1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
|
/* java.lang.StrictMath -- common mathematical functions, strict Java
Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
/*
* Some of the algorithms in this class are in the public domain, as part
* of fdlibm (freely-distributable math library), available at
* http://www.netlib.org/fdlibm/, and carry the following copyright:
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
package java.lang;
import gnu.classpath.Configuration;
import java.util.Random;
/**
* Helper class containing useful mathematical functions and constants.
* This class mirrors {@link Math}, but is 100% portable, because it uses
* no native methods whatsoever. Also, these algorithms are all accurate
* to less than 1 ulp, and execute in <code>strictfp</code> mode, while
* Math is allowed to vary in its results for some functions. Unfortunately,
* this usually means StrictMath has less efficiency and speed, as Math can
* use native methods.
*
* <p>The source of the various algorithms used is the fdlibm library, at:<br>
* <a href="http://www.netlib.org/fdlibm/">http://www.netlib.org/fdlibm/</a>
*
* Note that angles are specified in radians. Conversion functions are
* provided for your convenience.
*
* @author Eric Blake (ebb9@email.byu.edu)
* @since 1.3
*/
public final strictfp class StrictMath
{
/**
* StrictMath is non-instantiable.
*/
private StrictMath()
{
}
/**
* A random number generator, initialized on first use.
*
* @see #random()
*/
private static Random rand;
/**
* The most accurate approximation to the mathematical constant <em>e</em>:
* <code>2.718281828459045</code>. Used in natural log and exp.
*
* @see #log(double)
* @see #exp(double)
*/
public static final double E
= 2.718281828459045; // Long bits 0x4005bf0z8b145769L.
/**
* The most accurate approximation to the mathematical constant <em>pi</em>:
* <code>3.141592653589793</code>. This is the ratio of a circle's diameter
* to its circumference.
*/
public static final double PI
= 3.141592653589793; // Long bits 0x400921fb54442d18L.
/**
* Take the absolute value of the argument. (Absolute value means make
* it positive.)
*
* <p>Note that the the largest negative value (Integer.MIN_VALUE) cannot
* be made positive. In this case, because of the rules of negation in
* a computer, MIN_VALUE is what will be returned.
* This is a <em>negative</em> value. You have been warned.
*
* @param i the number to take the absolute value of
* @return the absolute value
* @see Integer#MIN_VALUE
*/
public static int abs(int i)
{
return (i < 0) ? -i : i;
}
/**
* Take the absolute value of the argument. (Absolute value means make
* it positive.)
*
* <p>Note that the the largest negative value (Long.MIN_VALUE) cannot
* be made positive. In this case, because of the rules of negation in
* a computer, MIN_VALUE is what will be returned.
* This is a <em>negative</em> value. You have been warned.
*
* @param l the number to take the absolute value of
* @return the absolute value
* @see Long#MIN_VALUE
*/
public static long abs(long l)
{
return (l < 0) ? -l : l;
}
/**
* Take the absolute value of the argument. (Absolute value means make
* it positive.)
*
* @param f the number to take the absolute value of
* @return the absolute value
*/
public static float abs(float f)
{
return (f <= 0) ? 0 - f : f;
}
/**
* Take the absolute value of the argument. (Absolute value means make
* it positive.)
*
* @param d the number to take the absolute value of
* @return the absolute value
*/
public static double abs(double d)
{
return (d <= 0) ? 0 - d : d;
}
/**
* Return whichever argument is smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static int min(int a, int b)
{
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static long min(long a, long b)
{
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static float min(float a, float b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; < will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return -(-a - b);
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static double min(double a, double b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; < will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return -(-a - b);
return (a < b) ? a : b;
}
/**
* Return whichever argument is larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static int max(int a, int b)
{
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static long max(long a, long b)
{
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, 0 is always larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static float max(float a, float b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; > will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return a - -b;
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, 0 is always larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static double max(double a, double b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; > will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return a - -b;
return (a > b) ? a : b;
}
/**
* The trigonometric function <em>sin</em>. The sine of NaN or infinity is
* NaN, and the sine of 0 retains its sign.
*
* @param a the angle (in radians)
* @return sin(a)
*/
public static double sin(double a)
{
if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
return Double.NaN;
if (abs(a) <= PI / 4)
return sin(a, 0);
// Argument reduction needed.
double[] y = new double[2];
int n = remPiOver2(a, y);
switch (n & 3)
{
case 0:
return sin(y[0], y[1]);
case 1:
return cos(y[0], y[1]);
case 2:
return -sin(y[0], y[1]);
default:
return -cos(y[0], y[1]);
}
}
/**
* The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
* NaN.
*
* @param a the angle (in radians).
