, _Rp...>
    : public __common_type_fold<common_type<_Tp1, _Tp2>,
				__common_type_pack<_Rp...>>
    { };

  // Let C denote the same type, if any, as common_type_t<T1, T2>.
  // If there is such a type C, type shall denote the same type, if any,
  // as common_type_t<C, R...>.
  template<typename _CTp, typename... _Rp>
    struct __common_type_fold<_CTp, __common_type_pack<_Rp...>,
			      __void_t<typename _CTp::type>>
    : public common_type<typename _CTp::type, _Rp...>
    { };

  // Otherwise, there shall be no member type.
  template<typename _CTp, typename _Rp>
    struct __common_type_fold<_CTp, _Rp, void>
    { };

  template<typename _Tp, bool = is_enum<_Tp>::value>
    struct __underlying_type_impl
    {
      using type = __underlying_type(_Tp);
    };

  template<typename _Tp>
    struct __underlying_type_impl<_Tp, false>
    { };
  /// @endcond

  /// The underlying type of an enum.
  template<typename _Tp>
    struct underlying_type
    : public __underlying_type_impl<_Tp>
    { };

  /// @cond undocumented
  template<typename _Tp>
    struct __declval_protector
    {
      static const bool __stop = false;
    };
  /// @endcond

  /** Utility to simplify expressions used in unevaluated operands
   *  @since C++11
   *  @ingroup utilities
   */
  template<typename _Tp>
    auto declval() noexcept -> decltype(__declval<_Tp>(0))
    {
      static_assert(__declval_protector<_Tp>::__stop,
		    "declval() must not be used!");
      return __declval<_Tp>(0);
    }

  /// result_of
  template<typename _Signature>
    struct result_of;

  // Sfinae-friendly result_of implementation:

#define __cpp_lib_result_of_sfinae 201210L

  /// @cond undocumented
  struct __invoke_memfun_ref { };
  struct __invoke_memfun_deref { };
  struct __invoke_memobj_ref { };
  struct __invoke_memobj_deref { };
  struct __invoke_other { };

  // Associate a tag type with a specialization of __success_type.
  template<typename _Tp, typename _Tag>
    struct __result_of_success : __success_type<_Tp>
    { using __invoke_type = _Tag; };

  // [func.require] paragraph 1 bullet 1:
  struct __result_of_memfun_ref_impl
  {
    template<typename _Fp, typename _Tp1, typename... _Args>
      static __result_of_success<decltype(
      (std::declval<_Tp1>().*std::declval<_Fp>())(std::declval<_Args>()...)
      ), __invoke_memfun_ref> _S_test(int);

    template<typename...>
      static __failure_type _S_test(...);
  };

  template<typename _MemPtr, typename _Arg, typename... _Args>
    struct __result_of_memfun_ref
    : private __result_of_memfun_ref_impl
    {
      typedef decltype(_S_test<_MemPtr, _Arg, _Args...>(0)) type;
    };

  // [func.require] paragraph 1 bullet 2:
  struct __result_of_memfun_deref_impl
  {
    template<typename _Fp, typename _Tp1, typename... _Args>
      static __result_of_success<decltype(
      ((*std::declval<_Tp1>()).*std::declval<_Fp>())(std::declval<_Args>()...)
      ), __invoke_memfun_deref> _S_test(int);

    template<typename...>
      static __failure_type _S_test(...);
  };

  template<typename _MemPtr, typename _Arg, typename... _Args>
    struct __result_of_memfun_deref
    : private __result_of_memfun_deref_impl
    {
      typedef decltype(_S_test<_MemPtr, _Arg, _Args...>(0)) type;
    };

  // [func.require] paragraph 1 bullet 3:
  struct __result_of_memobj_ref_impl
  {
    template<typename _Fp, typename _Tp1>
      static __result_of_success<decltype(
      std::declval<_Tp1>().*std::declval<_Fp>()
      ), __invoke_memobj_ref> _S_test(int);

    template<typename, typename>
      static __failure_type _S_test(...);
  };

  template<typename _MemPtr, typename _Arg>
    struct __result_of_memobj_ref
    : private __result_of_memobj_ref_impl
    {
      typedef decltype(_S_test<_MemPtr, _Arg>(0)) type;
    };

  // [func.require] paragraph 1 bullet 4:
  struct __result_of_memobj_deref_impl
  {
    template<typename _Fp, typename _Tp1>
      static __result_of_success<decltype(
      (*std::declval<_Tp1>()).*std::declval<_Fp>()
      ), __invoke_memobj_deref> _S_test(int);

    template<typename, typename>
      static __failure_type _S_test(...);
  };

  template<typename _MemPtr, typename _Arg>
    struct __result_of_memobj_deref
    : private __result_of_memobj_deref_impl
    {
      typedef decltype(_S_test<_MemPtr, _Arg>(0)) type;
    };

  template<typename _MemPtr, typename _Arg>
    struct __result_of_memobj;

  template<typename _Res, typename _Class, typename _Arg>
    struct __result_of_memobj<_Res _Class::*, _Arg>
    {
      typedef __remove_cvref_t<_Arg> _Argval;
      typedef _Res _Class::* _MemPtr;
      typedef typename __conditional_t<__or_<is_same<_Argval, _Class>,
        is_base_of<_Class, _Argval>>::value,
        __result_of_memobj_ref<_MemPtr, _Arg>,
        __result_of_memobj_deref<_MemPtr, _Arg>
      >::type type;
    };

  template<typename _MemPtr, typename _Arg, typename... _Args>
    struct __result_of_memfun;

  template<typename _Res, typename _Class, typename _Arg, typename... _Args>
    struct __result_of_memfun<_Res _Class::*, _Arg, _Args...>
    {
      typedef typename remove_reference<_Arg>::type _Argval;
      typedef _Res _Class::* _MemPtr;
      typedef typename __conditional_t<is_base_of<_Class, _Argval>::value,
        __result_of_memfun_ref<_MemPtr, _Arg, _Args...>,
        __result_of_memfun_deref<_MemPtr, _Arg, _Args...>
      >::type type;
    };

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2219.  INVOKE-ing a pointer to member with a reference_wrapper
  //        as the object expression

