1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
|
/**
* The fiber module provides OS-indepedent lightweight threads aka fibers.
*
* Copyright: Copyright Sean Kelly 2005 - 2012.
* License: Distributed under the
* $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
* (See accompanying file LICENSE)
* Authors: Sean Kelly, Walter Bright, Alex Rønne Petersen, Martin Nowak
* Source: $(DRUNTIMESRC core/thread/fiber.d)
*/
/* NOTE: This file has been patched from the original DMD distribution to
* work with the GDC compiler.
*/
module core.thread.fiber;
import core.thread.osthread;
import core.thread.threadgroup;
import core.thread.types;
import core.thread.context;
import core.memory : pageSize;
///////////////////////////////////////////////////////////////////////////////
// Fiber Platform Detection
///////////////////////////////////////////////////////////////////////////////
version (GNU)
{
import gcc.builtins;
import gcc.config;
version (GNU_StackGrowsDown)
version = StackGrowsDown;
}
else
{
// this should be true for most architectures
version = StackGrowsDown;
}
version (Windows)
{
import core.stdc.stdlib : malloc, free;
import core.sys.windows.winbase;
import core.sys.windows.winnt;
}
private
{
version (D_InlineAsm_X86)
{
version (Windows)
version = AsmX86_Windows;
else version (Posix)
version = AsmX86_Posix;
version = AlignFiberStackTo16Byte;
}
else version (D_InlineAsm_X86_64)
{
version (Windows)
{
version = AsmX86_64_Windows;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmX86_64_Posix;
version = AlignFiberStackTo16Byte;
}
}
else version (X86)
{
version = AlignFiberStackTo16Byte;
version (CET)
{
// fiber_switchContext does not support shadow stack from
// Intel CET. So use ucontext implementation.
}
else
{
version = AsmExternal;
version (MinGW)
version = GNU_AsmX86_Windows;
else version (OSX)
version = AsmX86_Posix;
else version (Posix)
version = AsmX86_Posix;
}
}
else version (X86_64)
{
version = AlignFiberStackTo16Byte;
version (CET)
{
// fiber_switchContext does not support shadow stack from
// Intel CET. So use ucontext implementation.
}
else version (D_X32)
{
// let X32 be handled by ucontext swapcontext
}
else
{
version = AsmExternal;
version (MinGW)
version = GNU_AsmX86_64_Windows;
else version (OSX)
version = AsmX86_64_Posix;
else version (Posix)
version = AsmX86_64_Posix;
}
}
else version (PPC)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmPPC_Posix;
version = AsmExternal;
}
}
else version (PPC64)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AlignFiberStackTo16Byte;
}
}
else version (MIPS_O32)
{
version (Posix)
{
version = AsmMIPS_O32_Posix;
version = AsmExternal;
}
}
else version (AArch64)
{
version (Posix)
{
version = AsmAArch64_Posix;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
}
else version (ARM)
{
version (Posix)
{
version = AsmARM_Posix;
version = AsmExternal;
}
}
else version (SPARC)
{
// NOTE: The SPARC ABI specifies only doubleword alignment.
version = AlignFiberStackTo16Byte;
}
else version (SPARC64)
{
version = AlignFiberStackTo16Byte;
}
version (Posix)
{
version (AsmX86_Windows) {} else
version (AsmX86_Posix) {} else
version (AsmX86_64_Windows) {} else
version (AsmX86_64_Posix) {} else
version (AsmExternal) {} else
{
// NOTE: The ucontext implementation requires architecture specific
// data definitions to operate so testing for it must be done
// by checking for the existence of ucontext_t rather than by
// a version identifier. Please note that this is considered
// an obsolescent feature according to the POSIX spec, so a
// custom solution is still preferred.
import core.sys.posix.ucontext;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber Entry Point and Context Switch
///////////////////////////////////////////////////////////////////////////////
private
{
import core.atomic : atomicStore, cas, MemoryOrder;
import core.exception : onOutOfMemoryError;
import core.stdc.stdlib : abort;
extern (C) void fiber_entryPoint() nothrow
{
Fiber obj = Fiber.getThis();
assert( obj );
assert( Thread.getThis().m_curr is obj.m_ctxt );
atomicStore!(MemoryOrder.raw)(*cast(shared)&Thread.getThis().m_lock, false);
obj.m_ctxt.tstack = obj.m_ctxt.bstack;
obj.m_state = Fiber.State.EXEC;
try
{
obj.run();
}
catch ( Throwable t )
{
obj.m_unhandled = t;
}
static if ( __traits( compiles, ucontext_t ) )
obj.m_ucur = &obj.m_utxt;
obj.m_state = Fiber.State.TERM;
obj.switchOut();
}
// Look above the definition of 'class Fiber' for some information about the implementation of this routine
version (AsmExternal)
{
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc;
version (AArch64)
extern (C) void fiber_trampoline() nothrow;
}
else
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc
{
// NOTE: The data pushed and popped in this routine must match the
// default stack created by Fiber.initStack or the initial
// switch into a new context will fail.
version (AsmX86_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push dword ptr FS:[0];
push dword ptr FS:[4];
push dword ptr FS:[8];
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop dword ptr FS:[8];
pop dword ptr FS:[4];
pop dword ptr FS:[0];
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
// NOTE: When changing the layout of registers on the stack,
// make sure that the XMM registers are still aligned.
// On function entry, the stack is guaranteed to not
// be aligned to 16 bytes because of the return address
// on the stack.
