summaryrefslogtreecommitdiff
path: root/libphobos/libdruntime/core/internal/convert.d
blob: 92eb243ec1a9a74145944df72b22d51dd091b51d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/**
 * Written in the D programming language.
 * This module provides functions to converting different values to const(ubyte)[]
 *
 * Copyright: Copyright Igor Stepanov 2013-2013.
 * License:   $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
 * Authors:   Igor Stepanov
 * Source: $(DRUNTIMESRC core/internal/_convert.d)
 */
module core.internal.convert;

/+
A @nogc function can allocate memory during CTFE.
+/
@nogc nothrow pure @trusted
private ubyte[] ctfe_alloc(size_t n)
{
    if (!__ctfe)
    {
        assert(0, "CTFE only");
    }
    else
    {
        static ubyte[] alloc(size_t x) nothrow pure
        {
            if (__ctfe) // Needed to prevent _d_newarray from appearing in compiled prorgam.
                return new ubyte[x];
            else
                assert(0);
        }
        return (cast(ubyte[] function(size_t) @nogc nothrow pure) &alloc)(n);
    }
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const scope ref T val) if (__traits(isFloating, T) && (is(T : real) || is(T : ireal)))
{
    if (__ctfe)
    {
        static if (floatFormat!T == FloatFormat.Float || floatFormat!T == FloatFormat.Double)
        {
            static if (is(T : ireal)) // https://issues.dlang.org/show_bug.cgi?id=19932
                const f = val.im;
            else
                alias f = val;
            static if (T.sizeof == uint.sizeof)
                uint bits = *cast(const uint*) &f;
            else static if (T.sizeof == ulong.sizeof)
                ulong bits = *cast(const ulong*) &f;
            ubyte[] result = ctfe_alloc(T.sizeof);
            version (BigEndian)
            {
                foreach_reverse (ref b; result)
                {
                    b = cast(ubyte) bits;
                    bits >>= 8;
                }
            }
            else
            {
                foreach (ref b; result)
                {
                    b = cast(ubyte) bits;
                    bits >>= 8;
                }
            }
            return result;
        }
        else static if (floatFormat!T == FloatFormat.DoubleDouble)
        {
            // Parse DoubleDoubles as a pair of doubles.
            // The layout of the type is:
            //
            //   [1|    11    |       52      ][1|    11    |       52       ]
            //   [S| Exponent | Fraction (hi) ][S| Exponent | Fraction (low) ]
            //
            // We can get the least significant bits by subtracting the IEEE
            // double precision portion from the real value.

            import core.math : toPrec;

            ubyte[] buff = ctfe_alloc(T.sizeof);
            enum msbSize = double.sizeof;

            static if (is(T : ireal))
                double hi = toPrec!double(val.im);
            else
                double hi = toPrec!double(val);
            buff[0 .. msbSize] = toUbyte(hi)[];

            if (val is cast(T)0.0 || val is cast(T)-0.0 ||
                val is T.nan || val is -T.nan ||
                val is T.infinity || val > T.max ||
                val is -T.infinity || val < -T.max)
            {
                // Zero, NaN, and Inf are all representable as doubles, so the
                // least significant part can be 0.0.
                buff[msbSize .. $] = 0;
            }
            else
            {
                static if (is(T : ireal))
                    double low = toPrec!double(val.im - hi);
                else
                    double low = toPrec!double(val - hi);
                buff[msbSize .. $] = toUbyte(low)[];
            }

            // Arrays don't index differently between little and big-endian targets.
            return buff;
        }
        else
        {
            auto parsed = parse(val);

            ulong mantissa = parsed.mantissa;
            uint exp = parsed.exponent;
            uint sign = parsed.sign;

            ubyte[] buff = ctfe_alloc(T.sizeof);
            size_t off_bytes = 0;
            size_t off_bits  = 0;
            // Quadruples won't fit in one ulong, so check for that.
            enum mantissaMax = FloatTraits!T.MANTISSA < ulong.sizeof*8 ?
                               FloatTraits!T.MANTISSA : ulong.sizeof*8;