  // Used by result_of, invoke etc. to unwrap a reference_wrapper.
  template<typename _Tp, typename _Up = __remove_cvref_t<_Tp>>
    struct __inv_unwrap
    {
      using type = _Tp;
    };

  template<typename _Tp, typename _Up>
    struct __inv_unwrap<_Tp, reference_wrapper<_Up>>
    {
      using type = _Up&;
    };

  template<bool, bool, typename _Functor, typename... _ArgTypes>
    struct __result_of_impl
    {
      typedef __failure_type type;
    };

  template<typename _MemPtr, typename _Arg>
    struct __result_of_impl<true, false, _MemPtr, _Arg>
    : public __result_of_memobj<__decay_t<_MemPtr>,
				typename __inv_unwrap<_Arg>::type>
    { };

  template<typename _MemPtr, typename _Arg, typename... _Args>
    struct __result_of_impl<false, true, _MemPtr, _Arg, _Args...>
    : public __result_of_memfun<__decay_t<_MemPtr>,
				typename __inv_unwrap<_Arg>::type, _Args...>
    { };

  // [func.require] paragraph 1 bullet 5:
  struct __result_of_other_impl
  {
    template<typename _Fn, typename... _Args>
      static __result_of_success<decltype(
      std::declval<_Fn>()(std::declval<_Args>()...)
      ), __invoke_other> _S_test(int);

    template<typename...>
      static __failure_type _S_test(...);
  };

  template<typename _Functor, typename... _ArgTypes>
    struct __result_of_impl<false, false, _Functor, _ArgTypes...>
    : private __result_of_other_impl
    {
      typedef decltype(_S_test<_Functor, _ArgTypes...>(0)) type;
    };

  // __invoke_result (std::invoke_result for C++11)
  template<typename _Functor, typename... _ArgTypes>
    struct __invoke_result
    : public __result_of_impl<
        is_member_object_pointer<
          typename remove_reference<_Functor>::type
        >::value,
        is_member_function_pointer<
          typename remove_reference<_Functor>::type
        >::value,
	_Functor, _ArgTypes...
      >::type
    { };
  /// @endcond

  template<typename _Functor, typename... _ArgTypes>
    struct result_of<_Functor(_ArgTypes...)>
    : public __invoke_result<_Functor, _ArgTypes...>
    { } _GLIBCXX17_DEPRECATED_SUGGEST("std::invoke_result");

#if __cplusplus >= 201402L
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
  /// Alias template for aligned_storage
  template<size_t _Len, size_t _Align =
	    __alignof__(typename __aligned_storage_msa<_Len>::__type)>
    using aligned_storage_t _GLIBCXX23_DEPRECATED = typename aligned_storage<_Len, _Align>::type;

  template <size_t _Len, typename... _Types>
    using aligned_union_t _GLIBCXX23_DEPRECATED = typename aligned_union<_Len, _Types...>::type;
#pragma GCC diagnostic pop

  /// Alias template for decay
  template<typename _Tp>
    using decay_t = typename decay<_Tp>::type;

  /// Alias template for enable_if
  template<bool _Cond, typename _Tp = void>
    using enable_if_t = typename enable_if<_Cond, _Tp>::type;

  /// Alias template for conditional
  template<bool _Cond, typename _Iftrue, typename _Iffalse>
    using conditional_t = typename conditional<_Cond, _Iftrue, _Iffalse>::type;

  /// Alias template for common_type
  template<typename... _Tp>
    using common_type_t = typename common_type<_Tp...>::type;

  /// Alias template for underlying_type
  template<typename _Tp>
    using underlying_type_t = typename underlying_type<_Tp>::type;

  /// Alias template for result_of
  template<typename _Tp>
    using result_of_t = typename result_of<_Tp>::type;
#endif // C++14

#if __cplusplus >= 201703L || !defined(__STRICT_ANSI__) // c++17 or gnu++11
#define __cpp_lib_void_t 201411L
  /// A metafunction that always yields void, used for detecting valid types.
  template<typename...> using void_t = void;
#endif

  /// @cond undocumented

  // Detection idiom.
  // Detect whether _Op<_Args...> is a valid type, use default _Def if not.

#if __cpp_concepts
  // Implementation of the detection idiom (negative case).
  template<typename _Def, template<typename...> class _Op, typename... _Args>
    struct __detected_or
    {
      using type = _Def;
      using __is_detected = false_type;
    };

  // Implementation of the detection idiom (positive case).
  template<typename _Def, template<typename...> class _Op, typename... _Args>
    requires requires { typename _Op<_Args...>; }
    struct __detected_or<_Def, _Op, _Args...>
    {
      using type = _Op<_Args...>;
      using __is_detected = true_type;
    };
#else
  /// Implementation of the detection idiom (negative case).
  template<typename _Default, typename _AlwaysVoid,
	   template<typename...> class _Op, typename... _Args>
    struct __detector
    {
      using type = _Default;
      using __is_detected = false_type;
    };

  /// Implementation of the detection idiom (positive case).
  template<typename _Default, template<typename...> class _Op,
	    typename... _Args>
    struct __detector<_Default, __void_t<_Op<_Args...>>, _Op, _Args...>
    {
      using type = _Op<_Args...>;
      using __is_detected = true_type;
    };

  template<typename _Default, template<typename...> class _Op,
	   typename... _Args>
    using __detected_or = __detector<_Default, void, _Op, _Args...>;
#endif // __cpp_concepts

  // _Op<_Args...> if that is a valid type, otherwise _Default.
  template<typename _Default, template<typename...> class _Op,
	   typename... _Args>
    using __detected_or_t
      = typename __detected_or<_Default, _Op, _Args...>::type;

  /**
   *  Use SFINAE to determine if the type _Tp has a publicly-accessible
   *  member type _NTYPE.
   */
#define _GLIBCXX_HAS_NESTED_TYPE(_NTYPE)				\
  template<typename _Tp, typename = __void_t<>>				\
    struct __has_##_NTYPE						\
    : false_type							\
    { };								\
  template<typename _Tp>						\
    struct __has_##_NTYPE<_Tp, __void_t<typename _Tp::_NTYPE>>		\
    : true_type								\
    { };

  template <typename _Tp>
    struct __is_swappable;

  template <typename _Tp>
    struct __is_nothrow_swappable;

  template<typename>
    struct __is_tuple_like_impl : false_type
    { };

  // Internal type trait that allows us to sfinae-protect tuple_cat.
  template<typename _Tp>
    struct __is_tuple_like
    : public __is_tuple_like_impl<__remove_cvref_t<_Tp>>::type
    { };
  /// @endcond

  template<typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline
    _Require<__not_<__is_tuple_like<_Tp>>,
	     is_move_constructible<_Tp>,
	     is_move_assignable<_Tp>>
    swap(_Tp&, _Tp&)
    noexcept(__and_<is_nothrow_move_constructible<_Tp>,
	            is_nothrow_move_assignable<_Tp>>::value);

  template<typename _Tp, size_t _Nm>
    _GLIBCXX20_CONSTEXPR
    inline
    __enable_if_t<__is_swappable<_Tp>::value>
    swap(_Tp (&__a)[_Nm], _Tp (&__b)[_Nm])
    noexcept(__is_nothrow_swappable<_Tp>::value);