push RBP;
mov RBP, RSP;
push R12;
push R13;
push R14;
push R15;
push RDI;
push RSI;
// 7 registers = 56 bytes; stack is now aligned to 16 bytes
sub RSP, 160;
movdqa [RSP + 144], XMM6;
movdqa [RSP + 128], XMM7;
movdqa [RSP + 112], XMM8;
movdqa [RSP + 96], XMM9;
movdqa [RSP + 80], XMM10;
movdqa [RSP + 64], XMM11;
movdqa [RSP + 48], XMM12;
movdqa [RSP + 32], XMM13;
movdqa [RSP + 16], XMM14;
movdqa [RSP], XMM15;
push RBX;
xor RAX,RAX;
push qword ptr GS:[RAX];
push qword ptr GS:8[RAX];
push qword ptr GS:16[RAX];
// store oldp
mov [RCX], RSP;
// load newp to begin context switch
mov RSP, RDX;
// load saved state from new stack
pop qword ptr GS:16[RAX];
pop qword ptr GS:8[RAX];
pop qword ptr GS:[RAX];
pop RBX;
movdqa XMM15, [RSP];
movdqa XMM14, [RSP + 16];
movdqa XMM13, [RSP + 32];
movdqa XMM12, [RSP + 48];
movdqa XMM11, [RSP + 64];
movdqa XMM10, [RSP + 80];
movdqa XMM9, [RSP + 96];
movdqa XMM8, [RSP + 112];
movdqa XMM7, [RSP + 128];
movdqa XMM6, [RSP + 144];
add RSP, 160;
pop RSI;
pop RDI;
pop R15;
pop R14;
pop R13;
pop R12;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else version (AsmX86_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push RBP;
mov RBP, RSP;
push RBX;
push R12;
push R13;
push R14;
push R15;
// store oldp
mov [RDI], RSP;
// load newp to begin context switch
mov RSP, RSI;
// load saved state from new stack
pop R15;
pop R14;
pop R13;
pop R12;
pop RBX;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else static if ( __traits( compiles, ucontext_t ) )
{
Fiber cfib = Fiber.getThis();
void* ucur = cfib.m_ucur;
*oldp = &ucur;
swapcontext( **(cast(ucontext_t***) oldp),
*(cast(ucontext_t**) newp) );
}
else
static assert(0, "Not implemented");
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber
///////////////////////////////////////////////////////////////////////////////
/*
* Documentation of Fiber internals:
*
* The main routines to implement when porting Fibers to new architectures are
* fiber_switchContext and initStack. Some version constants have to be defined
* for the new platform as well, search for "Fiber Platform Detection and Memory Allocation".
*
* Fibers are based on a concept called 'Context'. A Context describes the execution
* state of a Fiber or main thread which is fully described by the stack, some
* registers and a return address at which the Fiber/Thread should continue executing.
* Please note that not only each Fiber has a Context, but each thread also has got a
* Context which describes the threads stack and state. If you call Fiber fib; fib.call
* the first time in a thread you switch from Threads Context into the Fibers Context.
* If you call fib.yield in that Fiber you switch out of the Fibers context and back
* into the Thread Context. (However, this is not always the case. You can call a Fiber
* from within another Fiber, then you switch Contexts between the Fibers and the Thread
* Context is not involved)
*
* In all current implementations the registers and the return address are actually
* saved on a Contexts stack.
*
* The fiber_switchContext routine has got two parameters:
* void** a: This is the _location_ where we have to store the current stack pointer,
* the stack pointer of the currently executing Context (Fiber or Thread).
* void* b: This is the pointer to the stack of the Context which we want to switch into.
* Note that we get the same pointer here as the one we stored into the void** a
* in a previous call to fiber_switchContext.
*
* In the simplest case, a fiber_switchContext rountine looks like this:
* fiber_switchContext:
* push {return Address}
* push {registers}
* copy {stack pointer} into {location pointed to by a}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* pop {registers}
* pop {return Address}
* jump to {return Address}
*
* The GC uses the value returned in parameter a to scan the Fibers stack. It scans from
* the stack base to that value. As the GC dislikes false pointers we can actually optimize
* this a little: By storing registers which can not contain references to memory managed
* by the GC outside of the region marked by the stack base pointer and the stack pointer
* saved in fiber_switchContext we can prevent the GC from scanning them.
* Such registers are usually floating point registers and the return address. In order to
* implement this, we return a modified stack pointer from fiber_switchContext. However,
* we have to remember that when we restore the registers from the stack!
*
* --------------------------- <= Stack Base
* | Frame | <= Many other stack frames
* | Frame |
* |-------------------------| <= The last stack frame. This one is created by fiber_switchContext
* | registers with pointers |
* | | <= Stack pointer. GC stops scanning here
* | return address |
* |floating point registers |
* --------------------------- <= Real Stack End
*
* fiber_switchContext:
* push {registers with pointers}
* copy {stack pointer} into {location pointed to by a}
* push {return Address}
* push {Floating point registers}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* //We now have to adjust the stack pointer to point to 'Real Stack End' so we can pop
* //the FP registers
* //+ or - depends on if your stack grows downwards or upwards
* {stack pointer} = {stack pointer} +- ({FPRegisters}.sizeof + {return address}.sizeof}
* pop {Floating point registers}
* pop {return Address}
* pop {registers with pointers}
* jump to {return Address}
*
* So the question now is which registers need to be saved? This depends on the specific
* architecture ABI of course, but here are some general guidelines:
* - If a register is callee-save (if the callee modifies the register it must saved and
* restored by the callee) it needs to be saved/restored in switchContext
* - If a register is caller-save it needn't be saved/restored. (Calling fiber_switchContext
* is a function call and the compiler therefore already must save these registers before
* calling fiber_switchContext)
* - Argument registers used for passing parameters to functions needn't be saved/restored
* - The return register needn't be saved/restored (fiber_switchContext hasn't got a return type)
* - All scratch registers needn't be saved/restored
* - The link register usually needn't be saved/restored (but sometimes it must be cleared -
* see below for details)
* - The frame pointer register - if it exists - is usually callee-save
* - All current implementations do not save control registers
*
* What happens on the first switch into a Fiber? We never saved a state for this fiber before,
* but the initial state is prepared in the initStack routine. (This routine will also be called
* when a Fiber is being resetted). initStack must produce exactly the same stack layout as the
* part of fiber_switchContext which saves the registers. Pay special attention to set the stack
* pointer correctly if you use the GC optimization mentioned before. the return Address saved in
* initStack must be the address of fiber_entrypoint.
*
* There's now a small but important difference between the first context switch into a fiber and
* further context switches. On the first switch, Fiber.call is used and the returnAddress in
* fiber_switchContext will point to fiber_entrypoint. The important thing here is that this jump
* is a _function call_, we call fiber_entrypoint by jumping before it's function prologue. On later
* calls, the user used yield() in a function, and therefore the return address points into a user
* function, after the yield call. So here the jump in fiber_switchContext is a _function return_,
* not a function call!
*
* The most important result of this is that on entering a function, i.e. fiber_entrypoint, we
* would have to provide a return address / set the link register once fiber_entrypoint
* returns. Now fiber_entrypoint does never return and therefore the actual value of the return
* address / link register is never read/used and therefore doesn't matter. When fiber_switchContext
* performs a _function return_ the value in the link register doesn't matter either.
* However, the link register will still be saved to the stack in fiber_entrypoint and some
* exception handling / stack unwinding code might read it from this stack location and crash.
* The exact solution depends on your architecture, but see the ARM implementation for a way
* to deal with this issue.
