1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
// -*- C++ -*-
// Copyright (C) 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file parallel/multiseq_selection.h
* @brief Functions to find elements of a certain global __rank in
* multiple sorted sequences. Also serves for splitting such
* sequence sets.
*
* The algorithm description can be found in
*
* P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard.
* Merging Multiple Lists on Hierarchical-Memory Multiprocessors.
* Journal of Parallel and Distributed Computing, 12(2):171–177, 1991.
*
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H
#define _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H 1
#include <vector>
#include <queue>
#include <bits/stl_algo.h>
namespace __gnu_parallel
{
/** @brief Compare __a pair of types lexicographically, ascending. */
template<typename _T1, typename _T2, typename _Compare>
class _Lexicographic
: public std::binary_function<std::pair<_T1, _T2>,
std::pair<_T1, _T2>, bool>
{
private:
_Compare& _M_comp;
public:
_Lexicographic(_Compare& __comp) : _M_comp(__comp) { }
bool
operator()(const std::pair<_T1, _T2>& __p1,
const std::pair<_T1, _T2>& __p2) const
{
if (_M_comp(__p1.first, __p2.first))
return true;
if (_M_comp(__p2.first, __p1.first))
return false;
// Firsts are equal.
return __p1.second < __p2.second;
}
};
/** @brief Compare __a pair of types lexicographically, descending. */
template<typename _T1, typename _T2, typename _Compare>
class _LexicographicReverse : public std::binary_function<_T1, _T2, bool>
{
private:
_Compare& _M_comp;
public:
_LexicographicReverse(_Compare& __comp) : _M_comp(__comp) { }
bool
operator()(const std::pair<_T1, _T2>& __p1,
const std::pair<_T1, _T2>& __p2) const
{
if (_M_comp(__p2.first, __p1.first))
return true;
if (_M_comp(__p1.first, __p2.first))
return false;
// Firsts are equal.
return __p2.second < __p1.second;
}
};
/**
* @brief Splits several sorted sequences at a certain global __rank,
* resulting in a splitting point for each sequence.
* The sequences are passed via a sequence of random-access
* iterator pairs, none of the sequences may be empty. If there
* are several equal elements across the split, the ones on the
* __left side will be chosen from sequences with smaller number.
* @param __begin_seqs Begin of the sequence of iterator pairs.
* @param __end_seqs End of the sequence of iterator pairs.
* @param __rank The global rank to partition at.
* @param __begin_offsets A random-access __sequence __begin where the
* __result will be stored in. Each element of the sequence is an
* iterator that points to the first element on the greater part of
* the respective __sequence.
* @param __comp The ordering functor, defaults to std::less<_Tp>.
*/
template<typename _RanSeqs, typename _RankType, typename _RankIterator,
typename _Compare>
void
multiseq_partition(_RanSeqs __begin_seqs, _RanSeqs __end_seqs,
_RankType __rank,
_RankIterator __begin_offsets,
_Compare __comp = std::less<
typename std::iterator_traits<typename
std::iterator_traits<_RanSeqs>::value_type::
first_type>::value_type>()) // std::less<_Tp>
{
_GLIBCXX_CALL(__end_seqs - __begin_seqs)
typedef typename std::iterator_traits<_RanSeqs>::value_type::first_type
_It;
typedef typename std::iterator_traits<_RanSeqs>::difference_type
_SeqNumber;
typedef typename std::iterator_traits<_It>::difference_type
_DifferenceType;
typedef typename std::iterator_traits<_It>::value_type _ValueType;
_Lexicographic<_ValueType, _SeqNumber, _Compare> __lcomp(__comp);
_LexicographicReverse<_ValueType, _SeqNumber, _Compare> __lrcomp(__comp);
// Number of sequences, number of elements in total (possibly
// including padding).
