summaryrefslogtreecommitdiff
path: root/libjava/interpret.cc
blob: 092f3dd5f001edba3edea347f279b9b32240153b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
// interpret.cc - Code for the interpreter

/* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation

   This file is part of libgcj.

This software is copyrighted work licensed under the terms of the
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
details.  */

/* Author: Kresten Krab Thorup <krab@gnu.org>  */

#include <config.h>
#include <platform.h>

#pragma implementation "java-interp.h"

#include <jvm.h>
#include <java-cpool.h>
#include <java-interp.h>
#include <java/lang/System.h>
#include <java/lang/String.h>
#include <java/lang/Integer.h>
#include <java/lang/Long.h>
#include <java/lang/StringBuffer.h>
#include <java/lang/Class.h>
#include <java/lang/reflect/Modifier.h>
#include <java/lang/InternalError.h>
#include <java/lang/NullPointerException.h>
#include <java/lang/ArithmeticException.h>
#include <java/lang/IncompatibleClassChangeError.h>
#include <java/lang/InstantiationException.h>
#include <java/lang/Thread.h>
#include <java-insns.h>
#include <java-signal.h>
#include <java/lang/ClassFormatError.h>
#include <execution.h>
#include <java/lang/reflect/Modifier.h>

#include <jvmti.h>
#include "jvmti-int.h"

#include <gnu/gcj/jvmti/Breakpoint.h>
#include <gnu/gcj/jvmti/BreakpointManager.h>

#ifdef INTERPRETER

// Execution engine for interpreted code.
_Jv_InterpreterEngine _Jv_soleInterpreterEngine;

#include <stdlib.h>

using namespace gcj;

static void throw_internal_error (const char *msg)
  __attribute__ ((__noreturn__));
static void throw_incompatible_class_change_error (jstring msg)
  __attribute__ ((__noreturn__));
static void throw_null_pointer_exception ()
  __attribute__ ((__noreturn__));

static void throw_class_format_error (jstring msg)
	__attribute__ ((__noreturn__));
static void throw_class_format_error (const char *msg)
	__attribute__ ((__noreturn__));

static void find_catch_location (jthrowable, jthread, jmethodID *, jlong *);

// A macro to facilitate JVMTI exception reporting
#define REPORT_EXCEPTION(Jthrowable)			\
  do {							\
    if (JVMTI_REQUESTED_EVENT (Exception))		\
      _Jv_ReportJVMTIExceptionThrow (Jthrowable);	\
  }							\
  while (0)

#ifdef DIRECT_THREADED
// Lock to ensure that methods are not compiled concurrently.
// We could use a finer-grained lock here, however it is not safe to use
// the Class monitor as user code in another thread could hold it.
static _Jv_Mutex_t compile_mutex;

void
_Jv_InitInterpreter()
{
  _Jv_MutexInit (&compile_mutex);
}
#else
void _Jv_InitInterpreter() {}
#endif

// The breakpoint instruction. For the direct threaded case,
// _Jv_InterpMethod::compile will initialize breakpoint_insn
// the first time it is called.
#ifdef DIRECT_THREADED
insn_slot _Jv_InterpMethod::bp_insn_slot;
pc_t _Jv_InterpMethod::breakpoint_insn = NULL;
#else
unsigned char _Jv_InterpMethod::bp_insn_opcode
  = static_cast<unsigned char> (op_breakpoint);
pc_t _Jv_InterpMethod::breakpoint_insn = &_Jv_InterpMethod::bp_insn_opcode;
#endif

extern "C" double __ieee754_fmod (double,double);

static inline void dupx (_Jv_word *sp, int n, int x)
{
  // first "slide" n+x elements n to the right
  int top = n-1;
  for (int i = 0; i < n+x; i++)
    {
      sp[(top-i)] = sp[(top-i)-n];
    }
  
  // next, copy the n top elements, n+x down
  for (int i = 0; i < n; i++)
    {
      sp[top-(n+x)-i] = sp[top-i];
    }
}

// Used to convert from floating types to integral types.
template<typename TO, typename FROM>
static inline TO
convert (FROM val, TO min, TO max)
{
  TO ret;
  if (val >= (FROM) max)
    ret = max;
  else if (val <= (FROM) min)
    ret = min;
  else if (val != val)
    ret = 0;
  else
    ret = (TO) val;
  return ret;
}

#define PUSHA(V)  (sp++)->o = (V)
#define PUSHI(V)  (sp++)->i = (V)
#define PUSHF(V)  (sp++)->f = (V)
#if SIZEOF_VOID_P == 8
# define PUSHL(V)   (sp->l = (V), sp += 2)
# define PUSHD(V)   (sp->d = (V), sp += 2)
#else
# define PUSHL(V)  do { _Jv_word2 w2; w2.l=(V); \
                        (sp++)->ia[0] = w2.ia[0]; \
                        (sp++)->ia[0] = w2.ia[1]; } while (0)
# define PUSHD(V)  do { _Jv_word2 w2; w2.d=(V); \
                        (sp++)->ia[0] = w2.ia[0]; \
                        (sp++)->ia[0] = w2.ia[1]; } while (0)
#endif

#define POPA()    ((--sp)->o)
#define POPI()    ((jint) (--sp)->i) // cast since it may be promoted
#define POPF()    ((jfloat) (--sp)->f)
#if SIZEOF_VOID_P == 8
# define POPL()	  (sp -= 2, (jlong) sp->l)
# define POPD()	  (sp -= 2, (jdouble) sp->d)
#else
# define POPL()    ({ _Jv_word2 w2; \
                     w2.ia[1] = (--sp)->ia[0]; \
                     w2.ia[0] = (--sp)->ia[0]; w2.l; })
# define POPD()    ({ _Jv_word2 w2; \
                     w2.ia[1] = (--sp)->ia[0]; \
                     w2.ia[0] = (--sp)->ia[0]; w2.d; })
#endif

#define LOADA(I)  (sp++)->o = locals[I].o
#define LOADI(I)  (sp++)->i = locals[I].i
#define LOADF(I)  (sp++)->f = locals[I].f
#if SIZEOF_VOID_P == 8
# define LOADL(I)  (sp->l = locals[I].l, sp += 2)
# define LOADD(I)  (sp->d = locals[I].d, sp += 2)
#else
# define LOADL(I)  do { jint __idx = (I); \
    			(sp++)->ia[0] = locals[__idx].ia[0]; \
    			(sp++)->ia[0] = locals[__idx+1].ia[0]; \
 		   } while (0)
# define LOADD(I)  LOADL(I)
#endif