  /// @cond undocumented
  namespace __swappable_details {
    using std::swap;

    struct __do_is_swappable_impl
    {
      template<typename _Tp, typename
               = decltype(swap(std::declval<_Tp&>(), std::declval<_Tp&>()))>
        static true_type __test(int);

      template<typename>
        static false_type __test(...);
    };

    struct __do_is_nothrow_swappable_impl
    {
      template<typename _Tp>
        static __bool_constant<
          noexcept(swap(std::declval<_Tp&>(), std::declval<_Tp&>()))
        > __test(int);

      template<typename>
        static false_type __test(...);
    };

  } // namespace __swappable_details

  template<typename _Tp>
    struct __is_swappable_impl
    : public __swappable_details::__do_is_swappable_impl
    {
      typedef decltype(__test<_Tp>(0)) type;
    };

  template<typename _Tp>
    struct __is_nothrow_swappable_impl
    : public __swappable_details::__do_is_nothrow_swappable_impl
    {
      typedef decltype(__test<_Tp>(0)) type;
    };

  template<typename _Tp>
    struct __is_swappable
    : public __is_swappable_impl<_Tp>::type
    { };

  template<typename _Tp>
    struct __is_nothrow_swappable
    : public __is_nothrow_swappable_impl<_Tp>::type
    { };
  /// @endcond

#if __cplusplus > 201402L || !defined(__STRICT_ANSI__) // c++1z or gnu++11
#define __cpp_lib_is_swappable 201603L
  /// Metafunctions used for detecting swappable types: p0185r1

  /// is_swappable
  template<typename _Tp>
    struct is_swappable
    : public __is_swappable_impl<_Tp>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_swappable
  template<typename _Tp>
    struct is_nothrow_swappable
    : public __is_nothrow_swappable_impl<_Tp>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

#if __cplusplus >= 201402L
  /// is_swappable_v
  template<typename _Tp>
    _GLIBCXX17_INLINE constexpr bool is_swappable_v =
      is_swappable<_Tp>::value;

  /// is_nothrow_swappable_v
  template<typename _Tp>
    _GLIBCXX17_INLINE constexpr bool is_nothrow_swappable_v =
      is_nothrow_swappable<_Tp>::value;
#endif // __cplusplus >= 201402L

  /// @cond undocumented
  namespace __swappable_with_details {
    using std::swap;

    struct __do_is_swappable_with_impl
    {
      template<typename _Tp, typename _Up, typename
               = decltype(swap(std::declval<_Tp>(), std::declval<_Up>())),
               typename
               = decltype(swap(std::declval<_Up>(), std::declval<_Tp>()))>
        static true_type __test(int);

      template<typename, typename>
        static false_type __test(...);
    };

    struct __do_is_nothrow_swappable_with_impl
    {
      template<typename _Tp, typename _Up>
        static __bool_constant<
          noexcept(swap(std::declval<_Tp>(), std::declval<_Up>()))
          &&
          noexcept(swap(std::declval<_Up>(), std::declval<_Tp>()))
        > __test(int);

      template<typename, typename>
        static false_type __test(...);
    };

  } // namespace __swappable_with_details

  template<typename _Tp, typename _Up>
    struct __is_swappable_with_impl
    : public __swappable_with_details::__do_is_swappable_with_impl
    {
      typedef decltype(__test<_Tp, _Up>(0)) type;
    };

  // Optimization for the homogenous lvalue case, not required:
  template<typename _Tp>
    struct __is_swappable_with_impl<_Tp&, _Tp&>
    : public __swappable_details::__do_is_swappable_impl
    {
      typedef decltype(__test<_Tp&>(0)) type;
    };

  template<typename _Tp, typename _Up>
    struct __is_nothrow_swappable_with_impl
    : public __swappable_with_details::__do_is_nothrow_swappable_with_impl
    {
      typedef decltype(__test<_Tp, _Up>(0)) type;
    };

  // Optimization for the homogenous lvalue case, not required:
  template<typename _Tp>
    struct __is_nothrow_swappable_with_impl<_Tp&, _Tp&>
    : public __swappable_details::__do_is_nothrow_swappable_impl
    {
      typedef decltype(__test<_Tp&>(0)) type;
    };
  /// @endcond

  /// is_swappable_with
  template<typename _Tp, typename _Up>
    struct is_swappable_with
    : public __is_swappable_with_impl<_Tp, _Up>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"first template argument must be a complete class or an unbounded array");
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Up>{}),
	"second template argument must be a complete class or an unbounded array");
    };

  /// is_nothrow_swappable_with
  template<typename _Tp, typename _Up>
    struct is_nothrow_swappable_with
    : public __is_nothrow_swappable_with_impl<_Tp, _Up>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"first template argument must be a complete class or an unbounded array");
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Up>{}),
	"second template argument must be a complete class or an unbounded array");
    };

#if __cplusplus >= 201402L
  /// is_swappable_with_v
  template<typename _Tp, typename _Up>
    _GLIBCXX17_INLINE constexpr bool is_swappable_with_v =
      is_swappable_with<_Tp, _Up>::value;

  /// is_nothrow_swappable_with_v
  template<typename _Tp, typename _Up>
    _GLIBCXX17_INLINE constexpr bool is_nothrow_swappable_with_v =
      is_nothrow_swappable_with<_Tp, _Up>::value;
#endif // __cplusplus >= 201402L

#endif// c++1z or gnu++11

  /// @cond undocumented

  // __is_invocable (std::is_invocable for C++11)

  // The primary template is used for invalid INVOKE expressions.
  template<typename _Result, typename _Ret,
	   bool = is_void<_Ret>::value, typename = void>
    struct __is_invocable_impl
    : false_type
    {
      using __nothrow_conv = false_type; // For is_nothrow_invocable_r
    };

  // Used for valid INVOKE and INVOKE<void> expressions.
  template<typename _Result, typename _Ret>
    struct __is_invocable_impl<_Result, _Ret,
			       /* is_void<_Ret> = */ true,
			       __void_t<typename _Result::type>>
    : true_type
    {
      using __nothrow_conv = true_type; // For is_nothrow_invocable_r
    };

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wctor-dtor-privacy"
  // Used for INVOKE<R> expressions to check the implicit conversion to R.
  template<typename _Result, typename _Ret>
    struct __is_invocable_impl<_Result, _Ret,
			       /* is_void<_Ret> = */ false,
			       __void_t<typename _Result::type>>
    {
    private:
      // The type of the INVOKE expression.
      using _Res_t = typename _Result::type;