*
* The ARM implementation is meant to be used as a kind of documented example implementation.
* Look there for a concrete example.
*
* FIXME: fiber_entrypoint might benefit from a @noreturn attribute, but D doesn't have one.
*/
/**
* This class provides a cooperative concurrency mechanism integrated with the
* threading and garbage collection functionality. Calling a fiber may be
* considered a blocking operation that returns when the fiber yields (via
* Fiber.yield()). Execution occurs within the context of the calling thread
* so synchronization is not necessary to guarantee memory visibility so long
* as the same thread calls the fiber each time. Please note that there is no
* requirement that a fiber be bound to one specific thread. Rather, fibers
* may be freely passed between threads so long as they are not currently
* executing. Like threads, a new fiber thread may be created using either
* derivation or composition, as in the following example.
*
* Warning:
* Status registers are not saved by the current implementations. This means
* floating point exception status bits (overflow, divide by 0), rounding mode
* and similar stuff is set per-thread, not per Fiber!
*
* Warning:
* On ARM FPU registers are not saved if druntime was compiled as ARM_SoftFloat.
* If such a build is used on a ARM_SoftFP system which actually has got a FPU
* and other libraries are using the FPU registers (other code is compiled
* as ARM_SoftFP) this can cause problems. Druntime must be compiled as
* ARM_SoftFP in this case.
*
* Authors: Based on a design by Mikola Lysenko.
*/
class Fiber
{
///////////////////////////////////////////////////////////////////////////
// Initialization
///////////////////////////////////////////////////////////////////////////
version (Windows)
// exception handling walks the stack, invoking DbgHelp.dll which
// needs up to 16k of stack space depending on the version of DbgHelp.dll,
// the existence of debug symbols and other conditions. Avoid causing
// stack overflows by defaulting to a larger stack size
enum defaultStackPages = 8;
else version (OSX)
{
version (X86_64)
// libunwind on macOS 11 now requires more stack space than 16k, so
// default to a larger stack size. This is only applied to X86 as
// the pageSize is still 4k, however on AArch64 it is 16k.
enum defaultStackPages = 8;
else
enum defaultStackPages = 4;
}
else
enum defaultStackPages = 4;
/**
* Initializes a fiber object which is associated with a static
* D function.
*
* Params:
* fn = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* fn must not be null.
*/
this( void function() fn, size_t sz = pageSize * defaultStackPages,
size_t guardPageSize = pageSize ) nothrow
in
{
assert( fn );
}
do
{
allocStack( sz, guardPageSize );
reset( fn );
}
/**
* Initializes a fiber object which is associated with a dynamic
* D function.
*
* Params:
* dg = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* dg must not be null.
*/
this( void delegate() dg, size_t sz = pageSize * defaultStackPages,
size_t guardPageSize = pageSize ) nothrow
{
allocStack( sz, guardPageSize );
reset( cast(void delegate() const) dg );
}
/**
* Cleans up any remaining resources used by this object.
*/
~this() nothrow @nogc
{
// NOTE: A live reference to this object will exist on its associated
// stack from the first time its call() method has been called
// until its execution completes with State.TERM. Thus, the only
// times this dtor should be called are either if the fiber has
// terminated (and therefore has no active stack) or if the user
// explicitly deletes this object. The latter case is an error
// but is not easily tested for, since State.HOLD may imply that
// the fiber was just created but has never been run. There is
// not a compelling case to create a State.INIT just to offer a
// means of ensuring the user isn't violating this object's
// contract, so for now this requirement will be enforced by
// documentation only.
freeStack();
}
///////////////////////////////////////////////////////////////////////////
// General Actions
///////////////////////////////////////////////////////////////////////////
/**
* Transfers execution to this fiber object. The calling context will be
* suspended until the fiber calls Fiber.yield() or until it terminates
* via an unhandled exception.
*
* Params:
* rethrow = Rethrow any unhandled exception which may have caused this
* fiber to terminate.
*
* In:
* This fiber must be in state HOLD.
*
* Throws:
* Any exception not handled by the joined thread.
*
* Returns:
* Any exception not handled by this fiber if rethrow = false, null
* otherwise.
*/
// Not marked with any attributes, even though `nothrow @nogc` works
// because it calls arbitrary user code. Most of the implementation
// is already `@nogc nothrow`, but in order for `Fiber.call` to
// propagate the attributes of the user's function, the Fiber
// class needs to be templated.
final Throwable call( Rethrow rethrow = Rethrow.yes )
{
return rethrow ? call!(Rethrow.yes)() : call!(Rethrow.no);
}
/// ditto
final Throwable call( Rethrow rethrow )()
{
callImpl();
if ( m_unhandled )
{
Throwable t = m_unhandled;
m_unhandled = null;
static if ( rethrow )
throw t;
else
return t;
}
return null;
}
private void callImpl() nothrow @nogc
in
{
assert( m_state == State.HOLD );
}
do
{
Fiber cur = getThis();
static if ( __traits( compiles, ucontext_t ) )
m_ucur = cur ? &cur.m_utxt : &Fiber.sm_utxt;
setThis( this );
this.switchIn();
setThis( cur );
static if ( __traits( compiles, ucontext_t ) )
m_ucur = null;
// NOTE: If the fiber has terminated then the stack pointers must be
// reset. This ensures that the stack for this fiber is not
// scanned if the fiber has terminated. This is necessary to
// prevent any references lingering on the stack from delaying
// the collection of otherwise dead objects. The most notable
// being the current object, which is referenced at the top of
// fiber_entryPoint.
if ( m_state == State.TERM )
{
m_ctxt.tstack = m_ctxt.bstack;
}
}
/// Flag to control rethrow behavior of $(D $(LREF call))
enum Rethrow : bool { no, yes }
/**
* Resets this fiber so that it may be re-used, optionally with a
* new function/delegate. This routine should only be called for
* fibers that have terminated, as doing otherwise could result in
* scope-dependent functionality that is not executed.
* Stack-based classes, for example, may not be cleaned up
* properly if a fiber is reset before it has terminated.
*
* In:
* This fiber must be in state TERM or HOLD.
