1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
// -*- C++ -*-
// Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file parallel/random_shuffle.h
* @brief Parallel implementation of std::random_shuffle().
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H
#define _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H 1
#include <limits>
#include <bits/stl_numeric.h>
#include <parallel/parallel.h>
#include <parallel/random_number.h>
namespace __gnu_parallel
{
/** @brief Type to hold the index of a bin.
*
* Since many variables of this type are allocated, it should be
* chosen as small as possible.
*/
typedef unsigned short _BinIndex;
/** @brief Data known to every thread participating in
__gnu_parallel::__parallel_random_shuffle(). */
template<typename _RAIter>
struct _DRandomShufflingGlobalData
{
typedef std::iterator_traits<_RAIter> _TraitsType;
typedef typename _TraitsType::value_type _ValueType;
typedef typename _TraitsType::difference_type _DifferenceType;
/** @brief Begin iterator of the __source. */
_RAIter& _M_source;
/** @brief Temporary arrays for each thread. */
_ValueType** _M_temporaries;
/** @brief Two-dimensional array to hold the thread-bin distribution.
*
* Dimensions (_M_num_threads + 1) __x (_M_num_bins + 1). */
_DifferenceType** _M_dist;
/** @brief Start indexes of the threads' __chunks. */
_DifferenceType* _M_starts;
/** @brief Number of the thread that will further process the
corresponding bin. */
_ThreadIndex* _M_bin_proc;
/** @brief Number of bins to distribute to. */
int _M_num_bins;
/** @brief Number of bits needed to address the bins. */
int _M_num_bits;
/** @brief Constructor. */
_DRandomShufflingGlobalData(_RAIter& __source)
: _M_source(__source) { }
};
/** @brief Local data for a thread participating in
__gnu_parallel::__parallel_random_shuffle().
*/
template<typename _RAIter, typename _RandomNumberGenerator>
struct _DRSSorterPU
{
/** @brief Number of threads participating in total. */
int _M_num_threads;
/** @brief Begin index for bins taken care of by this thread. */
_BinIndex _M_bins_begin;
/** @brief End index for bins taken care of by this thread. */
_BinIndex __bins_end;
/** @brief Random _M_seed for this thread. */
uint32_t _M_seed;
/** @brief Pointer to global data. */
_DRandomShufflingGlobalData<_RAIter>* _M_sd;
};
/** @brief Generate a random number in @c [0,2^__logp).
* @param __logp Logarithm (basis 2) of the upper range __bound.
* @param __rng Random number generator to use.
*/
template<typename _RandomNumberGenerator>
inline int
__random_number_pow2(int __logp, _RandomNumberGenerator& __rng)
{ return __rng.__genrand_bits(__logp); }
/** @brief Random shuffle code executed by each thread.
* @param __pus Array of thread-local data records. */
template<typename _RAIter, typename _RandomNumberGenerator>
void
__parallel_random_shuffle_drs_pu(_DRSSorterPU<_RAIter,
_RandomNumberGenerator>* __pus)
{
typedef std::iterator_traits<_RAIter> _TraitsType;
typedef typename _TraitsType::value_type _ValueType;
typedef typename _TraitsType::difference_type _DifferenceType;
_ThreadIndex __iam = omp_get_thread_num();
_DRSSorterPU<_RAIter, _RandomNumberGenerator>* __d = &__pus[__iam];
_DRandomShufflingGlobalData<_RAIter>* __sd = __d->_M_sd;
// Indexing: _M_dist[bin][processor]
_DifferenceType __length = (__sd->_M_starts[__iam + 1]
- __sd->_M_starts[__iam]);
_BinIndex* __oracles = new _BinIndex[__length];
_DifferenceType* __dist = new _DifferenceType[__sd->_M_num_bins + 1];
_BinIndex* __bin_proc = new _BinIndex[__sd->_M_num_bins];
_ValueType** __temporaries = new _ValueType*[__d->_M_num_threads];
// Compute oracles and count appearances.
for (_BinIndex __b = 0; __b < __sd->_M_num_bins + 1; ++__b)
__dist[__b] = 0;
int __num_bits = __sd->_M_num_bits;
_RandomNumber __rng(__d->_M_seed);
// First main loop.
for (_DifferenceType __i = 0; __i < __length; ++__i)
{
_BinIndex __oracle = __random_number_pow2(__num_bits, __rng);
__oracles[__i] = __oracle;
// To allow prefix (partial) sum.