#define STOREA(I)			\
  do					\
    {					\
      jint __idx = (I);			\
      DEBUG_LOCALS_INSN (__idx, 'o');	\
      locals[__idx].o = (--sp)->o;	\
    }					\
  while (0)
#define STOREI(I)		       	\
  do					\
    {					\
      jint __idx = (I);			\
      DEBUG_LOCALS_INSN (__idx, 'i');	\
      locals[__idx].i = (--sp)->i;	\
  } while (0)
#define STOREF(I)			\
  do					\
    {					\
      jint __idx = (I);			\
      DEBUG_LOCALS_INSN (__idx, 'f');	\
      locals[__idx].f = (--sp)->f;	\
    }					\
  while (0)
#if SIZEOF_VOID_P == 8
# define STOREL(I) \
  do						\
    {						\
      jint __idx = (I);				\
      DEBUG_LOCALS_INSN (__idx, 'l');		\
      DEBUG_LOCALS_INSN (__idx + 1, 'x');	\
      (sp -= 2, locals[__idx].l = sp->l);	\
    }						\
  while (0)
# define STORED(I)				\
  do						\
    {						\
      jint __idx = (I);				\
      DEBUG_LOCALS_INSN (__idx, 'd');		\
      DEBUG_LOCALS_INSN (__idx + 1, 'x');	\
      (sp -= 2, locals[__idx].d = sp->d);	\
    }						\
  while (0)

#else
# define STOREL(I)				\
  do						\
    {						\
      jint __idx = (I);				\
      DEBUG_LOCALS_INSN (__idx, 'l');		\
      DEBUG_LOCALS_INSN (__idx + 1, 'x');	\
      locals[__idx + 1].ia[0] = (--sp)->ia[0];	\
      locals[__idx].ia[0] = (--sp)->ia[0];	\
    }						\
  while (0)
# define STORED(I)				\
  do {						\
    jint __idx = (I);				\
    DEBUG_LOCALS_INSN (__idx, 'd');		\
    DEBUG_LOCALS_INSN (__idx + 1, 'x');		\
    locals[__idx + 1].ia[0] = (--sp)->ia[0];	\
    locals[__idx].ia[0] = (--sp)->ia[0];	\
  } while (0)
#endif

#define PEEKI(I)  (locals+(I))->i
#define PEEKA(I)  (locals+(I))->o

#define POKEI(I,V)			\
  do					\
    {					\
      jint __idx = (I);			\
      DEBUG_LOCALS_INSN (__idx, 'i');	\
      ((locals + __idx)->i = (V));	\
    }					\
  while (0)


#define BINOPI(OP) { \
   jint value2 = POPI(); \
   jint value1 = POPI(); \
   PUSHI(value1 OP value2); \
}

#define BINOPF(OP) { \
   jfloat value2 = POPF(); \
   jfloat value1 = POPF(); \
   PUSHF(value1 OP value2); \
}

#define BINOPL(OP) { \
   jlong value2 = POPL(); \
   jlong value1 = POPL(); \
   PUSHL(value1 OP value2); \
}

#define BINOPD(OP) { \
   jdouble value2 = POPD(); \
   jdouble value1 = POPD(); \
   PUSHD(value1 OP value2); \
}

static inline jint
get1s (unsigned char* loc)
{
  return *(signed char*)loc;
}

static inline jint
get1u (unsigned char* loc)
{
  return *loc;
}

static inline jint
get2s(unsigned char* loc)
{
  return (((jint)*(signed char*)loc) << 8) | ((jint)*(loc+1));
}

static inline jint
get2u (unsigned char* loc)
{
  return (((jint)(*loc)) << 8) | ((jint)*(loc+1));
}

static jint
get4 (unsigned char* loc)
{
  return (((jint)(loc[0])) << 24) 
       | (((jint)(loc[1])) << 16) 
       | (((jint)(loc[2])) << 8) 
       | (((jint)(loc[3])) << 0);
}

#define SAVE_PC() frame_desc.pc = pc

// We used to define this conditionally, depending on HANDLE_SEGV.
// However, that runs into a problem if a chunk in low memory is
// mapped and we try to look at a field near the end of a large
// object.  See PR 26858 for details.  It is, most likely, relatively
// inexpensive to simply do this check always.
#define NULLCHECK(X) \
  do { SAVE_PC(); if ((X)==NULL) throw_null_pointer_exception (); } while (0)

// Note that we can still conditionally define NULLARRAYCHECK, since
// we know that all uses of an array will first reference the length
// field, which is first -- and thus will trigger a SEGV.
#ifdef HANDLE_SEGV
#define NULLARRAYCHECK(X) SAVE_PC()
#else
#define NULLARRAYCHECK(X)					\
  do								\
    {								\
      SAVE_PC();						\
      if ((X) == NULL) { throw_null_pointer_exception (); }	\
    } while (0)
#endif

#define ARRAYBOUNDSCHECK(array, index)				\
  do								\
    {								\
      if (((unsigned) index) >= (unsigned) (array->length))	\
	_Jv_ThrowBadArrayIndex (index);				\
    } while (0)

void
_Jv_InterpMethod::run_normal (ffi_cif *,
			      void *ret,
			      ffi_raw *args,
			      void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
  run (ret, args, _this);
}

void
_Jv_InterpMethod::run_normal_debug (ffi_cif *,
				    void *ret,
				    ffi_raw *args,
				    void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
  run_debug (ret, args, _this);
}

void
_Jv_InterpMethod::run_synch_object (ffi_cif *,
				    void *ret,
				    ffi_raw *args,
				    void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;

  jobject rcv = (jobject) args[0].ptr;
  JvSynchronize mutex (rcv);

  run (ret, args, _this);
}

void
_Jv_InterpMethod::run_synch_object_debug (ffi_cif *,
					  void *ret,
					  ffi_raw *args,
					  void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;

  jobject rcv = (jobject) args[0].ptr;
  JvSynchronize mutex (rcv);

  run_debug (ret, args, _this);
}

void
_Jv_InterpMethod::run_class (ffi_cif *,
			     void *ret,
			     ffi_raw *args,
			     void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
  _Jv_InitClass (_this->defining_class);
  run (ret, args, _this);
}

void
_Jv_InterpMethod::run_class_debug (ffi_cif *,
				   void *ret,
				   ffi_raw *args,
				   void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
  _Jv_InitClass (_this->defining_class);
  run_debug (ret, args, _this);
}

void
_Jv_InterpMethod::run_synch_class (ffi_cif *,
				   void *ret,
				   ffi_raw *args,
				   void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;

  jclass sync = _this->defining_class;
  _Jv_InitClass (sync);
  JvSynchronize mutex (sync);

  run (ret, args, _this);
}

void
_Jv_InterpMethod::run_synch_class_debug (ffi_cif *,
					 void *ret,
					 ffi_raw *args,
					 void *__this)
{
  _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;

  jclass sync = _this->defining_class;
  _Jv_InitClass (sync);
  JvSynchronize mutex (sync);

  run_debug (ret, args, _this);
}

#ifdef DIRECT_THREADED
// "Compile" a method by turning it from bytecode to direct-threaded
// code.
void
_Jv_InterpMethod::compile (const void * const *insn_targets)
{
  insn_slot *insns = NULL;
  int next = 0;
  unsigned char *codestart = bytecode ();
  unsigned char *end = codestart + code_length;
  _Jv_word *pool_data = defining_class->constants.data;