      // Unlike declval, this doesn't add_rvalue_reference, so it respects
      // guaranteed copy elision.
      static _Res_t _S_get() noexcept;

      // Used to check if _Res_t can implicitly convert to _Tp.
      template<typename _Tp>
	static void _S_conv(__type_identity_t<_Tp>) noexcept;

      // This overload is viable if INVOKE(f, args...) can convert to _Tp.
      template<typename _Tp,
	       bool _Nothrow = noexcept(_S_conv<_Tp>(_S_get())),
	       typename = decltype(_S_conv<_Tp>(_S_get())),
#if __has_builtin(__reference_converts_from_temporary)
	       bool _Dangle = __reference_converts_from_temporary(_Tp, _Res_t)
#else
	       bool _Dangle = false
#endif
	      >
	static __bool_constant<_Nothrow && !_Dangle>
	_S_test(int);

      template<typename _Tp, bool = false>
	static false_type
	_S_test(...);

    public:
      // For is_invocable_r
      using type = decltype(_S_test<_Ret, /* Nothrow = */ true>(1));

      // For is_nothrow_invocable_r
      using __nothrow_conv = decltype(_S_test<_Ret>(1));
    };
#pragma GCC diagnostic pop

  template<typename _Fn, typename... _ArgTypes>
    struct __is_invocable
    : __is_invocable_impl<__invoke_result<_Fn, _ArgTypes...>, void>::type
    { };

  template<typename _Fn, typename _Tp, typename... _Args>
    constexpr bool __call_is_nt(__invoke_memfun_ref)
    {
      using _Up = typename __inv_unwrap<_Tp>::type;
      return noexcept((std::declval<_Up>().*std::declval<_Fn>())(
	    std::declval<_Args>()...));
    }

  template<typename _Fn, typename _Tp, typename... _Args>
    constexpr bool __call_is_nt(__invoke_memfun_deref)
    {
      return noexcept(((*std::declval<_Tp>()).*std::declval<_Fn>())(
	    std::declval<_Args>()...));
    }

  template<typename _Fn, typename _Tp>
    constexpr bool __call_is_nt(__invoke_memobj_ref)
    {
      using _Up = typename __inv_unwrap<_Tp>::type;
      return noexcept(std::declval<_Up>().*std::declval<_Fn>());
    }

  template<typename _Fn, typename _Tp>
    constexpr bool __call_is_nt(__invoke_memobj_deref)
    {
      return noexcept((*std::declval<_Tp>()).*std::declval<_Fn>());
    }

  template<typename _Fn, typename... _Args>
    constexpr bool __call_is_nt(__invoke_other)
    {
      return noexcept(std::declval<_Fn>()(std::declval<_Args>()...));
    }

  template<typename _Result, typename _Fn, typename... _Args>
    struct __call_is_nothrow
    : __bool_constant<
	std::__call_is_nt<_Fn, _Args...>(typename _Result::__invoke_type{})
      >
    { };

  template<typename _Fn, typename... _Args>
    using __call_is_nothrow_
      = __call_is_nothrow<__invoke_result<_Fn, _Args...>, _Fn, _Args...>;

  // __is_nothrow_invocable (std::is_nothrow_invocable for C++11)
  template<typename _Fn, typename... _Args>
    struct __is_nothrow_invocable
    : __and_<__is_invocable<_Fn, _Args...>,
             __call_is_nothrow_<_Fn, _Args...>>::type
    { };

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wctor-dtor-privacy"
  struct __nonesuchbase {};
  struct __nonesuch : private __nonesuchbase {
    ~__nonesuch() = delete;
    __nonesuch(__nonesuch const&) = delete;
    void operator=(__nonesuch const&) = delete;
  };
#pragma GCC diagnostic pop
  /// @endcond

#if __cplusplus >= 201703L
# define __cpp_lib_is_invocable 201703L

  /// std::invoke_result
  template<typename _Functor, typename... _ArgTypes>
    struct invoke_result
    : public __invoke_result<_Functor, _ArgTypes...>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Functor>{}),
	"_Functor must be a complete class or an unbounded array");
      static_assert((std::__is_complete_or_unbounded(
	__type_identity<_ArgTypes>{}) && ...),
	"each argument type must be a complete class or an unbounded array");
    };

  /// std::invoke_result_t
  template<typename _Fn, typename... _Args>
    using invoke_result_t = typename invoke_result<_Fn, _Args...>::type;

  /// std::is_invocable
  template<typename _Fn, typename... _ArgTypes>
    struct is_invocable
    : __is_invocable_impl<__invoke_result<_Fn, _ArgTypes...>, void>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Fn>{}),
	"_Fn must be a complete class or an unbounded array");
      static_assert((std::__is_complete_or_unbounded(
	__type_identity<_ArgTypes>{}) && ...),
	"each argument type must be a complete class or an unbounded array");
    };

  /// std::is_invocable_r
  template<typename _Ret, typename _Fn, typename... _ArgTypes>
    struct is_invocable_r
    : __is_invocable_impl<__invoke_result<_Fn, _ArgTypes...>, _Ret>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Fn>{}),
	"_Fn must be a complete class or an unbounded array");
      static_assert((std::__is_complete_or_unbounded(
	__type_identity<_ArgTypes>{}) && ...),
	"each argument type must be a complete class or an unbounded array");
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Ret>{}),
	"_Ret must be a complete class or an unbounded array");
    };

  /// std::is_nothrow_invocable
  template<typename _Fn, typename... _ArgTypes>
    struct is_nothrow_invocable
    : __and_<__is_invocable_impl<__invoke_result<_Fn, _ArgTypes...>, void>,
	     __call_is_nothrow_<_Fn, _ArgTypes...>>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Fn>{}),
	"_Fn must be a complete class or an unbounded array");
      static_assert((std::__is_complete_or_unbounded(
	__type_identity<_ArgTypes>{}) && ...),
	"each argument type must be a complete class or an unbounded array");
    };

  /// @cond undocumented
  // This checks that the INVOKE<R> expression is well-formed and that the
  // conversion to R does not throw. It does *not* check whether the INVOKE
  // expression itself can throw. That is done by __call_is_nothrow_ instead.
  template<typename _Result, typename _Ret>
    using __is_nt_invocable_impl
      = typename __is_invocable_impl<_Result, _Ret>::__nothrow_conv;
  /// @endcond