++(__dist[__oracle + 1]);
}
for (_BinIndex __b = 0; __b < __sd->_M_num_bins + 1; ++__b)
__sd->_M_dist[__b][__iam + 1] = __dist[__b];
# pragma omp barrier
# pragma omp single
{
// Sum up bins, __sd->_M_dist[__s + 1][__d->_M_num_threads] now
// contains the total number of items in bin __s
for (_BinIndex __s = 0; __s < __sd->_M_num_bins; ++__s)
__gnu_sequential::partial_sum(__sd->_M_dist[__s + 1],
__sd->_M_dist[__s + 1]
+ __d->_M_num_threads + 1,
__sd->_M_dist[__s + 1]);
}
# pragma omp barrier
_SequenceIndex __offset = 0, __global_offset = 0;
for (_BinIndex __s = 0; __s < __d->_M_bins_begin; ++__s)
__global_offset += __sd->_M_dist[__s + 1][__d->_M_num_threads];
# pragma omp barrier
for (_BinIndex __s = __d->_M_bins_begin; __s < __d->__bins_end; ++__s)
{
for (int __t = 0; __t < __d->_M_num_threads + 1; ++__t)
__sd->_M_dist[__s + 1][__t] += __offset;
__offset = __sd->_M_dist[__s + 1][__d->_M_num_threads];
}
__sd->_M_temporaries[__iam] = static_cast<_ValueType*>
(::operator new(sizeof(_ValueType) * __offset));
# pragma omp barrier
// Draw local copies to avoid false sharing.
for (_BinIndex __b = 0; __b < __sd->_M_num_bins + 1; ++__b)
__dist[__b] = __sd->_M_dist[__b][__iam];
for (_BinIndex __b = 0; __b < __sd->_M_num_bins; ++__b)
__bin_proc[__b] = __sd->_M_bin_proc[__b];
for (_ThreadIndex __t = 0; __t < __d->_M_num_threads; ++__t)
__temporaries[__t] = __sd->_M_temporaries[__t];
_RAIter __source = __sd->_M_source;
_DifferenceType __start = __sd->_M_starts[__iam];
// Distribute according to oracles, second main loop.
for (_DifferenceType __i = 0; __i < __length; ++__i)
{
_BinIndex __target_bin = __oracles[__i];
_ThreadIndex __target_p = __bin_proc[__target_bin];
// Last column [__d->_M_num_threads] stays unchanged.
::new(&(__temporaries[__target_p][__dist[__target_bin + 1]++]))
_ValueType(*(__source + __i + __start));
}
delete[] __oracles;
delete[] __dist;
delete[] __bin_proc;
delete[] __temporaries;
# pragma omp barrier
// Shuffle bins internally.
for (_BinIndex __b = __d->_M_bins_begin; __b < __d->__bins_end; ++__b)
{
_ValueType* __begin =
(__sd->_M_temporaries[__iam]
+ (__b == __d->_M_bins_begin
? 0 : __sd->_M_dist[__b][__d->_M_num_threads])),
* __end = (__sd->_M_temporaries[__iam]
+ __sd->_M_dist[__b + 1][__d->_M_num_threads]);
__sequential_random_shuffle(__begin, __end, __rng);
std::copy(__begin, __end, __sd->_M_source + __global_offset
+ (__b == __d->_M_bins_begin
? 0 : __sd->_M_dist[__b][__d->_M_num_threads]));
}
::operator delete(__sd->_M_temporaries[__iam]);
}
/** @brief Round up to the next greater power of 2.
* @param __x _Integer to round up */
template<typename _Tp>
_Tp
__round_up_to_pow2(_Tp __x)
{
if (__x <= 1)
return 1;
else
return (_Tp)1 << (__rd_log2(__x - 1) + 1);
}
/** @brief Main parallel random shuffle step.
* @param __begin Begin iterator of sequence.
* @param __end End iterator of sequence.
* @param __n Length of sequence.
* @param __num_threads Number of threads to use.
* @param __rng Random number generator to use.
*/
template<typename _RAIter, typename _RandomNumberGenerator>
void
__parallel_random_shuffle_drs(_RAIter __begin, _RAIter __end,
typename std::iterator_traits
<_RAIter>::difference_type __n,
_ThreadIndex __num_threads,
_RandomNumberGenerator& __rng)
{
typedef std::iterator_traits<_RAIter> _TraitsType;
typedef typename _TraitsType::value_type _ValueType;
typedef typename _TraitsType::difference_type _DifferenceType;
_GLIBCXX_CALL(__n)
const _Settings& __s = _Settings::get();
if (__num_threads > __n)
__num_threads = static_cast<_ThreadIndex>(__n);
_BinIndex __num_bins, __num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
// Try the L1 cache first.