#define SET_ONE(Field, Value)						      \
  do									      \
    {									      \
      if (first_pass)							      \
	++next;								      \
      else								      \
	insns[next++].Field = Value;					      \
    }									      \
  while (0)

#define SET_INSN(Value) SET_ONE (insn, (void *) Value)
#define SET_INT(Value) SET_ONE (int_val, Value)
#define SET_DATUM(Value) SET_ONE (datum, Value)

  // Map from bytecode PC to slot in INSNS.
  int *pc_mapping = (int *) __builtin_alloca (sizeof (int) * code_length);
  for (int i = 0; i < code_length; ++i)
    pc_mapping[i] = -1;

  for (int i = 0; i < 2; ++i)
    {
      jboolean first_pass = i == 0;

      if (! first_pass)
	{
	  insns = (insn_slot *) _Jv_AllocBytes (sizeof (insn_slot) * next);
	  number_insn_slots = next;
	  next = 0;
	}

      unsigned char *pc = codestart;
      while (pc < end)
	{
	  int base_pc_val = pc - codestart;
	  if (first_pass)
	    pc_mapping[base_pc_val] = next;

	  java_opcode opcode = (java_opcode) *pc++;
	  // Just elide NOPs.
	  if (opcode == op_nop)
	    continue;
	  SET_INSN (insn_targets[opcode]);

	  switch (opcode)
	    {
	    case op_nop:
	    case op_aconst_null:
	    case op_iconst_m1:
	    case op_iconst_0:
	    case op_iconst_1:
	    case op_iconst_2:
	    case op_iconst_3:
	    case op_iconst_4:
	    case op_iconst_5:
	    case op_lconst_0:
	    case op_lconst_1:
	    case op_fconst_0:
	    case op_fconst_1:
	    case op_fconst_2:
	    case op_dconst_0:
	    case op_dconst_1:
	    case op_iload_0:
	    case op_iload_1:
	    case op_iload_2:
	    case op_iload_3:
	    case op_lload_0:
	    case op_lload_1:
	    case op_lload_2:
	    case op_lload_3:
	    case op_fload_0:
	    case op_fload_1:
	    case op_fload_2:
	    case op_fload_3:
	    case op_dload_0:
	    case op_dload_1:
	    case op_dload_2:
	    case op_dload_3:
	    case op_aload_0:
	    case op_aload_1:
	    case op_aload_2:
	    case op_aload_3:
	    case op_iaload:
	    case op_laload:
	    case op_faload:
	    case op_daload:
	    case op_aaload:
	    case op_baload:
	    case op_caload:
	    case op_saload:
	    case op_istore_0:
	    case op_istore_1:
	    case op_istore_2:
	    case op_istore_3:
	    case op_lstore_0:
	    case op_lstore_1:
	    case op_lstore_2:
	    case op_lstore_3:
	    case op_fstore_0:
	    case op_fstore_1:
	    case op_fstore_2:
	    case op_fstore_3:
	    case op_dstore_0:
	    case op_dstore_1:
	    case op_dstore_2:
	    case op_dstore_3:
	    case op_astore_0:
	    case op_astore_1:
	    case op_astore_2:
	    case op_astore_3:
	    case op_iastore:
	    case op_lastore:
	    case op_fastore:
	    case op_dastore:
	    case op_aastore:
	    case op_bastore:
	    case op_castore:
	    case op_sastore:
	    case op_pop:
	    case op_pop2:
	    case op_dup:
	    case op_dup_x1:
	    case op_dup_x2:
	    case op_dup2:
	    case op_dup2_x1:
	    case op_dup2_x2:
	    case op_swap:
	    case op_iadd:
	    case op_isub:
	    case op_imul:
	    case op_idiv:
	    case op_irem:
	    case op_ishl:
	    case op_ishr:
	    case op_iushr:
	    case op_iand:
	    case op_ior:
	    case op_ixor:
	    case op_ladd:
	    case op_lsub:
	    case op_lmul:
	    case op_ldiv:
	    case op_lrem:
	    case op_lshl:
	    case op_lshr:
	    case op_lushr:
	    case op_land:
	    case op_lor:
	    case op_lxor:
	    case op_fadd:
	    case op_fsub:
	    case op_fmul:
	    case op_fdiv:
	    case op_frem:
	    case op_dadd:
	    case op_dsub:
	    case op_dmul:
	    case op_ddiv:
	    case op_drem:
	    case op_ineg:
	    case op_i2b:
	    case op_i2c:
	    case op_i2s:
	    case op_lneg:
	    case op_fneg:
	    case op_dneg:
	    case op_i2l:
	    case op_i2f:
	    case op_i2d:
	    case op_l2i:
	    case op_l2f:
	    case op_l2d:
	    case op_f2i:
	    case op_f2l:
	    case op_f2d:
	    case op_d2i:
	    case op_d2l:
	    case op_d2f:
	    case op_lcmp:
	    case op_fcmpl:
	    case op_fcmpg:
	    case op_dcmpl:
	    case op_dcmpg:
	    case op_monitorenter:
	    case op_monitorexit:
	    case op_ireturn:
	    case op_lreturn:
	    case op_freturn:
	    case op_dreturn:
	    case op_areturn:
	    case op_return:
	    case op_athrow:
	    case op_arraylength:
	      // No argument, nothing else to do.
	      break;

	    case op_bipush:
	      SET_INT (get1s (pc));
	      ++pc;
	      break;

	    case op_ldc:
	      {
		int index = get1u (pc);
		++pc;
		// For an unresolved class we want to delay resolution
		// until execution.
		if (defining_class->constants.tags[index] == JV_CONSTANT_Class)
		  {
		    --next;
		    SET_INSN (insn_targets[int (op_jsr_w) + 1]);
		    SET_INT (index);
		  }
		else
		  SET_DATUM (pool_data[index].o);
	      }
	      break;

	    case op_ret:
	    case op_iload:
	    case op_lload:
	    case op_fload:
	    case op_dload:
	    case op_aload:
	    case op_istore:
	    case op_lstore:
	    case op_fstore:
	    case op_dstore:
	    case op_astore:
	    case op_newarray:
	      SET_INT (get1u (pc));
	      ++pc;
	      break;

	    case op_iinc:
	      SET_INT (get1u (pc));
	      SET_INT (get1s (pc + 1));
	      pc += 2;
	      break;

	    case op_ldc_w:
	      {
		int index = get2u (pc);
		pc += 2;
		// For an unresolved class we want to delay resolution
		// until execution.
		if (defining_class->constants.tags[index] == JV_CONSTANT_Class)
		  {
		    --next;
		    SET_INSN (insn_targets[int (op_jsr_w) + 1]);
		    SET_INT (index);
		  }
		else
		  SET_DATUM (pool_data[index].o);
	      }
	      break;

	    case op_ldc2_w:
	      {
		int index = get2u (pc);
		pc += 2;
		SET_DATUM (&pool_data[index]);
	      }
	      break;