_DifferenceType __m = std::distance(__begin_seqs, __end_seqs), __nn = 0,
__nmax, __n, __r;
for (_SeqNumber __i = 0; __i < __m; __i++)
{
__nn += std::distance(__begin_seqs[__i].first,
__begin_seqs[__i].second);
_GLIBCXX_PARALLEL_ASSERT(
std::distance(__begin_seqs[__i].first,
__begin_seqs[__i].second) > 0);
}
if (__rank == __nn)
{
for (_SeqNumber __i = 0; __i < __m; __i++)
__begin_offsets[__i] = __begin_seqs[__i].second; // Very end.
// Return __m - 1;
return;
}
_GLIBCXX_PARALLEL_ASSERT(__m != 0);
_GLIBCXX_PARALLEL_ASSERT(__nn != 0);
_GLIBCXX_PARALLEL_ASSERT(__rank >= 0);
_GLIBCXX_PARALLEL_ASSERT(__rank < __nn);
_DifferenceType* __ns = new _DifferenceType[__m];
_DifferenceType* __a = new _DifferenceType[__m];
_DifferenceType* __b = new _DifferenceType[__m];
_DifferenceType __l;
__ns[0] = std::distance(__begin_seqs[0].first, __begin_seqs[0].second);
__nmax = __ns[0];
for (_SeqNumber __i = 0; __i < __m; __i++)
{
__ns[__i] = std::distance(__begin_seqs[__i].first,
__begin_seqs[__i].second);
__nmax = std::max(__nmax, __ns[__i]);
}
__r = __rd_log2(__nmax) + 1;
// Pad all lists to this length, at least as long as any ns[__i],
// equality iff __nmax = 2^__k - 1.
__l = (1ULL << __r) - 1;
for (_SeqNumber __i = 0; __i < __m; __i++)
{
__a[__i] = 0;
__b[__i] = __l;
}
__n = __l / 2;
// Invariants:
// 0 <= __a[__i] <= __ns[__i], 0 <= __b[__i] <= __l
#define __S(__i) (__begin_seqs[__i].first)
// Initial partition.
std::vector<std::pair<_ValueType, _SeqNumber> > __sample;
for (_SeqNumber __i = 0; __i < __m; __i++)
if (__n < __ns[__i]) //__sequence long enough
__sample.push_back(std::make_pair(__S(__i)[__n], __i));
__gnu_sequential::sort(__sample.begin(), __sample.end(), __lcomp);
for (_SeqNumber __i = 0; __i < __m; __i++) //conceptual infinity
if (__n >= __ns[__i]) //__sequence too short, conceptual infinity
__sample.push_back(
std::make_pair(__S(__i)[0] /*__dummy element*/, __i));
_DifferenceType __localrank = __rank / __l;
_SeqNumber __j;
for (__j = 0;
__j < __localrank && ((__n + 1) <= __ns[__sample[__j].second]);
++__j)
__a[__sample[__j].second] += __n + 1;
for (; __j < __m; __j++)
__b[__sample[__j].second] -= __n + 1;
// Further refinement.
while (__n > 0)
{
__n /= 2;
_SeqNumber __lmax_seq = -1; // to avoid warning
const _ValueType* __lmax = 0; // impossible to avoid the warning?
for (_SeqNumber __i = 0; __i < __m; __i++)
{
if (__a[__i] > 0)
{
if (!__lmax)
{
__lmax = &(__S(__i)[__a[__i] - 1]);
__lmax_seq = __i;
}
else
{
// Max, favor rear sequences.
if (!__comp(__S(__i)[__a[__i] - 1], *__lmax))
{
__lmax = &(__S(__i)[__a[__i] - 1]);
__lmax_seq = __i;
}
}
}
}
_SeqNumber __i;
for (__i = 0; __i < __m; __i++)
{
_DifferenceType __middle = (__b[__i] + __a[__i]) / 2;
if (__lmax && __middle < __ns[__i] &&
__lcomp(std::make_pair(__S(__i)[__middle], __i),
std::make_pair(*__lmax, __lmax_seq)))
__a[__i] = std::min(__a[__i] + __n + 1, __ns[__i]);
else
__b[__i] -= __n + 1;
}
_DifferenceType __leftsize = 0;
for (_SeqNumber __i = 0; __i < __m; __i++)
__leftsize += __a[__i] / (__n + 1);
_DifferenceType __skew = __rank / (__n + 1) - __leftsize;
if (__skew > 0)
{
// Move to the left, find smallest.