// Must fit into L1.
__num_bins_cache =
std::max<_DifferenceType>(1, __n / (__s.L1_cache_size_lb
/ sizeof(_ValueType)));
__num_bins_cache = __round_up_to_pow2(__num_bins_cache);
// No more buckets than TLB entries, power of 2
// Power of 2 and at least one element per bin, at most the TLB size.
__num_bins = std::min<_DifferenceType>(__n, __num_bins_cache);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
// 2 TLB entries needed per bin.
__num_bins = std::min<_DifferenceType>(__s.TLB_size / 2, __num_bins);
#endif
__num_bins = __round_up_to_pow2(__num_bins);
if (__num_bins < __num_bins_cache)
{
#endif
// Now try the L2 cache
// Must fit into L2
__num_bins_cache = static_cast<_BinIndex>
(std::max<_DifferenceType>(1, __n / (__s.L2_cache_size
/ sizeof(_ValueType))));
__num_bins_cache = __round_up_to_pow2(__num_bins_cache);
// No more buckets than TLB entries, power of 2.
__num_bins = static_cast<_BinIndex>
(std::min(__n, static_cast<_DifferenceType>(__num_bins_cache)));
// Power of 2 and at least one element per bin, at most the TLB size.
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
// 2 TLB entries needed per bin.
__num_bins = std::min(static_cast<_DifferenceType>(__s.TLB_size / 2),
__num_bins);
#endif
__num_bins = __round_up_to_pow2(__num_bins);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
}
#endif
__num_bins = __round_up_to_pow2(
std::max<_BinIndex>(__num_threads, __num_bins));
if (__num_threads <= 1)
{
_RandomNumber __derived_rng(
__rng(std::numeric_limits<uint32_t>::max()));
__sequential_random_shuffle(__begin, __end, __derived_rng);
return;
}
_DRandomShufflingGlobalData<_RAIter> __sd(__begin);
_DRSSorterPU<_RAIter, _RandomNumber >* __pus;
_DifferenceType* __starts;
# pragma omp parallel num_threads(__num_threads)
{
_ThreadIndex __num_threads = omp_get_num_threads();
# pragma omp single
{
__pus = new _DRSSorterPU<_RAIter, _RandomNumber>[__num_threads];
__sd._M_temporaries = new _ValueType*[__num_threads];
__sd._M_dist = new _DifferenceType*[__num_bins + 1];
__sd._M_bin_proc = new _ThreadIndex[__num_bins];
for (_BinIndex __b = 0; __b < __num_bins + 1; ++__b)
__sd._M_dist[__b] = new _DifferenceType[__num_threads + 1];
for (_BinIndex __b = 0; __b < (__num_bins + 1); ++__b)
{
__sd._M_dist[0][0] = 0;
__sd._M_dist[__b][0] = 0;
}
__starts = __sd._M_starts = new _DifferenceType[__num_threads + 1];
int __bin_cursor = 0;
__sd._M_num_bins = __num_bins;
__sd._M_num_bits = __rd_log2(__num_bins);
_DifferenceType __chunk_length = __n / __num_threads,
__split = __n % __num_threads,
__start = 0;
_DifferenceType __bin_chunk_length = __num_bins / __num_threads,
__bin_split = __num_bins % __num_threads;
for (_ThreadIndex __i = 0; __i < __num_threads; ++__i)
{
__starts[__i] = __start;
__start += (__i < __split
? (__chunk_length + 1) : __chunk_length);
int __j = __pus[__i]._M_bins_begin = __bin_cursor;
// Range of bins for this processor.
__bin_cursor += (__i < __bin_split
? (__bin_chunk_length + 1)
: __bin_chunk_length);
__pus[__i].__bins_end = __bin_cursor;
for (; __j < __bin_cursor; ++__j)
__sd._M_bin_proc[__j] = __i;
__pus[__i]._M_num_threads = __num_threads;
__pus[__i]._M_seed = __rng(std::numeric_limits<uint32_t>::max());
__pus[__i]._M_sd = &__sd;
}
__starts[__num_threads] = __start;
} //single
// Now shuffle in parallel.
__parallel_random_shuffle_drs_pu(__pus);
} // parallel
delete[] __starts;
delete[] __sd._M_bin_proc;
for (int __s = 0; __s < (__num_bins + 1); ++__s)
delete[] __sd._M_dist[__s];
delete[] __sd._M_dist;
delete[] __sd._M_temporaries;
delete[] __pus;
}
/** @brief Sequential cache-efficient random shuffle.