*/
final void reset() nothrow @nogc
in
{
assert( m_state == State.TERM || m_state == State.HOLD );
}
do
{
m_ctxt.tstack = m_ctxt.bstack;
m_state = State.HOLD;
initStack();
m_unhandled = null;
}
/// ditto
final void reset( void function() fn ) nothrow @nogc
{
reset();
m_call = fn;
}
/// ditto
final void reset( void delegate() dg ) nothrow @nogc
{
reset();
m_call = dg;
}
///////////////////////////////////////////////////////////////////////////
// General Properties
///////////////////////////////////////////////////////////////////////////
/// A fiber may occupy one of three states: HOLD, EXEC, and TERM.
enum State
{
/** The HOLD state applies to any fiber that is suspended and ready to
be called. */
HOLD,
/** The EXEC state will be set for any fiber that is currently
executing. */
EXEC,
/** The TERM state is set when a fiber terminates. Once a fiber
terminates, it must be reset before it may be called again. */
TERM
}
/**
* Gets the current state of this fiber.
*
* Returns:
* The state of this fiber as an enumerated value.
*/
final @property State state() const @safe pure nothrow @nogc
{
return m_state;
}
///////////////////////////////////////////////////////////////////////////
// Actions on Calling Fiber
///////////////////////////////////////////////////////////////////////////
/**
* Forces a context switch to occur away from the calling fiber.
*/
static void yield() nothrow @nogc
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
/**
* Forces a context switch to occur away from the calling fiber and then
* throws obj in the calling fiber.
*
* Params:
* t = The object to throw.
*
* In:
* t must not be null.
*/
static void yieldAndThrow( Throwable t ) nothrow @nogc
in
{
assert( t );
}
do
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_unhandled = t;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
///////////////////////////////////////////////////////////////////////////
// Fiber Accessors
///////////////////////////////////////////////////////////////////////////
/**
* Provides a reference to the calling fiber or null if no fiber is
* currently active.
*
* Returns:
* The fiber object representing the calling fiber or null if no fiber
* is currently active within this thread. The result of deleting this object is undefined.
*/
static Fiber getThis() @safe nothrow @nogc
{
version (GNU) pragma(inline, false);
return sm_this;
}
///////////////////////////////////////////////////////////////////////////
// Static Initialization
///////////////////////////////////////////////////////////////////////////
version (Posix)
{
static this()
{
static if ( __traits( compiles, ucontext_t ) )
{
int status = getcontext( &sm_utxt );
assert( status == 0 );
}
}
}
private:
//
// Fiber entry point. Invokes the function or delegate passed on
// construction (if any).
//
final void run()
{
m_call();
}
//
// Standard fiber data
//
Callable m_call;
bool m_isRunning;
Throwable m_unhandled;
State m_state;
private:
///////////////////////////////////////////////////////////////////////////
// Stack Management
///////////////////////////////////////////////////////////////////////////
//
// Allocate a new stack for this fiber.
//
final void allocStack( size_t sz, size_t guardPageSize ) nothrow
in
{
assert( !m_pmem && !m_ctxt );
}
do
{
// adjust alloc size to a multiple of pageSize
sz += pageSize - 1;
sz -= sz % pageSize;
// NOTE: This instance of Thread.Context is dynamic so Fiber objects
// can be collected by the GC so long as no user level references
// to the object exist. If m_ctxt were not dynamic then its
// presence in the global context list would be enough to keep
// this object alive indefinitely. An alternative to allocating
// room for this struct explicitly would be to mash it into the
// base of the stack being allocated below. However, doing so
// requires too much special logic to be worthwhile.
m_ctxt = new StackContext;
version (Windows)
{
// reserve memory for stack
m_pmem = VirtualAlloc( null,
sz + guardPageSize,
MEM_RESERVE,
PAGE_NOACCESS );
if ( !m_pmem )
onOutOfMemoryError();
version (StackGrowsDown)
{
void* stack = m_pmem + guardPageSize;
void* guard = m_pmem;
void* pbase = stack + sz;
}
else
{
void* stack = m_pmem;
void* guard = m_pmem + sz;
void* pbase = stack;
}
// allocate reserved stack segment
stack = VirtualAlloc( stack,
sz,
MEM_COMMIT,
PAGE_READWRITE );
if ( !stack )
onOutOfMemoryError();
if (guardPageSize)
{
// allocate reserved guard page
guard = VirtualAlloc( guard,
guardPageSize,
MEM_COMMIT,
PAGE_READWRITE | PAGE_GUARD );
if ( !guard )
onOutOfMemoryError();
}
m_ctxt.bstack = pbase;
m_ctxt.tstack = pbase;
m_size = sz;
}
else
{
version (Posix) import core.sys.posix.sys.mman; // mmap, MAP_ANON
static if ( __traits( compiles, ucontext_t ) )
{
// Stack size must be at least the minimum allowable by the OS.
if (sz < MINSIGSTKSZ)
sz = MINSIGSTKSZ;
}
static if ( __traits( compiles, mmap ) )
{
// Allocate more for the memory guard
sz += guardPageSize;
int mmap_flags = MAP_PRIVATE | MAP_ANON;
version (OpenBSD)
mmap_flags |= MAP_STACK;
m_pmem = mmap( null,
sz,
PROT_READ | PROT_WRITE,
mmap_flags,
-1,
0 );
if ( m_pmem == MAP_FAILED )
m_pmem = null;
}
else static if ( __traits( compiles, valloc ) )
{
m_pmem = valloc( sz );
}
else static if ( __traits( compiles, malloc ) )
{
m_pmem = malloc( sz );
}
else
{
m_pmem = null;
}
if ( !m_pmem )
onOutOfMemoryError();
version (StackGrowsDown)
{
m_ctxt.bstack = m_pmem + sz;
m_ctxt.tstack = m_pmem + sz;
void* guard = m_pmem;
}
else
{
m_ctxt.bstack = m_pmem;
m_ctxt.tstack = m_pmem;
void* guard = m_pmem + sz - guardPageSize;
}
m_size = sz;
static if ( __traits( compiles, mmap ) )
{
if (guardPageSize)
{
// protect end of stack
if ( mprotect(guard, guardPageSize, PROT_NONE) == -1 )
abort();
}
}
else
{
// Supported only for mmap allocated memory - results are
// undefined if applied to memory not obtained by mmap
}
}
Thread.add( m_ctxt );
}
//
// Free this fiber's stack.
//
final void freeStack() nothrow @nogc
in
{
assert( m_pmem && m_ctxt );
}
do
{
// NOTE: m_ctxt is guaranteed to be alive because it is held in the
// global context list.
Thread.slock.lock_nothrow();
scope(exit) Thread.slock.unlock_nothrow();
Thread.remove( m_ctxt );
version (Windows)
{
VirtualFree( m_pmem, 0, MEM_RELEASE );
}
else
{
import core.sys.posix.sys.mman; // munmap
static if ( __traits( compiles, mmap ) )
{
munmap( m_pmem, m_size );
}
else static if ( __traits( compiles, valloc ) )
{
free( m_pmem );
}
else static if ( __traits( compiles, malloc ) )
{
free( m_pmem );
}
}
m_pmem = null;
m_ctxt = null;
}
//
// Initialize the allocated stack.