	    case op_sipush:
	      SET_INT (get2s (pc));
	      pc += 2;
	      break;

	    case op_new:
	    case op_getstatic:
	    case op_getfield:
	    case op_putfield:
	    case op_putstatic:
	    case op_anewarray:
	    case op_instanceof:
	    case op_checkcast:
	    case op_invokespecial:
	    case op_invokestatic:
	    case op_invokevirtual:
	      SET_INT (get2u (pc));
	      pc += 2;
	      break;

	    case op_multianewarray:
	      SET_INT (get2u (pc));
	      SET_INT (get1u (pc + 2));
	      pc += 3;
	      break;

	    case op_jsr:
	    case op_ifeq:
	    case op_ifne:
	    case op_iflt:
	    case op_ifge:
	    case op_ifgt:
	    case op_ifle:
	    case op_if_icmpeq:
	    case op_if_icmpne:
	    case op_if_icmplt:
	    case op_if_icmpge:
	    case op_if_icmpgt:
	    case op_if_icmple:
	    case op_if_acmpeq:
	    case op_if_acmpne:
	    case op_ifnull:
	    case op_ifnonnull:
	    case op_goto:
	      {
		int offset = get2s (pc);
		pc += 2;

		int new_pc = base_pc_val + offset;

		bool orig_was_goto = opcode == op_goto;

		// Thread jumps.  We limit the loop count; this lets
		// us avoid infinite loops if the bytecode contains
		// such.  `10' is arbitrary.
		int count = 10;
		while (codestart[new_pc] == op_goto && count-- > 0)
		  new_pc += get2s (&codestart[new_pc + 1]);

		// If the jump takes us to a `return' instruction and
		// the original branch was an unconditional goto, then
		// we hoist the return.
		opcode = (java_opcode) codestart[new_pc];
		if (orig_was_goto
		    && (opcode == op_ireturn || opcode == op_lreturn
			|| opcode == op_freturn || opcode == op_dreturn
			|| opcode == op_areturn || opcode == op_return))
		  {
		    --next;
		    SET_INSN (insn_targets[opcode]);
		  }
		else
		  SET_DATUM (&insns[pc_mapping[new_pc]]);
	      }
	      break;

	    case op_tableswitch:
	      {
		while ((pc - codestart) % 4 != 0)
		  ++pc;

		jint def = get4 (pc);
		SET_DATUM (&insns[pc_mapping[base_pc_val + def]]);
		pc += 4;

		int low = get4 (pc);
		SET_INT (low);
		pc += 4;
		int high = get4 (pc);
		SET_INT (high);
		pc += 4;

		for (int i = low; i <= high; ++i)
		  {
		    SET_DATUM (&insns[pc_mapping[base_pc_val + get4 (pc)]]);
		    pc += 4;
		  }
	      }
	      break;

	    case op_lookupswitch:
	      {
		while ((pc - codestart) % 4 != 0)
		  ++pc;

		jint def = get4 (pc);
		SET_DATUM (&insns[pc_mapping[base_pc_val + def]]);
		pc += 4;

		jint npairs = get4 (pc);
		pc += 4;
		SET_INT (npairs);

		while (npairs-- > 0)
		  {
		    jint match = get4 (pc);
		    jint offset = get4 (pc + 4);
		    SET_INT (match);
		    SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]);
		    pc += 8;
		  }
	      }
	      break;

	    case op_invokeinterface:
	      {
		jint index = get2u (pc);
		pc += 2;
		// We ignore the next two bytes.
		pc += 2;
		SET_INT (index);
	      }
	      break;

	    case op_wide:
	      {
		opcode = (java_opcode) get1u (pc);
		pc += 1;
		jint val = get2u (pc);
		pc += 2;

		// We implement narrow and wide instructions using the
		// same code in the interpreter.  So we rewrite the
		// instruction slot here.
		if (! first_pass)
		  insns[next - 1].insn = (void *) insn_targets[opcode];
		SET_INT (val);

		if (opcode == op_iinc)
		  {
		    SET_INT (get2s (pc));
		    pc += 2;
		  }
	      }
	      break;

	    case op_jsr_w:
	    case op_goto_w:
	      {
		jint offset = get4 (pc);
		pc += 4;
		SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]);
	      }
	      break;

	    // Some "can't happen" cases that we include for
	    // error-checking purposes.
	    case op_putfield_1:
	    case op_putfield_2:
	    case op_putfield_4:
	    case op_putfield_8:
	    case op_putfield_a:
	    case op_putstatic_1:
	    case op_putstatic_2:
	    case op_putstatic_4:
	    case op_putstatic_8:
	    case op_putstatic_a:
	    case op_getfield_1:
	    case op_getfield_2s:
	    case op_getfield_2u:
	    case op_getfield_4:
	    case op_getfield_8:
	    case op_getfield_a:
	    case op_getstatic_1:
	    case op_getstatic_2s:
	    case op_getstatic_2u:
	    case op_getstatic_4:
	    case op_getstatic_8:
	    case op_getstatic_a:
	    case op_breakpoint:
	    default:
	      // Fail somehow.
	      break;
	    }
	}
    }

  // Now update exceptions.
  _Jv_InterpException *exc = exceptions ();
  for (int i = 0; i < exc_count; ++i)
    {
      exc[i].start_pc.p = &insns[pc_mapping[exc[i].start_pc.i]];
      exc[i].end_pc.p = &insns[pc_mapping[exc[i].end_pc.i]];
      exc[i].handler_pc.p = &insns[pc_mapping[exc[i].handler_pc.i]];
      // FIXME: resolve_pool_entry can throw - we shouldn't be doing this
      // during compilation.
      jclass handler
	= (_Jv_Linker::resolve_pool_entry (defining_class,
					     exc[i].handler_type.i)).clazz;
      exc[i].handler_type.p = handler;
    }

  // Translate entries in the LineNumberTable from bytecode PC's to direct
  // threaded interpreter instruction values.
  for (int i = 0; i < line_table_len; i++)
    {
      int byte_pc = line_table[i].bytecode_pc;
      // It isn't worth throwing an exception if this table is
      // corrupted, but at the same time we don't want a crash.
      if (byte_pc < 0 || byte_pc >= code_length)
	byte_pc = 0;
      line_table[i].pc = &insns[pc_mapping[byte_pc]];
    }  

  prepared = insns;

  // Now remap the variable table for this method.
  for (int i = 0; i < local_var_table_len; ++i)
    {
      int start_byte = local_var_table[i].bytecode_pc;
      if (start_byte < 0 || start_byte >= code_length)
	start_byte = 0;
      jlocation start =  pc_mapping[start_byte];

      int end_byte = start_byte + local_var_table[i].length;
      if (end_byte < 0)
	end_byte = 0;
      jlocation end = ((end_byte >= code_length)
		       ? number_insn_slots
		       : pc_mapping[end_byte]);

      local_var_table[i].pc = &insns[start];
      local_var_table[i].length = end - start + 1;
    }
  
  if (breakpoint_insn == NULL)
    {
      bp_insn_slot.insn = const_cast<void *> (insn_targets[op_breakpoint]);
      breakpoint_insn = &bp_insn_slot;
    }
}
#endif /* DIRECT_THREADED */