            for (; off_bytes < mantissaMax/8; ++off_bytes)
            {
                buff[off_bytes] = cast(ubyte)mantissa;
                mantissa >>= 8;
            }

            static if (floatFormat!T == FloatFormat.Quadruple)
            {
                ulong mantissa2 = parsed.mantissa2;
                off_bytes--; // go back one, since mantissa only stored data in 56
                             // bits, ie 7 bytes
                for (; off_bytes < FloatTraits!T.MANTISSA/8; ++off_bytes)
                {
                    buff[off_bytes] = cast(ubyte)mantissa2;
                    mantissa2 >>= 8;
                }
            }
            else
            {
                off_bits = FloatTraits!T.MANTISSA%8;
                buff[off_bytes] = cast(ubyte)mantissa;
            }

            for (size_t i=0; i<FloatTraits!T.EXPONENT/8; ++i)
            {
                ubyte cur_exp = cast(ubyte)exp;
                exp >>= 8;
                buff[off_bytes] |= (cur_exp << off_bits);
                ++off_bytes;
                buff[off_bytes] |= cur_exp >> 8 - off_bits;
            }


            exp <<= 8 - FloatTraits!T.EXPONENT%8 - 1;
            buff[off_bytes] |= exp;
            sign <<= 7;
            buff[off_bytes] |= sign;

            version (BigEndian)
            {
                for (size_t left = 0, right = buff.length - 1; left < right; left++, right--)
                {
                    const swap = buff[left];
                    buff[left] = buff[right];
                    buff[right] = swap;
                }
            }
            return buff;
        }
    }
    else
    {
        return (cast(const(ubyte)*)&val)[0 .. T.sizeof];
    }
}

@safe pure nothrow @nogc
private Float parse(bool is_denormalized = false, T:ireal)(T x)
{
    return parse(x.im);
}

@safe pure nothrow @nogc
private Float parse(bool is_denormalized = false, T:real)(T x_) if (floatFormat!T != FloatFormat.Real80)
{
    import core.internal.traits : Unqual;
    Unqual!T x = x_;
    static assert(floatFormat!T != FloatFormat.DoubleDouble,
           "doubledouble float format not supported in CTFE");
    if (x is cast(T)0.0) return FloatTraits!T.ZERO;
    if (x is cast(T)-0.0) return FloatTraits!T.NZERO;
    if (x is T.nan) return FloatTraits!T.NAN;
    if (x is -T.nan) return FloatTraits!T.NNAN;
    if (x is T.infinity || x > T.max) return FloatTraits!T.INF;
    if (x is -T.infinity || x < -T.max) return FloatTraits!T.NINF;

    uint sign = x < 0;
    x = sign ? -x : x;
    int e = binLog2(x);
    real x2 = x;
    uint exp = cast(uint)(e + (2^^(FloatTraits!T.EXPONENT-1) - 1));

    if (!exp)
    {
        if (is_denormalized)
            return Float(0, 0, sign);
        else
            return denormalizedMantissa(x, sign);
    }

    x2 /= binPow2(e);

    static if (!is_denormalized)
        x2 -= 1.0;

    static if (floatFormat!T == FloatFormat.Quadruple)
    {
        // Store the 112-bit mantissa in two ulongs, specifically the lower 56
        // bits of each, with the most significant bits in mantissa2. There's
        // an edge case exposed by the labeled test below, where only a subnormal
        // with the highest bit set being the 57th bit will "overflow" to the
        // 57th bit in mantissa2 with the following logic, but that special case
        // is handled by an additional check in denormalizedMantissa for
        // Quadruples below.

        x2 *=  2UL<<(FloatTraits!T.MANTISSA - (ulong.sizeof - 1)*8 - 1);
        ulong mant2 = cast(ulong) x2;
        x2 -= mant2;

        x2 *=  2UL<<((ulong.sizeof - 1)*8 - 1);
        ulong mant = cast(ulong) x2;
        return Float(mant, exp, sign, mant2);
    }
    else
    {
        x2 *=  2UL<<(FloatTraits!T.MANTISSA);
        ulong mant = shiftrRound(cast(ulong)x2);
        return Float(mant, exp, sign);
    }
}