* @return cos(a).
*/
public static double cos(double a)
{
if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
return Double.NaN;
if (abs(a) <= PI / 4)
return cos(a, 0);
// Argument reduction needed.
double[] y = new double[2];
int n = remPiOver2(a, y);
switch (n & 3)
{
case 0:
return cos(y[0], y[1]);
case 1:
return -sin(y[0], y[1]);
case 2:
return -cos(y[0], y[1]);
default:
return sin(y[0], y[1]);
}
}
/**
* The trigonometric function <em>tan</em>. The tangent of NaN or infinity
* is NaN, and the tangent of 0 retains its sign.
*
* @param a the angle (in radians)
* @return tan(a)
*/
public static double tan(double a)
{
if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
return Double.NaN;
if (abs(a) <= PI / 4)
return tan(a, 0, false);
// Argument reduction needed.
double[] y = new double[2];
int n = remPiOver2(a, y);
return tan(y[0], y[1], (n & 1) == 1);
}
/**
* The trigonometric function <em>arcsin</em>. The range of angles returned
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
* its absolute value is beyond 1, the result is NaN; and the arcsine of
* 0 retains its sign.
*
* @param x the sin to turn back into an angle
* @return arcsin(x)
*/
public static double asin(double x)
{
boolean negative = x < 0;
if (negative)
x = -x;
if (! (x <= 1))
return Double.NaN;
if (x == 1)
return negative ? -PI / 2 : PI / 2;
if (x < 0.5)
{
if (x < 1 / TWO_27)
return negative ? -x : x;
double t = x * x;
double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
* (PS4 + t * PS5)))));
double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
return negative ? -x - x * (p / q) : x + x * (p / q);
}
double w = 1 - x; // 1>|x|>=0.5.
double t = w * 0.5;
double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
* (PS4 + t * PS5)))));
double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
double s = sqrt(t);
if (x >= 0.975)
{
w = p / q;
t = PI / 2 - (2 * (s + s * w) - PI_L / 2);
}
else
{
w = (float) s;
double c = (t - w * w) / (s + w);
p = 2 * s * (p / q) - (PI_L / 2 - 2 * c);
q = PI / 4 - 2 * w;
t = PI / 4 - (p - q);
}
return negative ? -t : t;
}
/**
* The trigonometric function <em>arccos</em>. The range of angles returned
* is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
* its absolute value is beyond 1, the result is NaN.
*
* @param x the cos to turn back into an angle
* @return arccos(x)
*/
public static double acos(double x)
{
boolean negative = x < 0;
if (negative)
x = -x;
if (! (x <= 1))
return Double.NaN;
if (x == 1)
return negative ? PI : 0;
if (x < 0.5)
{
if (x < 1 / TWO_57)
return PI / 2;
double z = x * x;
double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
* (PS4 + z * PS5)))));
double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
double r = x - (PI_L / 2 - x * (p / q));
return negative ? PI / 2 + r : PI / 2 - r;
}
if (negative) // x<=-0.5.
{
double z = (1 + x) * 0.5;
double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
* (PS4 + z * PS5)))));
double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
double s = sqrt(z);
double w = p / q * s - PI_L / 2;
return PI - 2 * (s + w);
}
double z = (1 - x) * 0.5; // x>0.5.
double s = sqrt(z);
double df = (float) s;
double c = (z - df * df) / (s + df);
double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
* (PS4 + z * PS5)))));
double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
double w = p / q * s + c;
return 2 * (df + w);
}
/**
* The trigonometric function <em>arcsin</em>. The range of angles returned
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
* result is NaN; and the arctangent of 0 retains its sign.
*
* @param x the tan to turn back into an angle
* @return arcsin(x)
* @see #atan2(double, double)
*/
public static double atan(double x)
{
double lo;
double hi;
boolean negative = x < 0;
if (negative)
x = -x;
if (x >= TWO_66)
return negative ? -PI / 2 : PI / 2;
if (! (x >= 0.4375)) // |x|<7/16, or NaN.
{
if (! (x >= 1 / TWO_29)) // Small, or NaN.
return negative ? -x : x;
lo = hi = 0;
}
else if (x < 1.1875)
{
if (x < 0.6875) // 7/16<=|x|<11/16.
{
x = (2 * x - 1) / (2 + x);
hi = ATAN_0_5H;
lo = ATAN_0_5L;
}
else // 11/16<=|x|<19/16.
{
x = (x - 1) / (x + 1);
hi = PI / 4;
lo = PI_L / 4;
}
}
else if (x < 2.4375) // 19/16<=|x|<39/16.
{
x = (x - 1.5) / (1 + 1.5 * x);
hi = ATAN_1_5H;
lo = ATAN_1_5L;
}
else // 39/16<=|x|<2**66.