/* Run the given method.
   When args is NULL, don't run anything -- just compile it. */
void
_Jv_InterpMethod::run (void *retp, ffi_raw *args, _Jv_InterpMethod *meth)
{
#undef DEBUG
#undef DEBUG_LOCALS_INSN
#define DEBUG_LOCALS_INSN(s, t) do {} while (0)

#include "interpret-run.cc"
}

void
_Jv_InterpMethod::run_debug (void *retp, ffi_raw *args, _Jv_InterpMethod *meth)
{
#define DEBUG
#undef DEBUG_LOCALS_INSN
#define DEBUG_LOCALS_INSN(s, t)  \
  do    \
    {   \
      frame_desc.locals_type[s] = t;  \
    }   \
  while (0)

#include "interpret-run.cc"
}

static void
throw_internal_error (const char *msg)
{
  jthrowable t = new java::lang::InternalError (JvNewStringLatin1 (msg));
  REPORT_EXCEPTION (t);
  throw t;
}

static void 
throw_incompatible_class_change_error (jstring msg)
{
  jthrowable t = new java::lang::IncompatibleClassChangeError (msg);
  REPORT_EXCEPTION (t);
  throw t;
}

static void 
throw_null_pointer_exception ()
{
  jthrowable t = new java::lang::NullPointerException;
  REPORT_EXCEPTION (t);
  throw t;
}

/* Look up source code line number for given bytecode (or direct threaded
   interpreter) PC. */
int
_Jv_InterpMethod::get_source_line(pc_t mpc)
{
  int line = line_table_len > 0 ? line_table[0].line : -1;
  for (int i = 1; i < line_table_len; i++)
    if (line_table[i].pc > mpc)
      break;
    else
      line = line_table[i].line;

  return line;
}

/** Do static initialization for fields with a constant initializer */
void
_Jv_InitField (jobject obj, jclass klass, int index)
{
  using namespace java::lang::reflect;

  if (obj != 0 && klass == 0)
    klass = obj->getClass ();

  if (!_Jv_IsInterpretedClass (klass))
    return;

  _Jv_InterpClass *iclass = (_Jv_InterpClass*)klass->aux_info;

  _Jv_Field * field = (&klass->fields[0]) + index;

  if (index > klass->field_count)
    throw_internal_error ("field out of range");

  int init = iclass->field_initializers[index];
  if (init == 0)
    return;

  _Jv_Constants *pool = &klass->constants;
  int tag = pool->tags[init];

  if (! field->isResolved ())
    throw_internal_error ("initializing unresolved field");

  if (obj==0 && ((field->flags & Modifier::STATIC) == 0))
    throw_internal_error ("initializing non-static field with no object");

  void *addr = 0;

  if ((field->flags & Modifier::STATIC) != 0)
    addr = (void*) field->u.addr;
  else
    addr = (void*) (((char*)obj) + field->u.boffset);

  switch (tag)
    {
    case JV_CONSTANT_String:
      {
	jstring str;
	str = _Jv_NewStringUtf8Const (pool->data[init].utf8);
	pool->data[init].string = str;
	pool->tags[init] = JV_CONSTANT_ResolvedString;
      }
      /* fall through */

    case JV_CONSTANT_ResolvedString:
      if (! (field->type == &java::lang::String::class$
 	     || field->type == &java::lang::Class::class$))
	throw_class_format_error ("string initialiser to non-string field");

      *(jstring*)addr = pool->data[init].string;
      break;

    case JV_CONSTANT_Integer:
      {
	int value = pool->data[init].i;

	if (field->type == JvPrimClass (boolean))
	  *(jboolean*)addr = (jboolean)value;
	
	else if (field->type == JvPrimClass (byte))
	  *(jbyte*)addr = (jbyte)value;
	
	else if (field->type == JvPrimClass (char))
	  *(jchar*)addr = (jchar)value;

	else if (field->type == JvPrimClass (short))
	  *(jshort*)addr = (jshort)value;
	
	else if (field->type == JvPrimClass (int))
	  *(jint*)addr = (jint)value;

	else
	  throw_class_format_error ("erroneous field initializer");
      }  
      break;

    case JV_CONSTANT_Long:
      if (field->type != JvPrimClass (long))
	throw_class_format_error ("erroneous field initializer");

      *(jlong*)addr = _Jv_loadLong (&pool->data[init]);
      break;

    case JV_CONSTANT_Float:
      if (field->type != JvPrimClass (float))
	throw_class_format_error ("erroneous field initializer");

      *(jfloat*)addr = pool->data[init].f;
      break;

    case JV_CONSTANT_Double:
      if (field->type != JvPrimClass (double))
	throw_class_format_error ("erroneous field initializer");

      *(jdouble*)addr = _Jv_loadDouble (&pool->data[init]);
      break;

    default:
      throw_class_format_error ("erroneous field initializer");
    }
}

inline static unsigned char*
skip_one_type (unsigned char* ptr)
{
  int ch = *ptr++;

  while (ch == '[')
    { 
      ch = *ptr++;
    }
  
  if (ch == 'L')
    {
      do { ch = *ptr++; } while (ch != ';');
    }

  return ptr;
}

static ffi_type*
get_ffi_type_from_signature (unsigned char* ptr)
{
  switch (*ptr) 
    {
    case 'L':
    case '[':
      return &ffi_type_pointer;
      break;

    case 'Z':
      // On some platforms a bool is a byte, on others an int.
      if (sizeof (jboolean) == sizeof (jbyte))
	return &ffi_type_sint8;
      else
	{
	  JvAssert (sizeof (jbyte) == sizeof (jint));
	  return &ffi_type_sint32;
	}
      break;

    case 'B':
      return &ffi_type_sint8;
      break;
      
    case 'C':
      return &ffi_type_uint16;
      break;
	  
    case 'S': 
      return &ffi_type_sint16;
      break;
	  
    case 'I':
      return &ffi_type_sint32;
      break;
	  
    case 'J':
      return &ffi_type_sint64;
      break;
	  
    case 'F':
      return &ffi_type_float;
      break;
	  
    case 'D':
      return &ffi_type_double;
      break;

    case 'V':
      return &ffi_type_void;
      break;
    }

  throw_internal_error ("unknown type in signature");
}

/* this function yields the number of actual arguments, that is, if the
 * function is non-static, then one is added to the number of elements
 * found in the signature */

int 
_Jv_count_arguments (_Jv_Utf8Const *signature,
		     jboolean staticp)
{
  unsigned char *ptr = (unsigned char*) signature->chars();
  int arg_count = staticp ? 0 : 1;

  /* first, count number of arguments */

  // skip '('
  ptr++;