// Look above the definition of 'class Fiber' for some information about the implementation of this routine
//
final void initStack() nothrow @nogc
in
{
assert( m_ctxt.tstack && m_ctxt.tstack == m_ctxt.bstack );
assert( cast(size_t) m_ctxt.bstack % (void*).sizeof == 0 );
}
do
{
void* pstack = m_ctxt.tstack;
scope( exit ) m_ctxt.tstack = pstack;
void push( size_t val ) nothrow
{
version (StackGrowsDown)
{
pstack -= size_t.sizeof;
*(cast(size_t*) pstack) = val;
}
else
{
pstack += size_t.sizeof;
*(cast(size_t*) pstack) = val;
}
}
// NOTE: On OS X the stack must be 16-byte aligned according
// to the IA-32 call spec. For x86_64 the stack also needs to
// be aligned to 16-byte according to SysV AMD64 ABI.
version (AlignFiberStackTo16Byte)
{
version (StackGrowsDown)
{
pstack = cast(void*)(cast(size_t)(pstack) - (cast(size_t)(pstack) & 0x0F));
}
else
{
pstack = cast(void*)(cast(size_t)(pstack) + (cast(size_t)(pstack) & 0x0F));
}
}
version (AsmX86_Windows)
{
version (StackGrowsDown) {} else static assert( false );
// On Windows Server 2008 and 2008 R2, an exploit mitigation
// technique known as SEHOP is activated by default. To avoid
// hijacking of the exception handler chain, the presence of a
// Windows-internal handler (ntdll.dll!FinalExceptionHandler) at
// its end is tested by RaiseException. If it is not present, all
// handlers are disregarded, and the program is thus aborted
// (see http://blogs.technet.com/b/srd/archive/2009/02/02/
// preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx).
// For new threads, this handler is installed by Windows immediately
// after creation. To make exception handling work in fibers, we
// have to insert it for our new stacks manually as well.
//
// To do this, we first determine the handler by traversing the SEH
// chain of the current thread until its end, and then construct a
// registration block for the last handler on the newly created
// thread. We then continue to push all the initial register values
// for the first context switch as for the other implementations.
//
// Note that this handler is never actually invoked, as we install
// our own one on top of it in the fiber entry point function.
// Thus, it should not have any effects on OSes not implementing
// exception chain verification.
alias fp_t = void function(); // Actual signature not relevant.
static struct EXCEPTION_REGISTRATION
{
EXCEPTION_REGISTRATION* next; // sehChainEnd if last one.
fp_t handler;
}
enum sehChainEnd = cast(EXCEPTION_REGISTRATION*) 0xFFFFFFFF;
__gshared static fp_t finalHandler = null;
if ( finalHandler is null )
{
static EXCEPTION_REGISTRATION* fs0() nothrow
{
asm pure nothrow @nogc
{
naked;
mov EAX, FS:[0];
ret;
}
}
auto reg = fs0();
while ( reg.next != sehChainEnd ) reg = reg.next;
// Benign races are okay here, just to avoid re-lookup on every
// fiber creation.
finalHandler = reg.handler;
}
// When linking with /safeseh (supported by LDC, but not DMD)
// the exception chain must not extend to the very top
// of the stack, otherwise the exception chain is also considered
// invalid. Reserving additional 4 bytes at the top of the stack will
// keep the EXCEPTION_REGISTRATION below that limit
size_t reserve = EXCEPTION_REGISTRATION.sizeof + 4;
pstack -= reserve;
*(cast(EXCEPTION_REGISTRATION*)pstack) =
EXCEPTION_REGISTRATION( sehChainEnd, finalHandler );
auto pChainEnd = pstack;
push( cast(size_t) &fiber_entryPoint ); // EIP
push( cast(size_t) m_ctxt.bstack - reserve ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( cast(size_t) pChainEnd ); // FS:[0]
push( cast(size_t) m_ctxt.bstack ); // FS:[4]
push( cast(size_t) m_ctxt.bstack - m_size ); // FS:[8]
push( 0x00000000 ); // EAX
}
else version (AsmX86_64_Windows)
{
// Using this trampoline instead of the raw fiber_entryPoint
// ensures that during context switches, source and destination
// stacks have the same alignment. Otherwise, the stack would need
// to be shifted by 8 bytes for the first call, as fiber_entryPoint
// is an actual function expecting a stack which is not aligned
// to 16 bytes.
static void trampoline()
{
asm pure nothrow @nogc
{
naked;
sub RSP, 32; // Shadow space (Win64 calling convention)
call fiber_entryPoint;
xor RCX, RCX; // This should never be reached, as
jmp RCX; // fiber_entryPoint must never return.