{
x = -1 / x;
hi = PI / 2;
lo = PI_L / 2;
}
// Break sum from i=0 to 10 ATi*z**(i+1) into odd and even poly.
double z = x * x;
double w = z * z;
double s1 = z * (AT0 + w * (AT2 + w * (AT4 + w * (AT6 + w
* (AT8 + w * AT10)))));
double s2 = w * (AT1 + w * (AT3 + w * (AT5 + w * (AT7 + w * AT9))));
if (hi == 0)
return negative ? x * (s1 + s2) - x : x - x * (s1 + s2);
z = hi - ((x * (s1 + s2) - lo) - x);
return negative ? -z : z;
}
/**
* A special version of the trigonometric function <em>arctan</em>, for
* converting rectangular coordinates <em>(x, y)</em> to polar
* <em>(r, theta)</em>. This computes the arctangent of x/y in the range
* of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
* <li>If either argument is NaN, the result is NaN.</li>
* <li>If the first argument is positive zero and the second argument is
* positive, or the first argument is positive and finite and the second
* argument is positive infinity, then the result is positive zero.</li>
* <li>If the first argument is negative zero and the second argument is
* positive, or the first argument is negative and finite and the second
* argument is positive infinity, then the result is negative zero.</li>
* <li>If the first argument is positive zero and the second argument is
* negative, or the first argument is positive and finite and the second
* argument is negative infinity, then the result is the double value
* closest to pi.</li>
* <li>If the first argument is negative zero and the second argument is
* negative, or the first argument is negative and finite and the second
* argument is negative infinity, then the result is the double value
* closest to -pi.</li>
* <li>If the first argument is positive and the second argument is
* positive zero or negative zero, or the first argument is positive
* infinity and the second argument is finite, then the result is the
* double value closest to pi/2.</li>
* <li>If the first argument is negative and the second argument is
* positive zero or negative zero, or the first argument is negative
* infinity and the second argument is finite, then the result is the
* double value closest to -pi/2.</li>
* <li>If both arguments are positive infinity, then the result is the
* double value closest to pi/4.</li>
* <li>If the first argument is positive infinity and the second argument
* is negative infinity, then the result is the double value closest to
* 3*pi/4.</li>
* <li>If the first argument is negative infinity and the second argument
* is positive infinity, then the result is the double value closest to
* -pi/4.</li>
* <li>If both arguments are negative infinity, then the result is the
* double value closest to -3*pi/4.</li>
*
* </ul><p>This returns theta, the angle of the point. To get r, albeit
* slightly inaccurately, use sqrt(x*x+y*y).
*
* @param y the y position
* @param x the x position
* @return <em>theta</em> in the conversion of (x, y) to (r, theta)
* @see #atan(double)
*/
public static double atan2(double y, double x)
{
if (x != x || y != y)
return Double.NaN;
if (x == 1)
return atan(y);
if (x == Double.POSITIVE_INFINITY)
{
if (y == Double.POSITIVE_INFINITY)
return PI / 4;
if (y == Double.NEGATIVE_INFINITY)
return -PI / 4;
return 0 * y;
}
if (x == Double.NEGATIVE_INFINITY)
{
if (y == Double.POSITIVE_INFINITY)
return 3 * PI / 4;
if (y == Double.NEGATIVE_INFINITY)
return -3 * PI / 4;
return (1 / (0 * y) == Double.POSITIVE_INFINITY) ? PI : -PI;
}
if (y == 0)
{
if (1 / (0 * x) == Double.POSITIVE_INFINITY)
return y;
return (1 / y == Double.POSITIVE_INFINITY) ? PI : -PI;
}
if (y == Double.POSITIVE_INFINITY || y == Double.NEGATIVE_INFINITY
|| x == 0)
return y < 0 ? -PI / 2 : PI / 2;
double z = abs(y / x); // Safe to do y/x.
if (z > TWO_60)
z = PI / 2 + 0.5 * PI_L;
else if (x < 0 && z < 1 / TWO_60)
z = 0;
else
z = atan(z);
if (x > 0)
return y > 0 ? z : -z;
return y > 0 ? PI - (z - PI_L) : z - PI_L - PI;
}
/**
* Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
* argument is NaN, the result is NaN; if the argument is positive infinity,
* the result is positive infinity; and if the argument is negative
* infinity, the result is positive zero.