  // count args
  while (*ptr != ')')
    {
      ptr = skip_one_type (ptr);
      arg_count += 1;
    }

  return arg_count;
}

/* This beast will build a cif, given the signature.  Memory for
 * the cif itself and for the argument types must be allocated by the
 * caller.
 */

int 
_Jv_init_cif (_Jv_Utf8Const* signature,
	      int arg_count,
	      jboolean staticp,
	      ffi_cif *cif,
	      ffi_type **arg_types,
	      ffi_type **rtype_p)
{
  unsigned char *ptr = (unsigned char*) signature->chars();

  int arg_index = 0;		// arg number
  int item_count = 0;		// stack-item count

  // setup receiver
  if (!staticp)
    {
      arg_types[arg_index++] = &ffi_type_pointer;
      item_count += 1;
    }

  // skip '('
  ptr++;

  // assign arg types
  while (*ptr != ')')
    {
      arg_types[arg_index++] = get_ffi_type_from_signature (ptr);

      if (*ptr == 'J' || *ptr == 'D')
	item_count += 2;
      else
	item_count += 1;

      ptr = skip_one_type (ptr);
    }

  // skip ')'
  ptr++;
  ffi_type *rtype = get_ffi_type_from_signature (ptr);

  ptr = skip_one_type (ptr);
  if (ptr != (unsigned char*)signature->chars() + signature->len())
    throw_internal_error ("did not find end of signature");

  if (ffi_prep_cif (cif, FFI_DEFAULT_ABI,
		    arg_count, rtype, arg_types) != FFI_OK)
    throw_internal_error ("ffi_prep_cif failed");

  if (rtype_p != NULL)
    *rtype_p = rtype;

  return item_count;
}

#if FFI_NATIVE_RAW_API
#   define FFI_PREP_RAW_CLOSURE ffi_prep_raw_closure_loc
#   define FFI_RAW_SIZE ffi_raw_size
#else
#   define FFI_PREP_RAW_CLOSURE ffi_prep_java_raw_closure_loc
#   define FFI_RAW_SIZE ffi_java_raw_size
#endif

/* we put this one here, and not in interpret.cc because it
 * calls the utility routines _Jv_count_arguments 
 * which are static to this module.  The following struct defines the
 * layout we use for the stubs, it's only used in the ncode method. */

typedef struct {
  ffi_raw_closure  closure;
  _Jv_ClosureList list;
  ffi_cif   cif;
  ffi_type *arg_types[0];
} ncode_closure;

typedef void (*ffi_closure_fun) (ffi_cif*,void*,ffi_raw*,void*);

void *
_Jv_InterpMethod::ncode (jclass klass)
{
  using namespace java::lang::reflect;

  if (self->ncode != 0)
    return self->ncode;

  jboolean staticp = (self->accflags & Modifier::STATIC) != 0;
  int arg_count = _Jv_count_arguments (self->signature, staticp);

  void *code;
  ncode_closure *closure =
    (ncode_closure*)ffi_closure_alloc (sizeof (ncode_closure)
				       + arg_count * sizeof (ffi_type*),
				       &code);
  closure->list.registerClosure (klass, closure);

  _Jv_init_cif (self->signature,
		arg_count,
		staticp,
		&closure->cif,
		&closure->arg_types[0],
		NULL);

  ffi_closure_fun fun;

  args_raw_size = FFI_RAW_SIZE (&closure->cif);

  JvAssert ((self->accflags & Modifier::NATIVE) == 0);

  if ((self->accflags & Modifier::SYNCHRONIZED) != 0)
    {
      if (staticp)
        {
	  if (JVMTI::enabled)
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_class_debug;
	  else
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_class;
        }
      else
        {
	  if (JVMTI::enabled)
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_object_debug;
	  else
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_object;
        }
    }
  else
    {
      if (staticp)
        {
	  if (JVMTI::enabled)
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_class_debug;
	  else
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_class;
        }
      else
        {
	  if (JVMTI::enabled)
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_normal_debug;
	  else
	    fun = (ffi_closure_fun)&_Jv_InterpMethod::run_normal;
        }
    }

  FFI_PREP_RAW_CLOSURE (&closure->closure,
		        &closure->cif, 
		        fun,
		        (void*)this,
			code);

  self->ncode = code;

  return self->ncode;
}

/* Find the index of the given insn in the array of insn slots
   for this method. Returns -1 if not found. */
jlong
_Jv_InterpMethod::insn_index (pc_t pc)
{
  jlong left = 0;
#ifdef DIRECT_THREADED
  jlong right = number_insn_slots;
  pc_t insns = prepared;
#else
  jlong right = code_length;
  pc_t insns = bytecode ();
#endif

  while (right >= 0)
    {
      jlong mid = (left + right) / 2;
      if (&insns[mid] == pc)
	return mid;

      if (pc < &insns[mid])
	right = mid - 1;
      else
        left = mid + 1;
    }

  return -1;
}

// Method to check if an exception is caught at some location in a method
// (meth).  Returns true if this method (meth) contains a catch block for the
// exception (ex). False otherwise.  If there is a catch block, it sets the pc
// to the location of the beginning of the catch block.
jboolean
_Jv_InterpMethod::check_handler (pc_t *pc, _Jv_InterpMethod *meth,
                                java::lang::Throwable *ex)
{
#ifdef DIRECT_THREADED
  void *logical_pc = (void *) ((insn_slot *) (*pc) - 1);
#else
  int logical_pc = (*pc) - 1 - meth->bytecode ();
#endif
  _Jv_InterpException *exc = meth->exceptions ();
  jclass exc_class = ex->getClass ();

  for (int i = 0; i < meth->exc_count; i++)
    {
      if (PCVAL (exc[i].start_pc) <= logical_pc
          && logical_pc < PCVAL (exc[i].end_pc))
        {
#ifdef DIRECT_THREADED
              jclass handler = (jclass) exc[i].handler_type.p;
#else
              jclass handler = NULL;
              if (exc[i].handler_type.i != 0)
                    handler
                      = (_Jv_Linker::resolve_pool_entry (meth->defining_class,
                                                                             ex$
#endif /* DIRECT_THREADED */
              if (handler == NULL || handler->isAssignableFrom (exc_class))
                {
#ifdef DIRECT_THREADED
                  (*pc) = (insn_slot *) exc[i].handler_pc.p;
#else
                  (*pc) = meth->bytecode () + exc[i].handler_pc.i;
#endif /* DIRECT_THREADED */
                  return true;
                }
          }
      }
  return false;
}


void
_Jv_InterpMethod::get_line_table (jlong& start, jlong& end,
				  jintArray& line_numbers,
				  jlongArray& code_indices)
{
#ifdef DIRECT_THREADED
  /* For the DIRECT_THREADED case, if the method has not yet been
   * compiled, the linetable will change to insn slots instead of
   * bytecode PCs. It is probably easiest, in this case, to simply
   * compile the method and guarantee that we are using insn
   * slots.
   */
  _Jv_CompileMethod (this);