std::priority_queue<std::pair<_ValueType, _SeqNumber>,
std::vector<std::pair<_ValueType, _SeqNumber> >,
_LexicographicReverse<_ValueType, _SeqNumber, _Compare> >
__pq(__lrcomp);
for (_SeqNumber __i = 0; __i < __m; __i++)
if (__b[__i] < __ns[__i])
__pq.push(std::make_pair(__S(__i)[__b[__i]], __i));
for (; __skew != 0 && !__pq.empty(); --__skew)
{
_SeqNumber __source = __pq.top().second;
__pq.pop();
__a[__source]
= std::min(__a[__source] + __n + 1, __ns[__source]);
__b[__source] += __n + 1;
if (__b[__source] < __ns[__source])
__pq.push(
std::make_pair(__S(__source)[__b[__source]], __source));
}
}
else if (__skew < 0)
{
// Move to the right, find greatest.
std::priority_queue<std::pair<_ValueType, _SeqNumber>,
std::vector<std::pair<_ValueType, _SeqNumber> >,
_Lexicographic<_ValueType, _SeqNumber, _Compare> >
__pq(__lcomp);
for (_SeqNumber __i = 0; __i < __m; __i++)
if (__a[__i] > 0)
__pq.push(std::make_pair(__S(__i)[__a[__i] - 1], __i));
for (; __skew != 0; ++__skew)
{
_SeqNumber __source = __pq.top().second;
__pq.pop();
__a[__source] -= __n + 1;
__b[__source] -= __n + 1;
if (__a[__source] > 0)
__pq.push(std::make_pair(
__S(__source)[__a[__source] - 1], __source));
}
}
}
// Postconditions:
// __a[__i] == __b[__i] in most cases, except when __a[__i] has been
// clamped because of having reached the boundary
// Now return the result, calculate the offset.
// Compare the keys on both edges of the border.
// Maximum of left edge, minimum of right edge.
_ValueType* __maxleft = 0;
_ValueType* __minright = 0;
for (_SeqNumber __i = 0; __i < __m; __i++)
{
if (__a[__i] > 0)
{
if (!__maxleft)
__maxleft = &(__S(__i)[__a[__i] - 1]);
else
{
// Max, favor rear sequences.
if (!__comp(__S(__i)[__a[__i] - 1], *__maxleft))
__maxleft = &(__S(__i)[__a[__i] - 1]);
}
}
if (__b[__i] < __ns[__i])
{
if (!__minright)
__minright = &(__S(__i)[__b[__i]]);
else
{
// Min, favor fore sequences.
if (__comp(__S(__i)[__b[__i]], *__minright))
__minright = &(__S(__i)[__b[__i]]);
}
}
}
_SeqNumber __seq = 0;
for (_SeqNumber __i = 0; __i < __m; __i++)
__begin_offsets[__i] = __S(__i) + __a[__i];
delete[] __ns;
delete[] __a;
delete[] __b;
}
/**
* @brief Selects the element at a certain global __rank from several
* sorted sequences.
*
* The sequences are passed via a sequence of random-access
* iterator pairs, none of the sequences may be empty.
* @param __begin_seqs Begin of the sequence of iterator pairs.
* @param __end_seqs End of the sequence of iterator pairs.
* @param __rank The global rank to partition at.
* @param __offset The rank of the selected element in the global
* subsequence of elements equal to the selected element. If the
* selected element is unique, this number is 0.
* @param __comp The ordering functor, defaults to std::less.