*
* @param x the number to raise to the power
* @return the number raised to the power of <em>e</em>
* @see #log(double)
* @see #pow(double, double)
*/
public static double exp(double x)
{
if (x != x)
return x;
if (x > EXP_LIMIT_H)
return Double.POSITIVE_INFINITY;
if (x < EXP_LIMIT_L)
return 0;
// Argument reduction.
double hi;
double lo;
int k;
double t = abs(x);
if (t > 0.5 * LN2)
{
if (t < 1.5 * LN2)
{
hi = t - LN2_H;
lo = LN2_L;
k = 1;
}
else
{
k = (int) (INV_LN2 * t + 0.5);
hi = t - k * LN2_H;
lo = k * LN2_L;
}
if (x < 0)
{
hi = -hi;
lo = -lo;
k = -k;
}
x = hi - lo;
}
else if (t < 1 / TWO_28)
return 1;
else
lo = hi = k = 0;
// Now x is in primary range.
t = x * x;
double c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
if (k == 0)
return 1 - (x * c / (c - 2) - x);
double y = 1 - (lo - x * c / (2 - c) - hi);
return scale(y, k);
}
/**
* Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
* argument is NaN or negative, the result is NaN; if the argument is
* positive infinity, the result is positive infinity; and if the argument
* is either zero, the result is negative infinity.
*
* <p>Note that the way to get log<sub>b</sub>(a) is to do this:
* <code>ln(a) / ln(b)</code>.
*
* @param x the number to take the natural log of
* @return the natural log of <code>a</code>
* @see #exp(double)
*/
public static double log(double x)
{
if (x == 0)
return Double.NEGATIVE_INFINITY;
if (x < 0)
return Double.NaN;
if (! (x < Double.POSITIVE_INFINITY))
return x;
// Normalize x.
long bits = Double.doubleToLongBits(x);
int exp = (int) (bits >> 52);
if (exp == 0) // Subnormal x.
{
x *= TWO_54;
bits = Double.doubleToLongBits(x);
exp = (int) (bits >> 52) - 54;
}
exp -= 1023; // Unbias exponent.
bits = (bits & 0x000fffffffffffffL) | 0x3ff0000000000000L;
x = Double.longBitsToDouble(bits);
if (x >= SQRT_2)
{
x *= 0.5;
exp++;
}
x--;
if (abs(x) < 1 / TWO_20)
{
if (x == 0)
return exp * LN2_H + exp * LN2_L;
double r = x * x * (0.5 - 1 / 3.0 * x);
if (exp == 0)
return x - r;
return exp * LN2_H - ((r - exp * LN2_L) - x);
}
double s = x / (2 + x);
double z = s * s;
double w = z * z;
double t1 = w * (LG2 + w * (LG4 + w * LG6));
double t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
double r = t2 + t1;
if (bits >= 0x3ff6174a00000000L && bits < 0x3ff6b85200000000L)
{
double h = 0.5 * x * x; // Need more accuracy for x near sqrt(2).
if (exp == 0)
return x - (h - s * (h + r));
return exp * LN2_H - ((h - (s * (h + r) + exp * LN2_L)) - x);
}
if (exp == 0)
return x - s * (x - r);
return exp * LN2_H - ((s * (x - r) - exp * LN2_L) - x);
}
/**
* Take a square root. If the argument is NaN or negative, the result is
* NaN; if the argument is positive infinity, the result is positive
* infinity; and if the result is either zero, the result is the same.
*
* <p>For other roots, use pow(x, 1/rootNumber).
*
* @param x the numeric argument
* @return the square root of the argument
* @see #pow(double, double)
*/
public static double sqrt(double x)
{
if (x < 0)
return Double.NaN;
if (x == 0 || ! (x < Double.POSITIVE_INFINITY))
return x;
// Normalize x.
long bits = Double.doubleToLongBits(x);
int exp = (int) (bits >> 52);
if (exp == 0) // Subnormal x.
{
x *= TWO_54;
bits = Double.doubleToLongBits(x);
exp = (int) (bits >> 52) - 54;
}
exp -= 1023; // Unbias exponent.
bits = (bits & 0x000fffffffffffffL) | 0x0010000000000000L;
if ((exp & 1) == 1) // Odd exp, double x to make it even.
bits <<= 1;
exp >>= 1;
// Generate sqrt(x) bit by bit.
bits <<= 1;
long q = 0;
long s = 0;
long r = 0x0020000000000000L; // Move r right to left.
while (r != 0)
{
long t = s + r;
if (t <= bits)
{
s = t + r;
bits -= t;
q += r;
}
bits <<= 1;
r >>= 1;
}
// Use floating add to round correctly.