}
}
push( cast(size_t) &trampoline ); // RIP
push( 0x00000000_00000000 ); // RBP
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
push( 0x00000000_00000000 ); // RDI
push( 0x00000000_00000000 ); // RSI
push( 0x00000000_00000000 ); // XMM6 (high)
push( 0x00000000_00000000 ); // XMM6 (low)
push( 0x00000000_00000000 ); // XMM7 (high)
push( 0x00000000_00000000 ); // XMM7 (low)
push( 0x00000000_00000000 ); // XMM8 (high)
push( 0x00000000_00000000 ); // XMM8 (low)
push( 0x00000000_00000000 ); // XMM9 (high)
push( 0x00000000_00000000 ); // XMM9 (low)
push( 0x00000000_00000000 ); // XMM10 (high)
push( 0x00000000_00000000 ); // XMM10 (low)
push( 0x00000000_00000000 ); // XMM11 (high)
push( 0x00000000_00000000 ); // XMM11 (low)
push( 0x00000000_00000000 ); // XMM12 (high)
push( 0x00000000_00000000 ); // XMM12 (low)
push( 0x00000000_00000000 ); // XMM13 (high)
push( 0x00000000_00000000 ); // XMM13 (low)
push( 0x00000000_00000000 ); // XMM14 (high)
push( 0x00000000_00000000 ); // XMM14 (low)
push( 0x00000000_00000000 ); // XMM15 (high)
push( 0x00000000_00000000 ); // XMM15 (low)
push( 0x00000000_00000000 ); // RBX
push( 0xFFFFFFFF_FFFFFFFF ); // GS:[0]
version (StackGrowsDown)
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8]
push( cast(size_t) m_ctxt.bstack - m_size ); // GS:[16]
}
else
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8]
push( cast(size_t) m_ctxt.bstack + m_size ); // GS:[16]
}
}
else version (AsmX86_Posix)
{
push( 0x00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // EIP
push( cast(size_t) m_ctxt.bstack ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( 0x00000000 ); // EAX
}
else version (AsmX86_64_Posix)
{
push( 0x00000000_00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // RIP
push( cast(size_t) m_ctxt.bstack ); // RBP
push( 0x00000000_00000000 ); // RBX
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
}
else version (AsmPPC_Posix)
{
version (StackGrowsDown)
{
pstack -= int.sizeof * 5;
}
else
{
pstack += int.sizeof * 5;
}
push( cast(size_t) &fiber_entryPoint ); // link register
push( 0x00000000 ); // control register
push( 0x00000000 ); // old stack pointer
// GPR values
version (StackGrowsDown)
{
pstack -= int.sizeof * 20;
}
else
{
pstack += int.sizeof * 20;
}
assert( (cast(size_t) pstack & 0x0f) == 0 );
}
else version (AsmPPC_Darwin)
{
version (StackGrowsDown) {}
else static assert(false, "PowerPC Darwin only supports decrementing stacks");
uint wsize = size_t.sizeof;
// linkage + regs + FPRs + VRs
uint space = 8 * wsize + 20 * wsize + 18 * 8 + 12 * 16;
(cast(ubyte*)pstack - space)[0 .. space] = 0;
pstack -= wsize * 6;
*cast(size_t*)pstack = cast(size_t) &fiber_entryPoint; // LR
pstack -= wsize * 22;
// On Darwin PPC64 pthread self is in R13 (which is reserved).
// At present, it is not safe to migrate fibers between threads, but if that
// changes, then updating the value of R13 will also need to be handled.
version (PPC64)
*cast(size_t*)(pstack + wsize) = cast(size_t) Thread.getThis().m_addr;
assert( (cast(size_t) pstack & 0x0f) == 0 );
}
else version (AsmMIPS_O32_Posix)
{
version (StackGrowsDown) {}
else static assert(0);
/* We keep the FP registers and the return address below
* the stack pointer, so they don't get scanned by the
* GC. The last frame before swapping the stack pointer is
* organized like the following.
*
* |-----------|<= frame pointer
* | $gp |
* | $s0-8 |
* |-----------|<= stack pointer
* | $ra |
* | align(8) |
* | $f20-30 |
* |-----------|
*
*/
enum SZ_GP = 10 * size_t.sizeof; // $gp + $s0-8
enum SZ_RA = size_t.sizeof; // $ra
version (MIPS_HardFloat)
{
enum SZ_FP = 6 * 8; // $f20-30
enum ALIGN = -(SZ_FP + SZ_RA) & (8 - 1);
}
else
{
enum SZ_FP = 0;
enum ALIGN = 0;
}
enum BELOW = SZ_FP + ALIGN + SZ_RA;
enum ABOVE = SZ_GP;
enum SZ = BELOW + ABOVE;
(cast(ubyte*)pstack - SZ)[0 .. SZ] = 0;
pstack -= ABOVE;
*cast(size_t*)(pstack - SZ_RA) = cast(size_t)&fiber_entryPoint;
}
else version (AsmAArch64_Posix)
{
// Like others, FP registers and return address (lr) are kept
// below the saved stack top (tstack) to hide from GC scanning.
// fiber_switchContext expects newp sp to look like this:
// 19: x19
// ...
// 9: x29 (fp) <-- newp tstack
// 8: x30 (lr) [&fiber_entryPoint]
// 7: d8
// ...
// 0: d15
version (StackGrowsDown) {}
else
static assert(false, "Only full descending stacks supported on AArch64");
// Only need to set return address (lr). Everything else is fine
// zero initialized.
pstack -= size_t.sizeof * 11; // skip past x19-x29
push(cast(size_t) &fiber_trampoline); // see threadasm.S for docs
pstack += size_t.sizeof; // adjust sp (newp) above lr
}
else version (AsmARM_Posix)
{
/* We keep the FP registers and the return address below
* the stack pointer, so they don't get scanned by the
* GC. The last frame before swapping the stack pointer is
* organized like the following.
*
* | |-----------|<= 'frame starts here'
* | | fp | (the actual frame pointer, r11 isn't
* | | r10-r4 | updated and still points to the previous frame)
* | |-----------|<= stack pointer
* | | lr |
* | | 4byte pad |
* | | d15-d8 |(if FP supported)
* | |-----------|
* Y
* stack grows down: The pointer value here is smaller than some lines above
*/
// frame pointer can be zero, r10-r4 also zero initialized
version (StackGrowsDown)
pstack -= int.sizeof * 8;
else
static assert(false, "Only full descending stacks supported on ARM");
// link register
push( cast(size_t) &fiber_entryPoint );
/*
* We do not push padding and d15-d8 as those are zero initialized anyway
* Position the stack pointer above the lr register
*/
pstack += int.sizeof * 1;
}
else version (GNU_AsmX86_Windows)
{
version (StackGrowsDown) {} else static assert( false );
// Currently, MinGW doesn't utilize SEH exceptions.
// See DMD AsmX86_Windows If this code ever becomes fails and SEH is used.
push( 0x00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // EIP
push( 0x00000000 ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( 0xFFFFFFFF ); // FS:[0] - Current SEH frame
push( cast(size_t) m_ctxt.bstack ); // FS:[4] - Top of stack
push( cast(size_t) m_ctxt.bstack - m_size ); // FS:[8] - Bottom of stack
push( 0x00000000 ); // EAX
}
else version (GNU_AsmX86_64_Windows)
{
push( 0x00000000_00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // RIP
push( 0x00000000_00000000 ); // RBP
push( 0x00000000_00000000 ); // RBX
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
push( 0xFFFFFFFF_FFFFFFFF ); // GS:[0] - Current SEH frame
version (StackGrowsDown)
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8] - Top of stack
push( cast(size_t) m_ctxt.bstack - m_size ); // GS:[16] - Bottom of stack
}
else
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8] - Top of stack
push( cast(size_t) m_ctxt.bstack + m_size ); // GS:[16] - Bottom of stack
}
}
else static if ( __traits( compiles, ucontext_t ) )
{
getcontext( &m_utxt );
m_utxt.uc_stack.ss_sp = m_pmem;
m_utxt.uc_stack.ss_size = m_size;
makecontext( &m_utxt, &fiber_entryPoint, 0 );
// NOTE: If ucontext is being used then the top of the stack will
// be a pointer to the ucontext_t struct for that fiber.