*/
template<typename _Tp, typename _RanSeqs, typename _RankType,
typename _Compare>
_Tp
multiseq_selection(_RanSeqs __begin_seqs, _RanSeqs __end_seqs,
_RankType __rank,
_RankType& __offset, _Compare __comp = std::less<_Tp>())
{
_GLIBCXX_CALL(__end_seqs - __begin_seqs)
typedef typename std::iterator_traits<_RanSeqs>::value_type::first_type
_It;
typedef typename std::iterator_traits<_RanSeqs>::difference_type
_SeqNumber;
typedef typename std::iterator_traits<_It>::difference_type
_DifferenceType;
_Lexicographic<_Tp, _SeqNumber, _Compare> __lcomp(__comp);
_LexicographicReverse<_Tp, _SeqNumber, _Compare> __lrcomp(__comp);
// Number of sequences, number of elements in total (possibly
// including padding).
_DifferenceType __m = std::distance(__begin_seqs, __end_seqs);
_DifferenceType __nn = 0;
_DifferenceType __nmax, __n, __r;
for (_SeqNumber __i = 0; __i < __m; __i++)
__nn += std::distance(__begin_seqs[__i].first,
__begin_seqs[__i].second);
if (__m == 0 || __nn == 0 || __rank < 0 || __rank >= __nn)
{
// result undefined if there is no data or __rank is outside bounds
throw std::exception();
}
_DifferenceType* __ns = new _DifferenceType[__m];
_DifferenceType* __a = new _DifferenceType[__m];
_DifferenceType* __b = new _DifferenceType[__m];
_DifferenceType __l;
__ns[0] = std::distance(__begin_seqs[0].first, __begin_seqs[0].second);
__nmax = __ns[0];
for (_SeqNumber __i = 0; __i < __m; ++__i)
{
__ns[__i] = std::distance(__begin_seqs[__i].first,
__begin_seqs[__i].second);
__nmax = std::max(__nmax, __ns[__i]);
}
__r = __rd_log2(__nmax) + 1;
// Pad all lists to this length, at least as long as any ns[__i],
// equality iff __nmax = 2^__k - 1
__l = __round_up_to_pow2(__r) - 1;
for (_SeqNumber __i = 0; __i < __m; ++__i)
{
__a[__i] = 0;
__b[__i] = __l;
}
__n = __l / 2;
// Invariants:
// 0 <= __a[__i] <= __ns[__i], 0 <= __b[__i] <= __l
#define __S(__i) (__begin_seqs[__i].first)
// Initial partition.
std::vector<std::pair<_Tp, _SeqNumber> > __sample;
for (_SeqNumber __i = 0; __i < __m; __i++)
if (__n < __ns[__i])
__sample.push_back(std::make_pair(__S(__i)[__n], __i));
__gnu_sequential::sort(__sample.begin(), __sample.end(),
__lcomp, sequential_tag());
// Conceptual infinity.
for (_SeqNumber __i = 0; __i < __m; __i++)
if (__n >= __ns[__i])
__sample.push_back(
std::make_pair(__S(__i)[0] /*__dummy element*/, __i));
_DifferenceType __localrank = __rank / __l;
_SeqNumber __j;
for (__j = 0;
__j < __localrank && ((__n + 1) <= __ns[__sample[__j].second]);
++__j)
__a[__sample[__j].second] += __n + 1;
for (; __j < __m; ++__j)
__b[__sample[__j].second] -= __n + 1;
// Further refinement.