@safe pure nothrow @nogc
private Float parse(bool _ = false, T:real)(T x_) if (floatFormat!T == FloatFormat.Real80)
{
    import core.internal.traits : Unqual;
    Unqual!T x = x_;
    //HACK @@@3632@@@

    if (x == 0.0L)
    {
        real y = 1.0L/x;
        if (y == real.infinity) // -0.0
            return FloatTraits!T.ZERO;
        else
            return FloatTraits!T.NZERO; //0.0
    }

    if (x != x) //HACK: should be if (x is real.nan) and if (x is -real.nan)
    {
        auto y = cast(double)x;
        if (y is double.nan)
            return FloatTraits!T.NAN;
        else
            return FloatTraits!T.NNAN;
    }

    if (x == real.infinity) return FloatTraits!T.INF;
    if (x == -real.infinity) return FloatTraits!T.NINF;

    enum EXPONENT_MED = (2^^(FloatTraits!T.EXPONENT-1) - 1);
    uint sign = x < 0;
    x = sign ? -x : x;

    int e = binLog2(x);
    uint exp = cast(uint)(e + EXPONENT_MED);
    if (!exp)
    {
        return denormalizedMantissa(x, sign);
    }
    int pow = (FloatTraits!T.MANTISSA-1-e);
    x *=  binPow2((pow / EXPONENT_MED)*EXPONENT_MED); //To avoid overflow in 2.0L ^^ pow
    x *=  binPow2(pow % EXPONENT_MED);
    ulong mant = cast(ulong)x;
    return Float(mant, exp, sign);
}

private struct Float
{
    ulong mantissa;
    uint exponent;
    uint sign;
    ulong mantissa2;
}

private template FloatTraits(T) if (floatFormat!T == FloatFormat.Float)
{
    enum DATASIZE = 4;
    enum EXPONENT = 8;
    enum MANTISSA = 23;
    enum ZERO     = Float(0, 0, 0);
    enum NZERO    = Float(0, 0, 1);
    enum NAN      = Float(0x400000UL, 0xff, 0);
    enum NNAN     = Float(0x400000UL, 0xff, 1);
    enum INF      = Float(0, 255, 0);
    enum NINF     = Float(0, 255, 1);
}

private template FloatTraits(T) if (floatFormat!T == FloatFormat.Double)
{
    enum DATASIZE = 8;
    enum EXPONENT = 11;
    enum MANTISSA = 52;
    enum ZERO     = Float(0, 0, 0);
    enum NZERO    = Float(0, 0, 1);
    enum NAN      = Float(0x8000000000000UL, 0x7ff, 0);
    enum NNAN     = Float(0x8000000000000UL, 0x7ff, 1);
    enum INF      = Float(0, 0x7ff, 0);
    enum NINF     = Float(0, 0x7ff, 1);
}

private template FloatTraits(T) if (floatFormat!T == FloatFormat.Real80)
{
    enum DATASIZE = 10;
    enum EXPONENT = 15;
    enum MANTISSA = 64;
    enum ZERO     = Float(0, 0, 0);
    enum NZERO    = Float(0, 0, 1);
    enum NAN      = Float(0xC000000000000000UL, 0x7fff, 0);
    enum NNAN     = Float(0xC000000000000000UL, 0x7fff, 1);
    enum INF      = Float(0x8000000000000000UL, 0x7fff, 0);
    enum NINF     = Float(0x8000000000000000UL, 0x7fff, 1);
}

private template FloatTraits(T) if (floatFormat!T == FloatFormat.DoubleDouble) //Unsupported in CTFE
{
    enum DATASIZE = 16;
    enum EXPONENT = 11;
    enum MANTISSA = 106;
    enum ZERO     = Float(0, 0, 0);
    enum NZERO    = Float(0, 0, 1);
    enum NAN      = Float(0x8000000000000UL, 0x7ff, 0);
    enum NNAN     = Float(0x8000000000000UL, 0x7ff, 1);
    enum INF      = Float(0, 0x7ff, 0);
    enum NINF     = Float(0, 0x7ff, 1);
}