  /// std::is_nothrow_invocable_r
  template<typename _Ret, typename _Fn, typename... _ArgTypes>
    struct is_nothrow_invocable_r
    : __and_<__is_nt_invocable_impl<__invoke_result<_Fn, _ArgTypes...>, _Ret>,
             __call_is_nothrow_<_Fn, _ArgTypes...>>::type
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Fn>{}),
	"_Fn must be a complete class or an unbounded array");
      static_assert((std::__is_complete_or_unbounded(
	__type_identity<_ArgTypes>{}) && ...),
	"each argument type must be a complete class or an unbounded array");
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Ret>{}),
	"_Ret must be a complete class or an unbounded array");
    };
#endif // C++17

#if __cplusplus >= 201703L
# define __cpp_lib_type_trait_variable_templates 201510L
  /**
   * @defgroup variable_templates Variable templates for type traits
   * @ingroup metaprogramming
   *
   * Each variable `is_xxx_v<T>` is a boolean constant with the same value
   * as the `value` member of the corresponding type trait `is_xxx<T>`.
   *
   * @since C++17 unless noted otherwise.
   */

  /**
   * @{
   * @ingroup variable_templates
   */
template <typename _Tp>
  inline constexpr bool is_void_v = is_void<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_null_pointer_v = is_null_pointer<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_integral_v = is_integral<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_floating_point_v = is_floating_point<_Tp>::value;

template <typename _Tp>
  inline constexpr bool is_array_v = false;
template <typename _Tp>
  inline constexpr bool is_array_v<_Tp[]> = true;
template <typename _Tp, size_t _Num>
  inline constexpr bool is_array_v<_Tp[_Num]> = true;

template <typename _Tp>
  inline constexpr bool is_pointer_v = is_pointer<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_lvalue_reference_v = false;
template <typename _Tp>
  inline constexpr bool is_lvalue_reference_v<_Tp&> = true;
template <typename _Tp>
  inline constexpr bool is_rvalue_reference_v = false;
template <typename _Tp>
  inline constexpr bool is_rvalue_reference_v<_Tp&&> = true;
template <typename _Tp>
  inline constexpr bool is_member_object_pointer_v =
    is_member_object_pointer<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_member_function_pointer_v =
    is_member_function_pointer<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_enum_v = __is_enum(_Tp);
template <typename _Tp>
  inline constexpr bool is_union_v = __is_union(_Tp);
template <typename _Tp>
  inline constexpr bool is_class_v = __is_class(_Tp);
template <typename _Tp>
  inline constexpr bool is_function_v = is_function<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_reference_v = false;
template <typename _Tp>
  inline constexpr bool is_reference_v<_Tp&> = true;
template <typename _Tp>
  inline constexpr bool is_reference_v<_Tp&&> = true;
template <typename _Tp>
  inline constexpr bool is_arithmetic_v = is_arithmetic<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_fundamental_v = is_fundamental<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_object_v = is_object<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_scalar_v = is_scalar<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_compound_v = is_compound<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_member_pointer_v = is_member_pointer<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_const_v = false;
template <typename _Tp>
  inline constexpr bool is_const_v<const _Tp> = true;
template <typename _Tp>
  inline constexpr bool is_volatile_v = false;
template <typename _Tp>
  inline constexpr bool is_volatile_v<volatile _Tp> = true;

template <typename _Tp>
  inline constexpr bool is_trivial_v = __is_trivial(_Tp);
template <typename _Tp>
  inline constexpr bool is_trivially_copyable_v = __is_trivially_copyable(_Tp);
template <typename _Tp>
  inline constexpr bool is_standard_layout_v = __is_standard_layout(_Tp);
template <typename _Tp>
  _GLIBCXX20_DEPRECATED_SUGGEST("is_standard_layout_v && is_trivial_v")
  inline constexpr bool is_pod_v = __is_pod(_Tp);
template <typename _Tp>
  _GLIBCXX17_DEPRECATED
  inline constexpr bool is_literal_type_v = __is_literal_type(_Tp);
template <typename _Tp>
  inline constexpr bool is_empty_v = __is_empty(_Tp);
template <typename _Tp>
  inline constexpr bool is_polymorphic_v = __is_polymorphic(_Tp);
template <typename _Tp>
  inline constexpr bool is_abstract_v = __is_abstract(_Tp);
template <typename _Tp>
  inline constexpr bool is_final_v = __is_final(_Tp);

template <typename _Tp>
  inline constexpr bool is_signed_v = is_signed<_Tp>::value;
template <typename _Tp>
  inline constexpr bool is_unsigned_v = is_unsigned<_Tp>::value;

template <typename _Tp, typename... _Args>
  inline constexpr bool is_constructible_v = __is_constructible(_Tp, _Args...);
template <typename _Tp>
  inline constexpr bool is_default_constructible_v = __is_constructible(_Tp);
template <typename _Tp>
  inline constexpr bool is_copy_constructible_v
    = __is_constructible(_Tp, __add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_move_constructible_v
    = __is_constructible(_Tp, __add_rval_ref_t<_Tp>);

template <typename _Tp, typename _Up>
  inline constexpr bool is_assignable_v = __is_assignable(_Tp, _Up);
template <typename _Tp>
  inline constexpr bool is_copy_assignable_v
    = __is_assignable(__add_lval_ref_t<_Tp>, __add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_move_assignable_v
    = __is_assignable(__add_lval_ref_t<_Tp>, __add_rval_ref_t<_Tp>);

template <typename _Tp>
  inline constexpr bool is_destructible_v = is_destructible<_Tp>::value;

template <typename _Tp, typename... _Args>
  inline constexpr bool is_trivially_constructible_v
    = __is_trivially_constructible(_Tp, _Args...);
template <typename _Tp>
  inline constexpr bool is_trivially_default_constructible_v
    = __is_trivially_constructible(_Tp);
template <typename _Tp>
  inline constexpr bool is_trivially_copy_constructible_v
    = __is_trivially_constructible(_Tp, __add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_trivially_move_constructible_v
    = __is_trivially_constructible(_Tp, __add_rval_ref_t<_Tp>);

template <typename _Tp, typename _Up>
  inline constexpr bool is_trivially_assignable_v
    = __is_trivially_assignable(_Tp, _Up);
template <typename _Tp>
  inline constexpr bool is_trivially_copy_assignable_v
    = __is_trivially_assignable(__add_lval_ref_t<_Tp>,
				__add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_trivially_move_assignable_v
    = __is_trivially_assignable(__add_lval_ref_t<_Tp>,
				__add_rval_ref_t<_Tp>);
template <typename _Tp>
  inline constexpr bool is_trivially_destructible_v =
    is_trivially_destructible<_Tp>::value;
template <typename _Tp, typename... _Args>
  inline constexpr bool is_nothrow_constructible_v
    = __is_nothrow_constructible(_Tp, _Args...);
template <typename _Tp>
  inline constexpr bool is_nothrow_default_constructible_v
    = __is_nothrow_constructible(_Tp);
template <typename _Tp>
  inline constexpr bool is_nothrow_copy_constructible_v
    = __is_nothrow_constructible(_Tp, __add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_nothrow_move_constructible_v
    = __is_nothrow_constructible(_Tp, __add_rval_ref_t<_Tp>);