if (bits != 0)
q += q & 1;
return Double.longBitsToDouble((q >> 1) + ((exp + 1022L) << 52));
}
/**
* Raise a number to a power. Special cases:<ul>
* <li>If the second argument is positive or negative zero, then the result
* is 1.0.</li>
* <li>If the second argument is 1.0, then the result is the same as the
* first argument.</li>
* <li>If the second argument is NaN, then the result is NaN.</li>
* <li>If the first argument is NaN and the second argument is nonzero,
* then the result is NaN.</li>
* <li>If the absolute value of the first argument is greater than 1 and
* the second argument is positive infinity, or the absolute value of the
* first argument is less than 1 and the second argument is negative
* infinity, then the result is positive infinity.</li>
* <li>If the absolute value of the first argument is greater than 1 and
* the second argument is negative infinity, or the absolute value of the
* first argument is less than 1 and the second argument is positive
* infinity, then the result is positive zero.</li>
* <li>If the absolute value of the first argument equals 1 and the second
* argument is infinite, then the result is NaN.</li>
* <li>If the first argument is positive zero and the second argument is
* greater than zero, or the first argument is positive infinity and the
* second argument is less than zero, then the result is positive zero.</li>
* <li>If the first argument is positive zero and the second argument is
* less than zero, or the first argument is positive infinity and the
* second argument is greater than zero, then the result is positive
* infinity.</li>
* <li>If the first argument is negative zero and the second argument is
* greater than zero but not a finite odd integer, or the first argument is
* negative infinity and the second argument is less than zero but not a
* finite odd integer, then the result is positive zero.</li>
* <li>If the first argument is negative zero and the second argument is a
* positive finite odd integer, or the first argument is negative infinity
* and the second argument is a negative finite odd integer, then the result
* is negative zero.</li>
* <li>If the first argument is negative zero and the second argument is
* less than zero but not a finite odd integer, or the first argument is
* negative infinity and the second argument is greater than zero but not a
* finite odd integer, then the result is positive infinity.</li>
* <li>If the first argument is negative zero and the second argument is a
* negative finite odd integer, or the first argument is negative infinity
* and the second argument is a positive finite odd integer, then the result
* is negative infinity.</li>
* <li>If the first argument is less than zero and the second argument is a
* finite even integer, then the result is equal to the result of raising
* the absolute value of the first argument to the power of the second
* argument.</li>
* <li>If the first argument is less than zero and the second argument is a
* finite odd integer, then the result is equal to the negative of the
* result of raising the absolute value of the first argument to the power
* of the second argument.</li>
* <li>If the first argument is finite and less than zero and the second
* argument is finite and not an integer, then the result is NaN.</li>
* <li>If both arguments are integers, then the result is exactly equal to
* the mathematical result of raising the first argument to the power of
* the second argument if that result can in fact be represented exactly as
* a double value.</li>
*
* </ul><p>(In the foregoing descriptions, a floating-point value is
* considered to be an integer if and only if it is a fixed point of the
* method {@link #ceil(double)} or, equivalently, a fixed point of the
* method {@link #floor(double)}. A value is a fixed point of a one-argument
* method if and only if the result of applying the method to the value is
* equal to the value.)
*
* @param x the number to raise
* @param y the power to raise it to
* @return x<sup>y</sup>
*/
public static double pow(double x, double y)
{
// Special cases first.
if (y == 0)
return 1;
if (y == 1)
return x;
if (y == -1)
return 1 / x;
if (x != x || y != y)
return Double.NaN;
// When x < 0, yisint tells if y is not an integer (0), even(1),
// or odd (2).
int yisint = 0;
if (x < 0 && floor(y) == y)
yisint = (y % 2 == 0) ? 2 : 1;
double ax = abs(x);
double ay = abs(y);
// More special cases, of y.
if (ay == Double.POSITIVE_INFINITY)
{
if (ax == 1)
return Double.NaN;
if (ax > 1)
return y > 0 ? y : 0;
return y < 0 ? -y : 0;
}
if (y == 2)
return x * x;
if (y == 0.5)
return sqrt(x);
// More special cases, of x.
if (x == 0 || ax == Double.POSITIVE_INFINITY || ax == 1)
{
if (y < 0)
ax = 1 / ax;
if (x < 0)
{
if (x == -1 && yisint == 0)
ax = Double.NaN;
else if (yisint == 1)
ax = -ax;
}
return ax;
}
if (x < 0 && yisint == 0)
return Double.NaN;
// Now we can start!
double t;
double t1;
double t2;
double u;
double v;
double w;
if (ay > TWO_31)
{
if (ay > TWO_64) // Automatic over/underflow.
return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0;
// Over/underflow if x is not close to one.
if (ax < 0.9999995231628418)
return y < 0 ? Double.POSITIVE_INFINITY : 0;
if (ax >= 1.0000009536743164)
return y > 0 ? Double.POSITIVE_INFINITY : 0;
// Now |1-x| is <= 2**-20, sufficient to compute
// log(x) by x-x^2/2+x^3/3-x^4/4.
t = x - 1;
w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25));
u = INV_LN2_H * t;
v = t * INV_LN2_L - w * INV_LN2;
t1 = (float) (u + v);
t2 = v - (t1 - u);
}
else
{
long bits = Double.doubleToLongBits(ax);
int exp = (int) (bits >> 52);
if (exp == 0) // Subnormal x.