push( cast(size_t) &m_utxt );
}
else
static assert(0, "Not implemented");
}
StackContext* m_ctxt;
size_t m_size;
void* m_pmem;
static if ( __traits( compiles, ucontext_t ) )
{
// NOTE: The static ucontext instance is used to represent the context
// of the executing thread.
static ucontext_t sm_utxt = void;
ucontext_t m_utxt = void;
ucontext_t* m_ucur = null;
}
else static if (GNU_Enable_CET)
{
// When libphobos was built with --enable-cet, these fields need to
// always be present in the Fiber class layout.
import core.sys.posix.ucontext;
static ucontext_t sm_utxt = void;
ucontext_t m_utxt = void;
ucontext_t* m_ucur = null;
}
private:
///////////////////////////////////////////////////////////////////////////
// Storage of Active Fiber
///////////////////////////////////////////////////////////////////////////
//
// Sets a thread-local reference to the current fiber object.
//
static void setThis( Fiber f ) nothrow @nogc
{
sm_this = f;
}
static Fiber sm_this;
private:
///////////////////////////////////////////////////////////////////////////
// Context Switching
///////////////////////////////////////////////////////////////////////////
//
// Switches into the stack held by this fiber.
//
final void switchIn() nothrow @nogc
{
Thread tobj = Thread.getThis();
void** oldp = &tobj.m_curr.tstack;
void* newp = m_ctxt.tstack;
// NOTE: The order of operations here is very important. The current
// stack top must be stored before m_lock is set, and pushContext
// must not be called until after m_lock is set. This process
// is intended to prevent a race condition with the suspend
// mechanism used for garbage collection. If it is not followed,
// a badly timed collection could cause the GC to scan from the
// bottom of one stack to the top of another, or to miss scanning
// a stack that still contains valid data. The old stack pointer
// oldp will be set again before the context switch to guarantee
// that it points to exactly the correct stack location so the
// successive pop operations will succeed.
*oldp = getStackTop();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
tobj.pushContext( m_ctxt );
fiber_switchContext( oldp, newp );
// NOTE: As above, these operations must be performed in a strict order
// to prevent Bad Things from happening.
tobj.popContext();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
tobj.m_curr.tstack = tobj.m_curr.bstack;
}
//
// Switches out of the current stack and into the enclosing stack.
//
final void switchOut() nothrow @nogc
{
Thread tobj = Thread.getThis();
void** oldp = &m_ctxt.tstack;
void* newp = tobj.m_curr.within.tstack;
// NOTE: The order of operations here is very important. The current
// stack top must be stored before m_lock is set, and pushContext
// must not be called until after m_lock is set. This process
// is intended to prevent a race condition with the suspend
// mechanism used for garbage collection. If it is not followed,
// a badly timed collection could cause the GC to scan from the
// bottom of one stack to the top of another, or to miss scanning
// a stack that still contains valid data. The old stack pointer
// oldp will be set again before the context switch to guarantee
// that it points to exactly the correct stack location so the
// successive pop operations will succeed.
*oldp = getStackTop();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
fiber_switchContext( oldp, newp );
// NOTE: As above, these operations must be performed in a strict order
// to prevent Bad Things from happening.
// NOTE: If use of this fiber is multiplexed across threads, the thread
// executing here may be different from the one above, so get the
// current thread handle before unlocking, etc.
tobj = Thread.getThis();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
tobj.m_curr.tstack = tobj.m_curr.bstack;
}
}
///
unittest {
int counter;
class DerivedFiber : Fiber
{
this()
{
super( &run );
}
private :
void run()
{
counter += 2;
}
}
void fiberFunc()
{
counter += 4;
Fiber.yield();
counter += 8;
}
// create instances of each type
Fiber derived = new DerivedFiber();
Fiber composed = new Fiber( &fiberFunc );
assert( counter == 0 );
derived.call();
assert( counter == 2, "Derived fiber increment." );
composed.call();
assert( counter == 6, "First composed fiber increment." );
counter += 16;
assert( counter == 22, "Calling context increment." );
composed.call();
assert( counter == 30, "Second composed fiber increment." );
// since each fiber has run to completion, each should have state TERM
assert( derived.state == Fiber.State.TERM );
assert( composed.state == Fiber.State.TERM );
}
version (CoreUnittest)
{
class TestFiber : Fiber
{
this()
{
super(&run);
}
void run()
{
foreach (i; 0 .. 1000)
{
sum += i;
Fiber.yield();
}
}
enum expSum = 1000 * 999 / 2;
size_t sum;
}
void runTen()
{
TestFiber[10] fibs;
foreach (ref fib; fibs)
fib = new TestFiber();
bool cont;
do {
cont = false;
foreach (fib; fibs) {
if (fib.state == Fiber.State.HOLD)
{
fib.call();
cont |= fib.state != Fiber.State.TERM;
}
}
} while (cont);
foreach (fib; fibs)
{
assert(fib.sum == TestFiber.expSum);
}
}
}
// Single thread running separate fibers
unittest
{
runTen();
}
// Multiple threads running separate fibers
unittest
{
auto group = new ThreadGroup();
foreach (_; 0 .. 4)
{
group.create(&runTen);
}
group.joinAll();
}
// Multiple threads running shared fibers
version (PPC) version = UnsafeFiberMigration;
version (PPC64) version = UnsafeFiberMigration;
version (OSX)
{
version (X86) version = UnsafeFiberMigration;
version (X86_64) version = UnsafeFiberMigration;
}
version (UnsafeFiberMigration)
{
// XBUG: core.thread fibers are supposed to be safe to migrate across
// threads, however, there is a problem: GCC always assumes that the
// address of thread-local variables don't change while on a given stack.
// In consequence, migrating fibers between threads currently is an unsafe
// thing to do, and will break on some targets (possibly PR26461).