template <typename _Tp, typename _Up>
  inline constexpr bool is_nothrow_assignable_v
    = __is_nothrow_assignable(_Tp, _Up);
template <typename _Tp>
  inline constexpr bool is_nothrow_copy_assignable_v
    = __is_nothrow_assignable(__add_lval_ref_t<_Tp>,
			      __add_lval_ref_t<const _Tp>);
template <typename _Tp>
  inline constexpr bool is_nothrow_move_assignable_v
    = __is_nothrow_assignable(__add_lval_ref_t<_Tp>, __add_rval_ref_t<_Tp>);

template <typename _Tp>
  inline constexpr bool is_nothrow_destructible_v =
    is_nothrow_destructible<_Tp>::value;

template <typename _Tp>
  inline constexpr bool has_virtual_destructor_v
    = __has_virtual_destructor(_Tp);

template <typename _Tp>
  inline constexpr size_t alignment_of_v = alignment_of<_Tp>::value;

template <typename _Tp>
  inline constexpr size_t rank_v = 0;
template <typename _Tp, size_t _Size>
  inline constexpr size_t rank_v<_Tp[_Size]> = 1 + rank_v<_Tp>;
template <typename _Tp>
  inline constexpr size_t rank_v<_Tp[]> = 1 + rank_v<_Tp>;

template <typename _Tp, unsigned _Idx = 0>
  inline constexpr size_t extent_v = 0;
template <typename _Tp, size_t _Size>
  inline constexpr size_t extent_v<_Tp[_Size], 0> = _Size;
template <typename _Tp, unsigned _Idx, size_t _Size>
  inline constexpr size_t extent_v<_Tp[_Size], _Idx> = extent_v<_Tp, _Idx - 1>;
template <typename _Tp>
  inline constexpr size_t extent_v<_Tp[], 0> = 0;
template <typename _Tp, unsigned _Idx>
  inline constexpr size_t extent_v<_Tp[], _Idx> = extent_v<_Tp, _Idx - 1>;

#ifdef _GLIBCXX_HAVE_BUILTIN_IS_SAME
template <typename _Tp, typename _Up>
  inline constexpr bool is_same_v = __is_same(_Tp, _Up);
#else
template <typename _Tp, typename _Up>
  inline constexpr bool is_same_v = false;
template <typename _Tp>
  inline constexpr bool is_same_v<_Tp, _Tp> = true;
#endif
template <typename _Base, typename _Derived>
  inline constexpr bool is_base_of_v = __is_base_of(_Base, _Derived);
template <typename _From, typename _To>
  inline constexpr bool is_convertible_v = __is_convertible(_From, _To);
template<typename _Fn, typename... _Args>
  inline constexpr bool is_invocable_v = is_invocable<_Fn, _Args...>::value;
template<typename _Fn, typename... _Args>
  inline constexpr bool is_nothrow_invocable_v
    = is_nothrow_invocable<_Fn, _Args...>::value;
template<typename _Ret, typename _Fn, typename... _Args>
  inline constexpr bool is_invocable_r_v
    = is_invocable_r<_Ret, _Fn, _Args...>::value;
template<typename _Ret, typename _Fn, typename... _Args>
  inline constexpr bool is_nothrow_invocable_r_v
    = is_nothrow_invocable_r<_Ret, _Fn, _Args...>::value;
/// @}

#ifdef _GLIBCXX_HAVE_BUILTIN_HAS_UNIQ_OBJ_REP
# define __cpp_lib_has_unique_object_representations 201606L
  /// has_unique_object_representations
  /// @since C++17
  template<typename _Tp>
    struct has_unique_object_representations
    : bool_constant<__has_unique_object_representations(
      remove_cv_t<remove_all_extents_t<_Tp>>
      )>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @ingroup variable_templates
  template<typename _Tp>
    inline constexpr bool has_unique_object_representations_v
      = has_unique_object_representations<_Tp>::value;
#endif

#ifdef _GLIBCXX_HAVE_BUILTIN_IS_AGGREGATE
# define __cpp_lib_is_aggregate 201703L
  /// is_aggregate - true if the type is an aggregate.
  /// @since C++17
  template<typename _Tp>
    struct is_aggregate
    : bool_constant<__is_aggregate(remove_cv_t<_Tp>)>
    { };

  /** is_aggregate_v - true if the type is an aggregate.
   *  @ingroup variable_templates
   *  @since C++17
   */
  template<typename _Tp>
    inline constexpr bool is_aggregate_v = __is_aggregate(remove_cv_t<_Tp>);
#endif
#endif // C++17

#if __cplusplus >= 202002L

  /** * Remove references and cv-qualifiers.
   * @since C++20
   * @{
   */
#define __cpp_lib_remove_cvref 201711L

#if __has_builtin(__remove_cvref)
  template<typename _Tp>
    struct remove_cvref
    { using type = __remove_cvref(_Tp); };
#else
  template<typename _Tp>
    struct remove_cvref
    { using type = typename remove_cv<_Tp>::type; };

  template<typename _Tp>
    struct remove_cvref<_Tp&>
    { using type = typename remove_cv<_Tp>::type; };

  template<typename _Tp>
    struct remove_cvref<_Tp&&>
    { using type = typename remove_cv<_Tp>::type; };
#endif

  template<typename _Tp>
    using remove_cvref_t = typename remove_cvref<_Tp>::type;
  /// @}

  /** * Identity metafunction.
   * @since C++20
   * @{
   */
#define __cpp_lib_type_identity 201806L
  template<typename _Tp>
    struct type_identity { using type = _Tp; };

  template<typename _Tp>
    using type_identity_t = typename type_identity<_Tp>::type;
  /// @}

#define __cpp_lib_unwrap_ref 201811L

  /** Unwrap a reference_wrapper
   * @since C++20
   * @{
   */
  template<typename _Tp>
    struct unwrap_reference { using type = _Tp; };

  template<typename _Tp>
    struct unwrap_reference<reference_wrapper<_Tp>> { using type = _Tp&; };

  template<typename _Tp>
    using unwrap_reference_t = typename unwrap_reference<_Tp>::type;
  /// @}