  if (line_table_len > 0)
    {
      start = 0;
      end = number_insn_slots;
      line_numbers = JvNewIntArray (line_table_len);
      code_indices = JvNewLongArray (line_table_len);

      jint* lines = elements (line_numbers);
      jlong* indices = elements (code_indices);
      for (int i = 0; i < line_table_len; ++i)
	{
	  lines[i] = line_table[i].line;
	  indices[i] = insn_index (line_table[i].pc);
	}
    }
#else // !DIRECT_THREADED
  if (line_table_len > 0)
    {
      start = 0;
      end = code_length;
      line_numbers = JvNewIntArray (line_table_len);
      code_indices = JvNewLongArray (line_table_len);

      jint* lines = elements (line_numbers);
      jlong* indices = elements (code_indices);
      for (int i = 0; i < line_table_len; ++i)
	{
	  lines[i] = line_table[i].line;
	  indices[i] = (jlong) line_table[i].bytecode_pc;
	}
    }
#endif // !DIRECT_THREADED
}

int 
_Jv_InterpMethod::get_local_var_table (char **name, char **sig, 
                                       char **generic_sig, jlong *startloc,
                                       jint *length, jint *slot, 
                                       int table_slot)
{
#ifdef DIRECT_THREADED
  _Jv_CompileMethod (this);
#endif

  if (local_var_table == NULL)
    return -2;
  if (table_slot >= local_var_table_len)
    return -1;
  else
    {
      *name = local_var_table[table_slot].name;
      *sig = local_var_table[table_slot].descriptor;
      *generic_sig = local_var_table[table_slot].descriptor;

#ifdef DIRECT_THREADED
      *startloc = insn_index (local_var_table[table_slot].pc);
#else
      *startloc = static_cast<jlong> (local_var_table[table_slot].bytecode_pc);
#endif
      *length = static_cast<jint> (local_var_table[table_slot].length);
      *slot = static_cast<jint> (local_var_table[table_slot].slot);
    }
  return local_var_table_len - table_slot - 1;
}

pc_t
_Jv_InterpMethod::install_break (jlong index)
{
  return set_insn (index, breakpoint_insn);
}

pc_t
_Jv_InterpMethod::get_insn (jlong index)
{
  pc_t code;

#ifdef DIRECT_THREADED
  if (index >= number_insn_slots || index < 0)
    return NULL;

  code = prepared;
#else // !DIRECT_THREADED
  if (index >= code_length || index < 0)
    return NULL;

  code = reinterpret_cast<pc_t> (bytecode ());
#endif // !DIRECT_THREADED

  return &code[index];
}

pc_t
_Jv_InterpMethod::set_insn (jlong index, pc_t insn)
{
#ifdef DIRECT_THREADED
  if (index >= number_insn_slots || index < 0)
    return NULL;

  pc_t code = prepared;
  code[index].insn = insn->insn;
#else // !DIRECT_THREADED
  if (index >= code_length || index < 0)
    return NULL;

  pc_t code = reinterpret_cast<pc_t> (bytecode ());
  code[index] = *insn;
#endif // !DIRECT_THREADED

  return &code[index];
}

bool
_Jv_InterpMethod::breakpoint_at (jlong index)
{
  pc_t insn = get_insn (index);
  if (insn != NULL)
    {
#ifdef DIRECT_THREADED
      return (insn->insn == breakpoint_insn->insn);
#else
      pc_t code = reinterpret_cast<pc_t> (bytecode ());
      return (code[index] == breakpoint_insn);
#endif
    }

  return false;
}

void *
_Jv_JNIMethod::ncode (jclass klass)
{
  using namespace java::lang::reflect;

  if (self->ncode != 0)
    return self->ncode;

  jboolean staticp = (self->accflags & Modifier::STATIC) != 0;
  int arg_count = _Jv_count_arguments (self->signature, staticp);

  void *code;
  ncode_closure *closure =
    (ncode_closure*)ffi_closure_alloc (sizeof (ncode_closure)
				       + arg_count * sizeof (ffi_type*),
				       &code);
  closure->list.registerClosure (klass, closure);

  ffi_type *rtype;
  _Jv_init_cif (self->signature,
		arg_count,
		staticp,
		&closure->cif,
		&closure->arg_types[0],
		&rtype);

  ffi_closure_fun fun;

  args_raw_size = FFI_RAW_SIZE (&closure->cif);

  // Initialize the argument types and CIF that represent the actual
  // underlying JNI function.
  int extra_args = 1;
  if ((self->accflags & Modifier::STATIC))
    ++extra_args;
  jni_arg_types = (ffi_type **) _Jv_AllocBytes ((extra_args + arg_count)
						* sizeof (ffi_type *));
  int offset = 0;
  jni_arg_types[offset++] = &ffi_type_pointer;
  if ((self->accflags & Modifier::STATIC))
    jni_arg_types[offset++] = &ffi_type_pointer;
  memcpy (&jni_arg_types[offset], &closure->arg_types[0],
	  arg_count * sizeof (ffi_type *));

  if (ffi_prep_cif (&jni_cif, _Jv_platform_ffi_abi,
		    extra_args + arg_count, rtype,
		    jni_arg_types) != FFI_OK)
    throw_internal_error ("ffi_prep_cif failed for JNI function");

  JvAssert ((self->accflags & Modifier::NATIVE) != 0);

  // FIXME: for now we assume that all native methods for
  // interpreted code use JNI.
  fun = (ffi_closure_fun) &_Jv_JNIMethod::call;

  FFI_PREP_RAW_CLOSURE (&closure->closure,
			&closure->cif, 
			fun,
			(void*) this,
			code);

  self->ncode = code;
  return self->ncode;
}

static void
throw_class_format_error (jstring msg)
{
  jthrowable t = (msg
	 ? new java::lang::ClassFormatError (msg)
	 : new java::lang::ClassFormatError);
  REPORT_EXCEPTION (t);
  throw t;
}

static void
throw_class_format_error (const char *msg)
{
  throw_class_format_error (JvNewStringLatin1 (msg));
}

/* This function finds the method and location where the exception EXC
   is caught in the stack frame. On return, it sets CATCH_METHOD and
   CATCH_LOCATION with the method and location where the catch will
   occur. If the exception is not caught, these are set to 0.

   This function should only be used with the DEBUG interpreter. */
static void
find_catch_location (::java::lang::Throwable *exc, jthread thread,
		     jmethodID *catch_method, jlong *catch_loc)
{
  *catch_method = 0;
  *catch_loc = 0;

  _Jv_InterpFrame *frame
    = reinterpret_cast<_Jv_InterpFrame *> (thread->interp_frame);
  while (frame != NULL)
    {
      pc_t pc = frame->get_pc ();
      _Jv_InterpMethod *imeth
	= reinterpret_cast<_Jv_InterpMethod *> (frame->self);
      if (imeth->check_handler (&pc, imeth, exc))
	{
	  // This method handles the exception.
	  *catch_method = imeth->get_method ();
	  *catch_loc = imeth->insn_index (pc);
	  return;
	}

      frame = frame->next_interp;
    }
}

/* This method handles JVMTI notifications of thrown exceptions. It
   calls find_catch_location to figure out where the exception is
   caught (if it is caught).
   