* @param __begin Begin iterator of sequence.
* @param __end End iterator of sequence.
* @param __rng Random number generator to use.
*/
template<typename _RAIter, typename _RandomNumberGenerator>
void
__sequential_random_shuffle(_RAIter __begin, _RAIter __end,
_RandomNumberGenerator& __rng)
{
typedef std::iterator_traits<_RAIter> _TraitsType;
typedef typename _TraitsType::value_type _ValueType;
typedef typename _TraitsType::difference_type _DifferenceType;
_DifferenceType __n = __end - __begin;
const _Settings& __s = _Settings::get();
_BinIndex __num_bins, __num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
// Try the L1 cache first, must fit into L1.
__num_bins_cache = std::max<_DifferenceType>
(1, __n / (__s.L1_cache_size_lb / sizeof(_ValueType)));
__num_bins_cache = __round_up_to_pow2(__num_bins_cache);
// No more buckets than TLB entries, power of 2
// Power of 2 and at least one element per bin, at most the TLB size
__num_bins = std::min(__n, (_DifferenceType)__num_bins_cache);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
// 2 TLB entries needed per bin
__num_bins = std::min((_DifferenceType)__s.TLB_size / 2, __num_bins);
#endif
__num_bins = __round_up_to_pow2(__num_bins);
if (__num_bins < __num_bins_cache)
{
#endif
// Now try the L2 cache, must fit into L2.
__num_bins_cache = static_cast<_BinIndex>
(std::max<_DifferenceType>(1, __n / (__s.L2_cache_size
/ sizeof(_ValueType))));
__num_bins_cache = __round_up_to_pow2(__num_bins_cache);
// No more buckets than TLB entries, power of 2
// Power of 2 and at least one element per bin, at most the TLB size.
__num_bins = static_cast<_BinIndex>
(std::min(__n, static_cast<_DifferenceType>(__num_bins_cache)));
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
// 2 TLB entries needed per bin
__num_bins = std::min<_DifferenceType>(__s.TLB_size / 2, __num_bins);
#endif
__num_bins = __round_up_to_pow2(__num_bins);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
}
#endif
int __num_bits = __rd_log2(__num_bins);
if (__num_bins > 1)
{
_ValueType* __target =
static_cast<_ValueType*>(::operator new(sizeof(_ValueType) * __n));
_BinIndex* __oracles = new _BinIndex[__n];
_DifferenceType* __dist0 = new _DifferenceType[__num_bins + 1],
* __dist1 = new _DifferenceType[__num_bins + 1];
for (int __b = 0; __b < __num_bins + 1; ++__b)
__dist0[__b] = 0;
_RandomNumber __bitrng(__rng(0xFFFFFFFF));
for (_DifferenceType __i = 0; __i < __n; ++__i)
{
_BinIndex __oracle = __random_number_pow2(__num_bits, __bitrng);
__oracles[__i] = __oracle;
// To allow prefix (partial) sum.
++(__dist0[__oracle + 1]);
}
// Sum up bins.
__gnu_sequential::partial_sum(__dist0, __dist0 + __num_bins + 1,
__dist0);
for (int __b = 0; __b < __num_bins + 1; ++__b)
__dist1[__b] = __dist0[__b];
// Distribute according to oracles.
for (_DifferenceType __i = 0; __i < __n; ++__i)
::new(&(__target[(__dist0[__oracles[__i]])++]))
_ValueType(*(__begin + __i));
for (int __b = 0; __b < __num_bins; ++__b)
__sequential_random_shuffle(__target + __dist1[__b],
__target + __dist1[__b + 1], __rng);
// Copy elements back.
std::copy(__target, __target + __n, __begin);
delete[] __dist0;
delete[] __dist1;
delete[] __oracles;
::operator delete(__target);
}
else
__gnu_sequential::random_shuffle(__begin, __end, __rng);
}
/** @brief Parallel random public call.
* @param __begin Begin iterator of sequence.
* @param __end End iterator of sequence.
* @param __rng Random number generator to use.
*/
template<typename _RAIter, typename _RandomNumberGenerator>
inline void
__parallel_random_shuffle(_RAIter __begin, _RAIter __end,
_RandomNumberGenerator __rng = _RandomNumber())
{
typedef std::iterator_traits<_RAIter> _TraitsType;
typedef typename _TraitsType::difference_type _DifferenceType;
_DifferenceType __n = __end - __begin;
__parallel_random_shuffle_drs(__begin, __end, __n,
__get_max_threads(), __rng);
}
}
#endif /* _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H */
|