private template FloatTraits(T) if (floatFormat!T == FloatFormat.Quadruple)
{
    enum DATASIZE = 16;
    enum EXPONENT = 15;
    enum MANTISSA = 112;
    enum ZERO     = Float(0, 0, 0);
    enum NZERO    = Float(0, 0, 1);
    enum NAN      = Float(0, 0x7fff, 0, 0x80000000000000UL);
    enum NNAN     = Float(0, 0x7fff, 1, 0x80000000000000UL);
    enum INF      = Float(0, 0x7fff, 0);
    enum NINF     = Float(0, 0x7fff, 1);
}


@safe pure nothrow @nogc
private real binPow2(int pow)
{
    static real binPosPow2(int pow) @safe pure nothrow @nogc
    {
        assert(pow > 0);

        if (pow == 1) return 2.0L;

        int subpow = pow/2;
        real p = binPosPow2(subpow);
        real ret = p*p;

        if (pow%2)
        {
            ret *= 2.0L;
        }

        return ret;
    }

    if (!pow) return 1.0L;
    if (pow > 0) return binPosPow2(pow);
    return 1.0L/binPosPow2(-pow);
}


//Need in CTFE, because CTFE float and double expressions computed more precisely that run-time expressions.
@safe pure nothrow @nogc
private ulong shiftrRound(ulong x)
{
    return (x >> 1) + (x & 1);
}

@safe pure nothrow @nogc
private uint binLog2(T)(const T x)
{
    assert(x > 0);
    int max = 2 ^^ (FloatTraits!T.EXPONENT-1)-1;
    int min = -max+1;
    int med = (min + max) / 2;

    if (x < T.min_normal) return -max;

    while ((max - min) > 1)
    {
        if (binPow2(med) > x)
        {
            max = med;
        }
        else
        {
            min = med;
        }
        med = (min + max) / 2;
    }

    if (x < binPow2(max))
        return min;
    return max;
}

@safe pure nothrow @nogc
private Float denormalizedMantissa(T)(T x, uint sign) if (floatFormat!T == FloatFormat.Real80)
{
    x *= 2.0L^^FloatTraits!T.MANTISSA;
    auto fl = parse(x);
    uint pow = FloatTraits!T.MANTISSA - fl.exponent + 1;
    return Float(fl.mantissa >> pow, 0, sign);
}

@safe pure nothrow @nogc
private Float denormalizedMantissa(T)(T x, uint sign)
    if (floatFormat!T == FloatFormat.Float || floatFormat!T == FloatFormat.Double)
{
    x *= 2.0L^^FloatTraits!T.MANTISSA;
    auto fl = parse!true(x);
    ulong mant = fl.mantissa >> (FloatTraits!T.MANTISSA - fl.exponent);
    return Float(shiftrRound(mant), 0, sign);
}

@safe pure nothrow @nogc
private Float denormalizedMantissa(T)(T x, uint sign) if (floatFormat!T == FloatFormat.Quadruple)
{
    x *= 2.0L^^FloatTraits!T.MANTISSA;
    auto fl = parse!true(x);
    uint offset = FloatTraits!T.MANTISSA - fl.exponent + 1;
    enum mantissaSize = (ulong.sizeof - 1) * 8;

    if (offset < mantissaSize)
    {   // Create a new mantissa ulong with the trailing mantissa2 bits that
        // need to be shifted into mantissa, by shifting the needed bits left,
        // zeroing out the first byte, and then ORing it with mantissa shifted
        // right by offset.

        ulong shiftedMantissa = ((fl.mantissa2 << (mantissaSize - offset)) &
                                 0x00FFFFFFFFFFFFFFUL) | fl.mantissa >> offset;
        return Float(shiftedMantissa, 0, sign, fl.mantissa2 >> offset);
    }
    else if (offset > mantissaSize)
        return Float(fl.mantissa2 >> offset - mantissaSize , 0, sign, 0);
    else
        // Handle special case mentioned in parse() above by zeroing out the
        // 57'th bit of mantissa2, "shifting" it into mantissa, and setting the
        // first bit of mantissa2.
        return Float(fl.mantissa2 & 0x00FFFFFFFFFFFFFFUL , 0, sign, 1);
}