{
ax *= TWO_54;
bits = Double.doubleToLongBits(ax);
exp = (int) (bits >> 52) - 54;
}
exp -= 1023; // Unbias exponent.
ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL)
| 0x3ff0000000000000L);
boolean k;
if (ax < SQRT_1_5) // |x|<sqrt(3/2).
k = false;
else if (ax < SQRT_3) // |x|<sqrt(3).
k = true;
else
{
k = false;
ax *= 0.5;
exp++;
}
// Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5).
u = ax - (k ? 1.5 : 1);
v = 1 / (ax + (k ? 1.5 : 1));
double s = u * v;
double s_h = (float) s;
double t_h = (float) (ax + (k ? 1.5 : 1));
double t_l = ax - (t_h - (k ? 1.5 : 1));
double s_l = v * ((u - s_h * t_h) - s_h * t_l);
// Compute log(ax).
double s2 = s * s;
double r = s_l * (s_h + s) + s2 * s2
* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
s2 = s_h * s_h;
t_h = (float) (3.0 + s2 + r);
t_l = r - (t_h - 3.0 - s2);
// u+v = s*(1+...).
u = s_h * t_h;
v = s_l * t_h + t_l * s;
// 2/(3log2)*(s+...).
double p_h = (float) (u + v);
double p_l = v - (p_h - u);
double z_h = CP_H * p_h;
double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0);
// log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l.
t = exp;
t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t);
t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h);
}
// Split up y into y1+y2 and compute (y1+y2)*(t1+t2).
boolean negative = x < 0 && yisint == 1;
double y1 = (float) y;
double p_l = (y - y1) * t1 + y * t2;
double p_h = y1 * t1;
double z = p_l + p_h;
if (z >= 1024) // Detect overflow.
{
if (z > 1024 || p_l + OVT > z - p_h)
return negative ? Double.NEGATIVE_INFINITY
: Double.POSITIVE_INFINITY;
}
else if (z <= -1075) // Detect underflow.
{
if (z < -1075 || p_l <= z - p_h)
return negative ? -0.0 : 0;
}
// Compute 2**(p_h+p_l).
int n = round((float) z);
p_h -= n;
t = (float) (p_l + p_h);
u = t * LN2_H;
v = (p_l - (t - p_h)) * LN2 + t * LN2_L;
z = u + v;
w = v - (z - u);
t = z * z;
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
double r = (z * t1) / (t1 - 2) - (w + z * w);
z = scale(1 - (r - z), n);
return negative ? -z : z;
}
/**
* Get the IEEE 754 floating point remainder on two numbers. This is the
* value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
* double to <code>x / y</code> (ties go to the even n); for a zero
* remainder, the sign is that of <code>x</code>. If either argument is NaN,
* the first argument is infinite, or the second argument is zero, the result
* is NaN; if x is finite but y is infinite, the result is x.
*
* @param x the dividend (the top half)
* @param y the divisor (the bottom half)
* @return the IEEE 754-defined floating point remainder of x/y
* @see #rint(double)
*/
public static double IEEEremainder(double x, double y)
{
// Purge off exception values.
if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY)
|| y == 0 || y != y)
return Double.NaN;
boolean negative = x < 0;
x = abs(x);
y = abs(y);
if (x == y || x == 0)
return 0 * x; // Get correct sign.
// Achieve x < 2y, then take first shot at remainder.
if (y < TWO_1023)
x %= y + y;
// Now adjust x to get correct precision.
if (y < 4 / TWO_1023)
{
if (x + x > y)
{
x -= y;
if (x + x >= y)
x -= y;
}
}
else
{
y *= 0.5;
if (x > y)
{
x -= y;
if (x >= y)
x -= y;
}
}
return negative ? -x : x;
}
/**
* Take the nearest integer that is that is greater than or equal to the
* argument. If the argument is NaN, infinite, or zero, the result is the
* same; if the argument is between -1 and 0, the result is negative zero.
* Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
*
* @param a the value to act upon
* @return the nearest integer >= <code>a</code>
*/
public static double ceil(double a)
{
return -floor(-a);
}
/**
* Take the nearest integer that is that is less than or equal to the
* argument. If the argument is NaN, infinite, or zero, the result is the
* same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
*
* @param a the value to act upon
* @return the nearest integer <= <code>a</code>
*/
public static double floor(double a)
{
double x = abs(a);
if (! (x < TWO_52) || (long) a == a)
return a; // No fraction bits; includes NaN and infinity.
if (x < 1)
return a >= 0 ? 0 * a : -1; // Worry about signed zero.
return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates.