  /** Decay type and if it's a reference_wrapper, unwrap it
   * @since C++20
   * @{
   */
  template<typename _Tp>
    struct unwrap_ref_decay { using type = unwrap_reference_t<decay_t<_Tp>>; };

  template<typename _Tp>
    using unwrap_ref_decay_t = typename unwrap_ref_decay<_Tp>::type;
  /// @}

#define __cpp_lib_bounded_array_traits 201902L

  /// True for a type that is an array of known bound.
  /// @ingroup variable_templates
  /// @since C++20
  template<typename _Tp>
    inline constexpr bool is_bounded_array_v = false;

  template<typename _Tp, size_t _Size>
    inline constexpr bool is_bounded_array_v<_Tp[_Size]> = true;

  /// True for a type that is an array of unknown bound.
  /// @ingroup variable_templates
  /// @since C++20
  template<typename _Tp>
    inline constexpr bool is_unbounded_array_v = false;

  template<typename _Tp>
    inline constexpr bool is_unbounded_array_v<_Tp[]> = true;

  /// True for a type that is an array of known bound.
  /// @since C++20
  template<typename _Tp>
    struct is_bounded_array
    : public bool_constant<is_bounded_array_v<_Tp>>
    { };

  /// True for a type that is an array of unknown bound.
  /// @since C++20
  template<typename _Tp>
    struct is_unbounded_array
    : public bool_constant<is_unbounded_array_v<_Tp>>
    { };

#if __has_builtin(__is_layout_compatible)

  /// @since C++20
  template<typename _Tp, typename _Up>
    struct is_layout_compatible
    : bool_constant<__is_layout_compatible(_Tp, _Up)>
    { };

  /// @ingroup variable_templates
  /// @since C++20
  template<typename _Tp, typename _Up>
    constexpr bool is_layout_compatible_v
      = __is_layout_compatible(_Tp, _Up);

#if __has_builtin(__builtin_is_corresponding_member)
#define __cpp_lib_is_layout_compatible 201907L

  /// @since C++20
  template<typename _S1, typename _S2, typename _M1, typename _M2>
    constexpr bool
    is_corresponding_member(_M1 _S1::*__m1, _M2 _S2::*__m2) noexcept
    { return __builtin_is_corresponding_member(__m1, __m2); }
#endif
#endif

#if __has_builtin(__is_pointer_interconvertible_base_of)
  /// True if `_Derived` is standard-layout and has a base class of type `_Base`
  /// @since C++20
  template<typename _Base, typename _Derived>
    struct is_pointer_interconvertible_base_of
    : bool_constant<__is_pointer_interconvertible_base_of(_Base, _Derived)>
    { };

  /// @ingroup variable_templates
  /// @since C++20
  template<typename _Base, typename _Derived>
    constexpr bool is_pointer_interconvertible_base_of_v
      = __is_pointer_interconvertible_base_of(_Base, _Derived);

#if __has_builtin(__builtin_is_pointer_interconvertible_with_class)
#define __cpp_lib_is_pointer_interconvertible 201907L

  /// True if `__mp` points to the first member of a standard-layout type
  /// @returns true if `s.*__mp` is pointer-interconvertible with `s`
  /// @since C++20
  template<typename _Tp, typename _Mem>
    constexpr bool
    is_pointer_interconvertible_with_class(_Mem _Tp::*__mp) noexcept
    { return __builtin_is_pointer_interconvertible_with_class(__mp); }
#endif
#endif

#if __cplusplus > 202002L
#define __cpp_lib_is_scoped_enum 202011L

  /// True if the type is a scoped enumeration type.
  /// @since C++23

  template<typename _Tp>
    struct is_scoped_enum
    : false_type
    { };

  template<typename _Tp>
    requires __is_enum(_Tp)
    && requires(remove_cv_t<_Tp> __t) { __t = __t; } // fails if incomplete
    struct is_scoped_enum<_Tp>
    : bool_constant<!requires(_Tp __t, void(*__f)(int)) { __f(__t); }>
    { };

  /// @ingroup variable_templates
  /// @since C++23
  template<typename _Tp>
    inline constexpr bool is_scoped_enum_v = is_scoped_enum<_Tp>::value;

#if __has_builtin(__reference_constructs_from_temporary) \
  && __has_builtin(__reference_converts_from_temporary)

#define __cpp_lib_reference_from_temporary 202202L

  /// True if _Tp is a reference type, a _Up value can be bound to _Tp in
  /// direct-initialization, and a temporary object would be bound to
  /// the reference, false otherwise.
  /// @since C++23
  template<typename _Tp, typename _Up>
    struct reference_constructs_from_temporary
    : public bool_constant<__reference_constructs_from_temporary(_Tp, _Up)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{})
		    && std::__is_complete_or_unbounded(__type_identity<_Up>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// True if _Tp is a reference type, a _Up value can be bound to _Tp in
  /// copy-initialization, and a temporary object would be bound to
  /// the reference, false otherwise.
  /// @since C++23
  template<typename _Tp, typename _Up>
    struct reference_converts_from_temporary
    : public bool_constant<__reference_converts_from_temporary(_Tp, _Up)>
    {
      static_assert(std::__is_complete_or_unbounded(__type_identity<_Tp>{})
		    && std::__is_complete_or_unbounded(__type_identity<_Up>{}),
	"template argument must be a complete class or an unbounded array");
    };

  /// @ingroup variable_templates
  /// @since C++23
  template<typename _Tp, typename _Up>
    inline constexpr bool reference_constructs_from_temporary_v
      = reference_constructs_from_temporary<_Tp, _Up>::value;

  /// @ingroup variable_templates
  /// @since C++23
  template<typename _Tp, typename _Up>
    inline constexpr bool reference_converts_from_temporary_v
      = reference_converts_from_temporary<_Tp, _Up>::value;
#endif // __has_builtin for reference_from_temporary
#endif // C++23

#if _GLIBCXX_HAVE_IS_CONSTANT_EVALUATED
#define __cpp_lib_is_constant_evaluated 201811L

  /// Returns true only when called during constant evaluation.
  /// @since C++20
  constexpr inline bool
  is_constant_evaluated() noexcept
  {
#if __cpp_if_consteval >= 202106L
    if consteval { return true; } else { return false; }
#else
    return __builtin_is_constant_evaluated();
#endif
  }
#endif

  /// @cond undocumented
  template<typename _From, typename _To>
    using __copy_cv = typename __match_cv_qualifiers<_From, _To>::__type;

  template<typename _Xp, typename _Yp>
    using __cond_res
      = decltype(false ? declval<_Xp(&)()>()() : declval<_Yp(&)()>()());

  template<typename _Ap, typename _Bp, typename = void>
    struct __common_ref_impl
    { };