}
else
{
version = FiberMigrationUnittest;
}
version (FiberMigrationUnittest)
unittest
{
shared bool[10] locks;
TestFiber[10] fibs;
void runShared()
{
bool cont;
do {
cont = false;
foreach (idx; 0 .. 10)
{
if (cas(&locks[idx], false, true))
{
if (fibs[idx].state == Fiber.State.HOLD)
{
fibs[idx].call();
cont |= fibs[idx].state != Fiber.State.TERM;
}
locks[idx] = false;
}
else
{
cont = true;
}
}
} while (cont);
}
foreach (ref fib; fibs)
{
fib = new TestFiber();
}
auto group = new ThreadGroup();
foreach (_; 0 .. 4)
{
group.create(&runShared);
}
group.joinAll();
foreach (fib; fibs)
{
assert(fib.sum == TestFiber.expSum);
}
}
// Test exception handling inside fibers.
unittest
{
enum MSG = "Test message.";
string caughtMsg;
(new Fiber({
try
{
throw new Exception(MSG);
}
catch (Exception e)
{
caughtMsg = e.msg;
}
})).call();
assert(caughtMsg == MSG);
}
unittest
{
int x = 0;
(new Fiber({
x++;
})).call();
assert( x == 1 );
}
nothrow unittest
{
new Fiber({}).call!(Fiber.Rethrow.no)();
}
unittest
{
new Fiber({}).call(Fiber.Rethrow.yes);
new Fiber({}).call(Fiber.Rethrow.no);
}
unittest
{
enum MSG = "Test message.";
try
{
(new Fiber(function() {
throw new Exception( MSG );
})).call();
assert( false, "Expected rethrown exception." );
}
catch ( Throwable t )
{
assert( t.msg == MSG );
}
}
// Test exception chaining when switching contexts in finally blocks.
unittest
{
static void throwAndYield(string msg) {
try {
throw new Exception(msg);
} finally {
Fiber.yield();
}
}
static void fiber(string name) {
try {
try {
throwAndYield(name ~ ".1");
} finally {
throwAndYield(name ~ ".2");
}
} catch (Exception e) {
assert(e.msg == name ~ ".1");
assert(e.next);
assert(e.next.msg == name ~ ".2");
assert(!e.next.next);
}
}
auto first = new Fiber(() => fiber("first"));
auto second = new Fiber(() => fiber("second"));
first.call();
second.call();
first.call();
second.call();
first.call();
second.call();
assert(first.state == Fiber.State.TERM);
assert(second.state == Fiber.State.TERM);
}
// Test Fiber resetting
unittest
{
static string method;
static void foo()
{
method = "foo";
}
void bar()
{
method = "bar";
}
static void expect(Fiber fib, string s)
{
assert(fib.state == Fiber.State.HOLD);
fib.call();
assert(fib.state == Fiber.State.TERM);
assert(method == s); method = null;
}
auto fib = new Fiber(&foo);
expect(fib, "foo");
fib.reset();
expect(fib, "foo");
fib.reset(&foo);
expect(fib, "foo");
fib.reset(&bar);
expect(fib, "bar");
fib.reset(function void(){method = "function";});
expect(fib, "function");
fib.reset(delegate void(){method = "delegate";});
expect(fib, "delegate");
}
// Test unsafe reset in hold state
unittest
{
auto fib = new Fiber(function {ubyte[2048] buf = void; Fiber.yield();}, 4096);
foreach (_; 0 .. 10)
{
fib.call();
assert(fib.state == Fiber.State.HOLD);
fib.reset();
}
}
// stress testing GC stack scanning
unittest
{
import core.memory;
import core.time : dur;
static void unreferencedThreadObject()
{
static void sleep() { Thread.sleep(dur!"msecs"(100)); }
auto thread = new Thread(&sleep).start();
}
unreferencedThreadObject();
GC.collect();
static class Foo
{
this(int value)
{
_value = value;
}
int bar()
{
return _value;
}
int _value;
}
static void collect()
{
auto foo = new Foo(2);
assert(foo.bar() == 2);
GC.collect();
Fiber.yield();
GC.collect();
assert(foo.bar() == 2);
}
auto fiber = new Fiber(&collect);
fiber.call();
GC.collect();
fiber.call();
// thread reference
auto foo = new Foo(2);
void collect2()
{
assert(foo.bar() == 2);
GC.collect();
Fiber.yield();
GC.collect();
assert(foo.bar() == 2);
}
fiber = new Fiber(&collect2);
fiber.call();
GC.collect();
fiber.call();
static void recurse(size_t cnt)
{
--cnt;
Fiber.yield();
if (cnt)
{
auto fib = new Fiber(() { recurse(cnt); });
fib.call();
GC.collect();
fib.call();
}
}
fiber = new Fiber(() { recurse(20); });
fiber.call();
}
version (AsmX86_64_Windows)
{
// Test Windows x64 calling convention
unittest
{
void testNonvolatileRegister(alias REG)()
{
auto zeroRegister = new Fiber(() {
mixin("asm pure nothrow @nogc { naked; xor "~REG~", "~REG~"; ret; }");
});
long after;
mixin("asm pure nothrow @nogc { mov "~REG~", 0xFFFFFFFFFFFFFFFF; }");
zeroRegister.call();
mixin("asm pure nothrow @nogc { mov after, "~REG~"; }");
assert(after == -1);
}
void testNonvolatileRegisterSSE(alias REG)()
{
auto zeroRegister = new Fiber(() {
mixin("asm pure nothrow @nogc { naked; xorpd "~REG~", "~REG~"; ret; }");
});
long[2] before = [0xFFFFFFFF_FFFFFFFF, 0xFFFFFFFF_FFFFFFFF], after;
mixin("asm pure nothrow @nogc { movdqu "~REG~", before; }");
zeroRegister.call();
mixin("asm pure nothrow @nogc { movdqu after, "~REG~"; }");
assert(before == after);
}
testNonvolatileRegister!("R12")();
testNonvolatileRegister!("R13")();
testNonvolatileRegister!("R14")();
testNonvolatileRegister!("R15")();
testNonvolatileRegister!("RDI")();
testNonvolatileRegister!("RSI")();
testNonvolatileRegister!("RBX")();
testNonvolatileRegisterSSE!("XMM6")();
testNonvolatileRegisterSSE!("XMM7")();
testNonvolatileRegisterSSE!("XMM8")();
testNonvolatileRegisterSSE!("XMM9")();
testNonvolatileRegisterSSE!("XMM10")();
testNonvolatileRegisterSSE!("XMM11")();
testNonvolatileRegisterSSE!("XMM12")();
testNonvolatileRegisterSSE!("XMM13")();
testNonvolatileRegisterSSE!("XMM14")();
testNonvolatileRegisterSSE!("XMM15")();
}
}
version (D_InlineAsm_X86_64)
{
unittest
{
void testStackAlignment()
{
void* pRSP;
asm pure nothrow @nogc
{
mov pRSP, RSP;
}
assert((cast(size_t)pRSP & 0xF) == 0);
}
auto fib = new Fiber(&testStackAlignment);
fib.call();
}
}
|