@system unittest
{
    static const(ubyte)[] toUbyte2(T)(T val)
    {
        return toUbyte(val).dup;
    }

    static void testNumberConvert(string v)()
    {
        enum ctval = mixin(v);

        alias TYPE = typeof(ctval);
        auto rtval = ctval;
        auto rtbytes = *cast(ubyte[TYPE.sizeof]*)&rtval;

        enum ctbytes = toUbyte2(ctval);

        // don't test pad bytes because can be anything
        enum testsize =
            (FloatTraits!TYPE.EXPONENT + FloatTraits!TYPE.MANTISSA + 1)/8;
        assert(rtbytes[0..testsize] == ctbytes[0..testsize]);
    }

    static void testConvert()
    {
        /**Test special values*/
        testNumberConvert!("-float.infinity");
        testNumberConvert!("float.infinity");
        testNumberConvert!("-0.0F");
        testNumberConvert!("0.0F");
        //testNumberConvert!("-float.nan"); //BUG @@@3632@@@
        testNumberConvert!("float.nan");

        testNumberConvert!("-double.infinity");
        testNumberConvert!("double.infinity");
        testNumberConvert!("-0.0");
        testNumberConvert!("0.0");
        //testNumberConvert!("-double.nan"); //BUG @@@3632@@@
        testNumberConvert!("double.nan");

        testNumberConvert!("-real.infinity");
        testNumberConvert!("real.infinity");
        testNumberConvert!("-0.0L");
        testNumberConvert!("0.0L");
        //testNumberConvert!("-real.nan"); //BUG @@@3632@@@
        testNumberConvert!("real.nan");

        /**
            Test min and max values values: min value has an '1' mantissa and minimal exponent,
            Max value has an all '1' bits mantissa and max exponent.
        */
        testNumberConvert!("float.min_normal");
        testNumberConvert!("float.max");

        /**Test common values*/
        testNumberConvert!("-0.17F");
        testNumberConvert!("3.14F");

        /**Test immutable and const*/
        testNumberConvert!("cast(const)3.14F");
        testNumberConvert!("cast(immutable)3.14F");

        /**The same tests for double and real*/
        testNumberConvert!("double.min_normal");
        testNumberConvert!("double.max");
        testNumberConvert!("-0.17");
        testNumberConvert!("3.14");
        testNumberConvert!("cast(const)3.14");
        testNumberConvert!("cast(immutable)3.14");

        testNumberConvert!("real.min_normal");
        testNumberConvert!("real.max");
        testNumberConvert!("-0.17L");
        testNumberConvert!("3.14L");
        testNumberConvert!("cast(const)3.14L");
        testNumberConvert!("cast(immutable)3.14L");

        /**Test denormalized values*/

        /**Max denormalized value, first bit is 1*/
        testNumberConvert!("float.min_normal/2");
        /**Min denormalized value, last bit is 1*/
        testNumberConvert!("float.min_normal/2UL^^23");

        /**Denormalized values with round*/
        testNumberConvert!("float.min_normal/19");
        testNumberConvert!("float.min_normal/17");

        testNumberConvert!("double.min_normal/2");
        testNumberConvert!("double.min_normal/2UL^^52");
        testNumberConvert!("double.min_normal/19");
        testNumberConvert!("double.min_normal/17");

        testNumberConvert!("real.min_normal/2");
        testNumberConvert!("real.min_normal/2UL^^63");
        // check subnormal storage edge case for Quadruple
        testNumberConvert!("real.min_normal/2UL^^56");
        testNumberConvert!("real.min_normal/19");
        testNumberConvert!("real.min_normal/17");