while (__n > 0)
{
__n /= 2;
const _Tp* __lmax = 0;
for (_SeqNumber __i = 0; __i < __m; ++__i)
{
if (__a[__i] > 0)
{
if (!__lmax)
__lmax = &(__S(__i)[__a[__i] - 1]);
else
{
if (__comp(*__lmax, __S(__i)[__a[__i] - 1])) //max
__lmax = &(__S(__i)[__a[__i] - 1]);
}
}
}
_SeqNumber __i;
for (__i = 0; __i < __m; __i++)
{
_DifferenceType __middle = (__b[__i] + __a[__i]) / 2;
if (__lmax && __middle < __ns[__i]
&& __comp(__S(__i)[__middle], *__lmax))
__a[__i] = std::min(__a[__i] + __n + 1, __ns[__i]);
else
__b[__i] -= __n + 1;
}
_DifferenceType __leftsize = 0;
for (_SeqNumber __i = 0; __i < __m; ++__i)
__leftsize += __a[__i] / (__n + 1);
_DifferenceType __skew = __rank / (__n + 1) - __leftsize;
if (__skew > 0)
{
// Move to the left, find smallest.
std::priority_queue<std::pair<_Tp, _SeqNumber>,
std::vector<std::pair<_Tp, _SeqNumber> >,
_LexicographicReverse<_Tp, _SeqNumber, _Compare> >
__pq(__lrcomp);
for (_SeqNumber __i = 0; __i < __m; ++__i)
if (__b[__i] < __ns[__i])
__pq.push(std::make_pair(__S(__i)[__b[__i]], __i));
for (; __skew != 0 && !__pq.empty(); --__skew)
{
_SeqNumber __source = __pq.top().second;
__pq.pop();
__a[__source]
= std::min(__a[__source] + __n + 1, __ns[__source]);
__b[__source] += __n + 1;
if (__b[__source] < __ns[__source])
__pq.push(
std::make_pair(__S(__source)[__b[__source]], __source));
}
}
else if (__skew < 0)
{
// Move to the right, find greatest.
std::priority_queue<std::pair<_Tp, _SeqNumber>,
std::vector<std::pair<_Tp, _SeqNumber> >,
_Lexicographic<_Tp, _SeqNumber, _Compare> > __pq(__lcomp);
for (_SeqNumber __i = 0; __i < __m; ++__i)
if (__a[__i] > 0)
__pq.push(std::make_pair(__S(__i)[__a[__i] - 1], __i));
for (; __skew != 0; ++__skew)
{
_SeqNumber __source = __pq.top().second;
__pq.pop();
__a[__source] -= __n + 1;
__b[__source] -= __n + 1;
if (__a[__source] > 0)
__pq.push(std::make_pair(
__S(__source)[__a[__source] - 1], __source));
}
}
}
// Postconditions:
// __a[__i] == __b[__i] in most cases, except when __a[__i] has been
// clamped because of having reached the boundary
// Now return the result, calculate the offset.
// Compare the keys on both edges of the border.
// Maximum of left edge, minimum of right edge.
bool __maxleftset = false, __minrightset = false;
// Impossible to avoid the warning?
_Tp __maxleft, __minright;
for (_SeqNumber __i = 0; __i < __m; ++__i)
{
if (__a[__i] > 0)
{
if (!__maxleftset)
{
__maxleft = __S(__i)[__a[__i] - 1];
__maxleftset = true;
}
else
{
// Max.
if (__comp(__maxleft, __S(__i)[__a[__i] - 1]))
__maxleft = __S(__i)[__a[__i] - 1];
}
}
if (__b[__i] < __ns[__i])
{
if (!__minrightset)
{
__minright = __S(__i)[__b[__i]];
__minrightset = true;
}
else
{
// Min.
if (__comp(__S(__i)[__b[__i]], __minright))
__minright = __S(__i)[__b[__i]];
}
}
}
// Minright is the __splitter, in any case.
if (!__maxleftset || __comp(__minright, __maxleft))
{
// Good luck, everything is split unambiguously.
__offset = 0;
}
else
{
// We have to calculate an offset.
__offset = 0;
for (_SeqNumber __i = 0; __i < __m; ++__i)
{
_DifferenceType lb
= std::lower_bound(__S(__i), __S(__i) + __ns[__i],
__minright,
__comp) - __S(__i);
__offset += __a[__i] - lb;
}
}
delete[] __ns;
delete[] __a;
delete[] __b;
return __minright;
}
}
#undef __S
#endif /* _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H */
|