   Like find_catch_location, this should only be called with the
   DEBUG interpreter. Since a few exceptions occur outside the
   interpreter proper, it is important to not call this function
   without checking JVMTI_REQUESTED_EVENT(Exception) first. */
void
_Jv_ReportJVMTIExceptionThrow (jthrowable ex)
{
  jthread thread = ::java::lang::Thread::currentThread ();
  _Jv_Frame *frame = reinterpret_cast<_Jv_Frame *> (thread->frame);
  jmethodID throw_meth = frame->self->get_method ();
  jlocation throw_loc = -1;
  if (frame->frame_type == frame_interpreter)
    {
      _Jv_InterpFrame * iframe
	= reinterpret_cast<_Jv_InterpFrame *> (frame);
      _Jv_InterpMethod *imeth
	= reinterpret_cast<_Jv_InterpMethod *> (frame->self);
      throw_loc = imeth->insn_index (iframe->get_pc ());
    }

  jlong catch_loc;
  jmethodID catch_method;
  find_catch_location (ex, thread, &catch_method, &catch_loc);
  _Jv_JVMTI_PostEvent (JVMTI_EVENT_EXCEPTION, thread,
		       _Jv_GetCurrentJNIEnv (), throw_meth, throw_loc,
		       ex, catch_method, catch_loc);
}



void
_Jv_InterpreterEngine::do_verify (jclass klass)
{
  _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
  for (int i = 0; i < klass->method_count; i++)
    {
      using namespace java::lang::reflect;
      _Jv_MethodBase *imeth = iclass->interpreted_methods[i];
      _Jv_ushort accflags = klass->methods[i].accflags;
      if ((accflags & (Modifier::NATIVE | Modifier::ABSTRACT)) == 0)
	{
	  _Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth);
	  _Jv_VerifyMethod (im);
	}
    }
}

void
_Jv_InterpreterEngine::do_create_ncode (jclass klass)
{
  _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
  for (int i = 0; i < klass->method_count; i++)
    {
      // Just skip abstract methods.  This is particularly important
      // because we don't resize the interpreted_methods array when
      // miranda methods are added to it.
      if ((klass->methods[i].accflags
	   & java::lang::reflect::Modifier::ABSTRACT)
	  != 0)
	continue;

      _Jv_MethodBase *imeth = iclass->interpreted_methods[i];

      if ((klass->methods[i].accflags & java::lang::reflect::Modifier::NATIVE)
	  != 0)
	{
	  // You might think we could use a virtual `ncode' method in
	  // the _Jv_MethodBase and unify the native and non-native
	  // cases.  Well, we can't, because we don't allocate these
	  // objects using `new', and thus they don't get a vtable.
	  _Jv_JNIMethod *jnim = reinterpret_cast<_Jv_JNIMethod *> (imeth);
	  klass->methods[i].ncode = jnim->ncode (klass);
	}
      else if (imeth != 0)		// it could be abstract
	{
	  _Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth);
	  klass->methods[i].ncode = im->ncode (klass);
	}
    }
}

_Jv_ClosureList **
_Jv_InterpreterEngine::do_get_closure_list (jclass klass)
{
  _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;

  if (!iclass->closures)
    iclass->closures = _Jv_ClosureListFinalizer ();

  return iclass->closures;
}

void
_Jv_InterpreterEngine::do_allocate_static_fields (jclass klass,
						  int pointer_size,
						  int other_size)
{
  _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;

  // Splitting the allocations here lets us scan reference fields and
  // avoid scanning non-reference fields.  How reference fields are
  // scanned is a bit tricky: we allocate using _Jv_AllocRawObj, which
  // means that this memory will be scanned conservatively (same
  // difference, since we know all the contents here are pointers).
  // Then we put pointers into this memory into the 'fields'
  // structure.  Most of these are interior pointers, which is ok (but
  // even so the pointer to the first reference field will be used and
  // that is not an interior pointer).  The 'fields' array is also
  // allocated with _Jv_AllocRawObj (see defineclass.cc), so it will
  // be scanned.  A pointer to this array is held by Class and thus
  // seen by the collector.
  char *reference_fields = (char *) _Jv_AllocRawObj (pointer_size);
  char *non_reference_fields = (char *) _Jv_AllocBytes (other_size);

  for (int i = 0; i < klass->field_count; i++)
    {
      _Jv_Field *field = &klass->fields[i];

      if ((field->flags & java::lang::reflect::Modifier::STATIC) == 0)
	continue;

      char *base = field->isRef() ? reference_fields : non_reference_fields;
      field->u.addr  = base + field->u.boffset;

      if (iclass->field_initializers[i] != 0)
	{
	  _Jv_Linker::resolve_field (field, klass->loader);
	  _Jv_InitField (0, klass, i);
	}
    }

  // Now we don't need the field_initializers anymore, so let the
  // collector get rid of it.
  iclass->field_initializers = 0;
}

_Jv_ResolvedMethod *
_Jv_InterpreterEngine::do_resolve_method (_Jv_Method *method, jclass klass,
					  jboolean staticp)
{
  int arg_count = _Jv_count_arguments (method->signature, staticp);

  _Jv_ResolvedMethod* result = (_Jv_ResolvedMethod*)
    _Jv_AllocBytes (sizeof (_Jv_ResolvedMethod)
		    + arg_count*sizeof (ffi_type*));

  result->stack_item_count
    = _Jv_init_cif (method->signature,
		    arg_count,
		    staticp,
		    &result->cif,
		    &result->arg_types[0],
		    NULL);

  result->method              = method;
  result->klass               = klass;

  return result;
}

void
_Jv_InterpreterEngine::do_post_miranda_hook (jclass klass)
{
  _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
  for (int i = 0; i < klass->method_count; i++)
    {
      // Just skip abstract methods.  This is particularly important
      // because we don't resize the interpreted_methods array when
      // miranda methods are added to it.
      if ((klass->methods[i].accflags
	   & java::lang::reflect::Modifier::ABSTRACT)
	  != 0)
	continue;
      // Miranda method additions mean that the `methods' array moves.
      // We cache a pointer into this array, so we have to update.
      iclass->interpreted_methods[i]->self = &klass->methods[i];
    }
}

#ifdef DIRECT_THREADED
void
_Jv_CompileMethod (_Jv_InterpMethod* method)
{
  if (method->prepared == NULL)
    {
      if (JVMTI::enabled)
	_Jv_InterpMethod::run_debug (NULL, NULL, method);
      else
      _Jv_InterpMethod::run (NULL, NULL, method);
    }
}
#endif // DIRECT_THREADED

#endif // INTERPRETER