        /**True random values*/
        testNumberConvert!("-0x9.0f7ee55df77618fp-13829L");
        testNumberConvert!("0x7.36e6e2640120d28p+8797L");
        testNumberConvert!("-0x1.05df6ce4702ccf8p+15835L");
        testNumberConvert!("0x9.54bb0d88806f714p-7088L");

        testNumberConvert!("-0x9.0f7ee55df7ffp-338");
        testNumberConvert!("0x7.36e6e264012dp+879");
        testNumberConvert!("-0x1.05df6ce4708ep+658");
        testNumberConvert!("0x9.54bb0d888061p-708");

        testNumberConvert!("-0x9.0f7eefp-101F");
        testNumberConvert!("0x7.36e6ep+87F");
        testNumberConvert!("-0x1.05df6p+112F");
        testNumberConvert!("0x9.54bb0p-70F");

        /**Big overflow or underflow*/
        testNumberConvert!("cast(double)-0x9.0f7ee55df77618fp-13829L");
        testNumberConvert!("cast(double)0x7.36e6e2640120d28p+8797L");
        testNumberConvert!("cast(double)-0x1.05df6ce4702ccf8p+15835L");
        testNumberConvert!("cast(double)0x9.54bb0d88806f714p-7088L");

        testNumberConvert!("cast(float)-0x9.0f7ee55df77618fp-13829L");
        testNumberConvert!("cast(float)0x7.36e6e2640120d28p+8797L");
        testNumberConvert!("cast(float)-0x1.05df6ce4702ccf8p+15835L");
        testNumberConvert!("cast(float)0x9.54bb0d88806f714p-7088L");
    }

    testConvert();
}



private enum FloatFormat
{
    Float,
    Double,
    Real80,
    DoubleDouble,
    Quadruple
}

template floatFormat(T) if (is(T:real) || is(T:ireal))
{
    static if (T.mant_dig == 24)
        enum floatFormat = FloatFormat.Float;
    else static if (T.mant_dig == 53)
    {
        // Double precision, or real == double
        static if (T.sizeof == double.sizeof)
            enum floatFormat = FloatFormat.Double;
        // 80-bit real with rounding precision set to 53 bits.
        else static if (T.sizeof == real.sizeof)
            enum floatFormat = FloatFormat.Real80;
    }
    else static if (T.mant_dig == 64)
        enum floatFormat = FloatFormat.Real80;
    else static if (T.mant_dig == 106)
        enum floatFormat = FloatFormat.DoubleDouble;
    else static if (T.mant_dig == 113)
        enum floatFormat = FloatFormat.Quadruple;
    else
        static assert(0);

}

package template floatSize(T) if (is(T:real) || is(T:ireal))
{
    enum floatSize = FloatTraits!(T).DATASIZE;
}