  // [meta.trans.other], COMMON-REF(A, B)
  template<typename _Ap, typename _Bp>
    using __common_ref = typename __common_ref_impl<_Ap, _Bp>::type;

  // COND-RES(COPYCV(X, Y) &, COPYCV(Y, X) &)
  template<typename _Xp, typename _Yp>
    using __condres_cvref
      = __cond_res<__copy_cv<_Xp, _Yp>&, __copy_cv<_Yp, _Xp>&>;

  // If A and B are both lvalue reference types, ...
  template<typename _Xp, typename _Yp>
    struct __common_ref_impl<_Xp&, _Yp&, __void_t<__condres_cvref<_Xp, _Yp>>>
    : enable_if<is_reference_v<__condres_cvref<_Xp, _Yp>>,
		__condres_cvref<_Xp, _Yp>>
    { };

  // let C be remove_reference_t<COMMON-REF(X&, Y&)>&&
  template<typename _Xp, typename _Yp>
    using __common_ref_C = remove_reference_t<__common_ref<_Xp&, _Yp&>>&&;

  // If A and B are both rvalue reference types, ...
  template<typename _Xp, typename _Yp>
    struct __common_ref_impl<_Xp&&, _Yp&&,
      _Require<is_convertible<_Xp&&, __common_ref_C<_Xp, _Yp>>,
	       is_convertible<_Yp&&, __common_ref_C<_Xp, _Yp>>>>
    { using type = __common_ref_C<_Xp, _Yp>; };

  // let D be COMMON-REF(const X&, Y&)
  template<typename _Xp, typename _Yp>
    using __common_ref_D = __common_ref<const _Xp&, _Yp&>;

  // If A is an rvalue reference and B is an lvalue reference, ...
  template<typename _Xp, typename _Yp>
    struct __common_ref_impl<_Xp&&, _Yp&,
      _Require<is_convertible<_Xp&&, __common_ref_D<_Xp, _Yp>>>>
    { using type = __common_ref_D<_Xp, _Yp>; };

  // If A is an lvalue reference and B is an rvalue reference, ...
  template<typename _Xp, typename _Yp>
    struct __common_ref_impl<_Xp&, _Yp&&>
    : __common_ref_impl<_Yp&&, _Xp&>
    { };
  /// @endcond

  template<typename _Tp, typename _Up,
	   template<typename> class _TQual, template<typename> class _UQual>
    struct basic_common_reference
    { };

  /// @cond undocumented
  template<typename _Tp>
    struct __xref
    { template<typename _Up> using __type = __copy_cv<_Tp, _Up>; };

  template<typename _Tp>
    struct __xref<_Tp&>
    { template<typename _Up> using __type = __copy_cv<_Tp, _Up>&; };

  template<typename _Tp>
    struct __xref<_Tp&&>
    { template<typename _Up> using __type = __copy_cv<_Tp, _Up>&&; };

  template<typename _Tp1, typename _Tp2>
    using __basic_common_ref
      = typename basic_common_reference<remove_cvref_t<_Tp1>,
					remove_cvref_t<_Tp2>,
					__xref<_Tp1>::template __type,
					__xref<_Tp2>::template __type>::type;
  /// @endcond

  template<typename... _Tp>
    struct common_reference;

  template<typename... _Tp>
    using common_reference_t = typename common_reference<_Tp...>::type;

  // If sizeof...(T) is zero, there shall be no member type.
  template<>
    struct common_reference<>
    { };

  // If sizeof...(T) is one ...
  template<typename _Tp0>
    struct common_reference<_Tp0>
    { using type = _Tp0; };

  /// @cond undocumented
  template<typename _Tp1, typename _Tp2, int _Bullet = 1, typename = void>
    struct __common_reference_impl
    : __common_reference_impl<_Tp1, _Tp2, _Bullet + 1>
    { };

  // If sizeof...(T) is two ...
  template<typename _Tp1, typename _Tp2>
    struct common_reference<_Tp1, _Tp2>
    : __common_reference_impl<_Tp1, _Tp2>
    { };

  // If T1 and T2 are reference types and COMMON-REF(T1, T2) is well-formed, ...
  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1&, _Tp2&, 1,
				   void_t<__common_ref<_Tp1&, _Tp2&>>>
    { using type = __common_ref<_Tp1&, _Tp2&>; };

  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1&&, _Tp2&&, 1,
				   void_t<__common_ref<_Tp1&&, _Tp2&&>>>
    { using type = __common_ref<_Tp1&&, _Tp2&&>; };

  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1&, _Tp2&&, 1,
				   void_t<__common_ref<_Tp1&, _Tp2&&>>>
    { using type = __common_ref<_Tp1&, _Tp2&&>; };

  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1&&, _Tp2&, 1,
				   void_t<__common_ref<_Tp1&&, _Tp2&>>>
    { using type = __common_ref<_Tp1&&, _Tp2&>; };

  // Otherwise, if basic_common_reference<...>::type is well-formed, ...
  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1, _Tp2, 2,
				   void_t<__basic_common_ref<_Tp1, _Tp2>>>
    { using type = __basic_common_ref<_Tp1, _Tp2>; };

  // Otherwise, if COND-RES(T1, T2) is well-formed, ...
  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1, _Tp2, 3,
				   void_t<__cond_res<_Tp1, _Tp2>>>
    { using type = __cond_res<_Tp1, _Tp2>; };

  // Otherwise, if common_type_t<T1, T2> is well-formed, ...
  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1, _Tp2, 4,
				   void_t<common_type_t<_Tp1, _Tp2>>>
    { using type = common_type_t<_Tp1, _Tp2>; };

  // Otherwise, there shall be no member type.
  template<typename _Tp1, typename _Tp2>
    struct __common_reference_impl<_Tp1, _Tp2, 5, void>
    { };

  // Otherwise, if sizeof...(T) is greater than two, ...
  template<typename _Tp1, typename _Tp2, typename... _Rest>
    struct common_reference<_Tp1, _Tp2, _Rest...>
    : __common_type_fold<common_reference<_Tp1, _Tp2>,
			 __common_type_pack<_Rest...>>
    { };

  // Reuse __common_type_fold for common_reference<T1, T2, Rest...>
  template<typename _Tp1, typename _Tp2, typename... _Rest>
    struct __common_type_fold<common_reference<_Tp1, _Tp2>,
			      __common_type_pack<_Rest...>,
			      void_t<common_reference_t<_Tp1, _Tp2>>>
    : public common_reference<common_reference_t<_Tp1, _Tp2>, _Rest...>
    { };
  /// @endcond

#endif // C++2a

  /// @} group metaprogramming

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif  // C++11

#endif  // _GLIBCXX_TYPE_TRAITS