//  all toUbyte functions must be evaluable at compile time
@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(return scope const T[] arr) if (T.sizeof == 1)
{
    return cast(const(ubyte)[])arr;
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(return scope const T[] arr) if (T.sizeof > 1)
{
    if (__ctfe)
    {
        ubyte[] ret = ctfe_alloc(T.sizeof * arr.length);
        static if (is(T EType == enum)) // Odd style is to avoid template instantiation in most cases.
            alias E = OriginalType!EType;
        else
            alias E = T;
        static if (is(E == struct) || is(E == union) || __traits(isStaticArray, E) || !is(typeof(arr[0] is null)))
        {
            size_t offset = 0;
            foreach (ref cur; arr)
            {
                ret[offset .. offset + T.sizeof] = toUbyte(cur)[0 .. T.sizeof];
                offset += T.sizeof;
            }
        }
        else
        {
            foreach (cur; arr)
                assert(cur is null, "Unable to compute byte representation of non-null pointer at compile time");
        }
        return ret;
    }
    else
    {
        return (cast(const(ubyte)*)(arr.ptr))[0 .. T.sizeof*arr.length];
    }
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const ref scope T val) if (__traits(isIntegral, T) && !is(T == enum) && !is(T == __vector))
{
    static if (T.sizeof == 1)
    {
        if (__ctfe)
        {
            ubyte[] result = ctfe_alloc(1);
            result[0] = cast(ubyte) val;
            return result;
        }
        else
        {
            return (cast(const(ubyte)*)(&val))[0 .. T.sizeof];
        }
    }
    else if (__ctfe)
    {
        import core.internal.traits : Unqual;
        ubyte[] tmp = ctfe_alloc(T.sizeof);
        Unqual!T val_ = val;
        for (size_t i = 0; i < T.sizeof; ++i)
        {
            size_t idx;
            version (LittleEndian) idx = i;
            else idx = T.sizeof-i-1;
            tmp[idx] = cast(ubyte)(val_&0xff);
            val_ >>= 8;
        }
        return tmp;
    }
    else
    {
        return (cast(const(ubyte)*)(&val))[0 .. T.sizeof];
    }
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const ref scope T val) if (is(T == __vector))
{
    if (!__ctfe)
        return (cast(const ubyte*) &val)[0 .. T.sizeof];
    else static if (is(typeof(val[0]) : void))
        assert(0, "Unable to compute byte representation of " ~ T.stringof ~ " at compile time.");
    else
    {
        // This code looks like it should work in CTFE but it segfaults:
        //    auto a = val.array;
        //    return toUbyte(a);
        alias E = typeof(val[0]);
        ubyte[] result = ctfe_alloc(T.sizeof);
        for (size_t i = 0, j = 0; i < T.sizeof; i += E.sizeof, ++j)
        {
            result[i .. i + E.sizeof] = toUbyte(val[j]);
        }
        return result;
    }
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const ref return scope T val) if (is(T == enum))
{
    if (__ctfe)
    {
        static if (is(T V == enum)){}
        return toUbyte(*cast(const V*) &val);
    }
    else
    {
        return (cast(const(ubyte)*)&val)[0 .. T.sizeof];
    }
}

nothrow pure @safe unittest
{
    // Issue 19008 - check toUbyte works on enums.
    enum Month : uint { jan = 1}
    Month m = Month.jan;
    const bytes = toUbyte(m);
    enum ctfe_works = (() { Month x = Month.jan; return toUbyte(x).length > 0; })();
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const ref T val) if (is(T == delegate) || is(T : V*, V) && __traits(getAliasThis, T).length == 0)
{
    if (__ctfe)
    {
        if (val !is null) assert(0, "Unable to compute byte representation of non-null pointer at compile time");
        return ctfe_alloc(T.sizeof);
    }
    else
    {
        return (cast(const(ubyte)*)&val)[0 .. T.sizeof];
    }
}

@trusted pure nothrow @nogc
const(ubyte)[] toUbyte(T)(const return ref scope T val) if (is(T == struct) || is(T == union))
{
    if (__ctfe)
    {
        ubyte[] bytes = ctfe_alloc(T.sizeof);
        foreach (key, ref cur; val.tupleof)
        {
            static if (is(typeof(cur) EType == enum)) // Odd style is to avoid template instantiation in most cases.
                alias CurType = OriginalType!EType;
            else
                alias CurType = typeof(cur);
            static if (is(CurType == struct) || is(CurType == union) || __traits(isStaticArray, CurType) || !is(typeof(cur is null)))
            {
                bytes[val.tupleof[key].offsetof .. val.tupleof[key].offsetof + CurType.sizeof] = toUbyte(cur)[];
            }
            else
            {
                assert(cur is null, "Unable to compute byte representation of non-null reference field at compile time");
                //skip, because val bytes are zeros
            }
        }
        return bytes;
    }
    else
    {
        // We're escaping a reference to `val` here because we cannot express
        // ref return + scope, it's currently seen as ref + return scope
        // https://issues.dlang.org/show_bug.cgi?id=22541
        // Once fixed, the @system lambda should be removed
        return (() @system => (cast(const(ubyte)*)&val)[0 .. T.sizeof])();
    }
}

// Strips off all `enum`s from type `T`.
// Perhaps move to core.internal.types.
private template OriginalType(T)
{
    static if (is(T EType == enum))
        alias OriginalType = .OriginalType!EType;
    else
        alias OriginalType = T;
}