}
/**
* Take the nearest integer to the argument. If it is exactly between
* two integers, the even integer is taken. If the argument is NaN,
* infinite, or zero, the result is the same.
*
* @param a the value to act upon
* @return the nearest integer to <code>a</code>
*/
public static double rint(double a)
{
double x = abs(a);
if (! (x < TWO_52))
return a; // No fraction bits; includes NaN and infinity.
if (x <= 0.5)
return 0 * a; // Worry about signed zero.
if (x % 2 <= 0.5)
return (long) a; // Catch round down to even.
return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates.
}
/**
* Take the nearest integer to the argument. This is equivalent to
* <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the
* result is 0; otherwise if the argument is outside the range of int, the
* result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
*
* @param f the argument to round
* @return the nearest integer to the argument
* @see Integer#MIN_VALUE
* @see Integer#MAX_VALUE
*/
public static int round(float f)
{
return (int) floor(f + 0.5f);
}
/**
* Take the nearest long to the argument. This is equivalent to
* <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the
* result is 0; otherwise if the argument is outside the range of long, the
* result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
*
* @param d the argument to round
* @return the nearest long to the argument
* @see Long#MIN_VALUE
* @see Long#MAX_VALUE
*/
public static long round(double d)
{
return (long) floor(d + 0.5);
}
/**
* Get a random number. This behaves like Random.nextDouble(), seeded by
* System.currentTimeMillis() when first called. In other words, the number
* is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
* This random sequence is only used by this method, and is threadsafe,
* although you may want your own random number generator if it is shared
* among threads.
*
* @return a random number
* @see Random#nextDouble()
* @see System#currentTimeMillis()
*/
public static synchronized double random()
{
if (rand == null)
rand = new Random();
return rand.nextDouble();
}
/**
* Convert from degrees to radians. The formula for this is
* radians = degrees * (pi/180); however it is not always exact given the
* limitations of floating point numbers.
*
* @param degrees an angle in degrees
* @return the angle in radians
*/
public static double toRadians(double degrees)
{
return (degrees * PI) / 180;
}
/**
* Convert from radians to degrees. The formula for this is
* degrees = radians * (180/pi); however it is not always exact given the
* limitations of floating point numbers.
*
* @param rads an angle in radians
* @return the angle in degrees
*/
public static double toDegrees(double rads)
{
return (rads * 180) / PI;
}
/**
* Constants for scaling and comparing doubles by powers of 2. The compiler
* must automatically inline constructs like (1/TWO_54), so we don't list
* negative powers of two here.
*/
private static final double
TWO_16 = 0x10000, // Long bits 0x40f0000000000000L.
TWO_20 = 0x100000, // Long bits 0x4130000000000000L.
TWO_24 = 0x1000000, // Long bits 0x4170000000000000L.
TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L.
TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L.
TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L.
TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L.
TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L.
TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L.
TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L.
TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L.
TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L.
TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L.
TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L.
TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L.
/**
* Super precision for 2/pi in 24-bit chunks, for use in
* {@link #remPiOver2(double, double[])}.
*/
private static final int TWO_OVER_PI[] = {
0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
};
/**
* Super precision for pi/2 in 24-bit chunks, for use in
* {@link #remPiOver2(double, double[])}.
*/
private static final double PI_OVER_TWO[] = {
1.570796251296997, // Long bits 0x3ff921fb40000000L.
7.549789415861596e-8, // Long bits 0x3e74442d00000000L.
5.390302529957765e-15, // Long bits 0x3cf8469880000000L.
3.282003415807913e-22, // Long bits 0x3b78cc5160000000L.
1.270655753080676e-29, // Long bits 0x39f01b8380000000L.
1.2293330898111133e-36, // Long bits 0x387a252040000000L.
2.7337005381646456e-44, // Long bits 0x36e3822280000000L.
2.1674168387780482e-51, // Long bits 0x3569f31d00000000L.
};
/**
* More constants related to pi, used in
* {@link #remPiOver2(double, double[])} and elsewhere.
*/
private static final double
PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L.
PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L.
PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L.
PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L.
PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L.
PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L.
PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L.
/**
* Natural log and square root constants, for calculation of
* {@link #exp(double)}, {@link #log(double)} and
* {@link #pow(double, double)}. CP is 2/(3*ln(2)).
*/
private static final double
SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL.
SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL.
SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL.
EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL.
EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L.
CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL.
CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L.
CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L.
LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.
LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.
LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.
INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.
INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.
INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.
/**
* Constants for computing {@link #log(double)}.
*/
private static final double
LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L.
LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L.
LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L.
LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL.
LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL.
LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL.
LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L.
/**
* Constants for computing {@link #pow(double, double)}. L and P are
* coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???.
* The P coefficients also calculate {@link #exp(double)}.
*/
private static final double
L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L.
L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL.
L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL.
L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L.
L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L.
L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL.
P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.
P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.
P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.
P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.
P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.
DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L.
DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L.
OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL.
/**
* Coefficients for computing {@link #sin(double)}.
*/
private static final double
S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L.
S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L.
S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L.
S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL.
S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL.
S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL.
/**
* Coefficients for computing {@link #cos(double)}.
*/
private static final double
C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL.
C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L.
C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L.
C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL.
C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L.
C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L.
/**
* Coefficients for computing {@link #tan(double)}.
*/
private static final double
T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L.
T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL.
T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL.
T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.
T4 = 8.8632398235993e-3, // Long bits 0x3f8226e3e96e8493L.
T5 = 3.5920791075913124e-3, // Long bits 0x3f6d6d22c9560328L.
T6 = 1.4562094543252903e-3, // Long bits 0x3f57dbc8fee08315L.
T7 = 5.880412408202641e-4, // Long bits 0x3f4344d8f2f26501L.
T8 = 2.464631348184699e-4, // Long bits 0x3f3026f71a8d1068L.
T9 = 7.817944429395571e-5, // Long bits 0x3f147e88a03792a6L.
T10 = 7.140724913826082e-5, // Long bits 0x3f12b80f32f0a7e9L.
T11 = -1.8558637485527546e-5, // Long bits 0xbef375cbdb605373L.
T12 = 2.590730518636337e-5; // Long bits 0x3efb2a7074bf7ad4L.
/**
* Coefficients for computing {@link #asin(double)} and
* {@link #acos(double)}.
*/
private static final double
PS0 = 0.16666666666666666, // Long bits 0x3fc5555555555555L.
PS1 = -0.3255658186224009, // Long bits 0xbfd4d61203eb6f7dL.
PS2 = 0.20121253213486293, // Long bits 0x3fc9c1550e884455L.
PS3 = -0.04005553450067941, // Long bits 0xbfa48228b5688f3bL.
PS4 = 7.915349942898145e-4, // Long bits 0x3f49efe07501b288L.
PS5 = 3.479331075960212e-5, // Long bits 0x3f023de10dfdf709L.
QS1 = -2.403394911734414, // Long bits 0xc0033a271c8a2d4bL.
QS2 = 2.0209457602335057, // Long bits 0x40002ae59c598ac8L.
QS3 = -0.6882839716054533, // Long bits 0xbfe6066c1b8d0159L.
QS4 = 0.07703815055590194; // Long bits 0x3fb3b8c5b12e9282L.
/**
* Coefficients for computing {@link #atan(double)}.
*/
private static final double
ATAN_0_5H = 0.4636476090008061, // Long bits 0x3fddac670561bb4fL.
ATAN_0_5L = 2.2698777452961687e-17, // Long bits 0x3c7a2b7f222f65e2L.
ATAN_1_5H = 0.982793723247329, // Long bits 0x3fef730bd281f69bL.
ATAN_1_5L = 1.3903311031230998e-17, // Long bits 0x3c7007887af0cbbdL.
AT0 = 0.3333333333333293, // Long bits 0x3fd555555555550dL.
AT1 = -0.19999999999876483, // Long bits 0xbfc999999998ebc4L.
AT2 = 0.14285714272503466, // Long bits 0x3fc24924920083ffL.
AT3 = -0.11111110405462356, // Long bits 0xbfbc71c6fe231671L.
AT4 = 0.09090887133436507, // Long bits 0x3fb745cdc54c206eL.
AT5 = -0.0769187620504483, // Long bits 0xbfb3b0f2af749a6dL.
AT6 = 0.06661073137387531, // Long bits 0x3fb10d66a0d03d51L.
AT7 = -0.058335701337905735, // Long bits 0xbfadde2d52defd9aL.
AT8 = 0.049768779946159324, // Long bits 0x3fa97b4b24760debL.
AT9 = -0.036531572744216916, // Long bits 0xbfa2b4442c6a6c2fL.
AT10 = 0.016285820115365782; // Long bits 0x3f90ad3ae322da11L.
/**
* Helper function for reducing an angle to a multiple of pi/2 within
* [-pi/4, pi/4].
*
* @param x the angle; not infinity or NaN, and outside pi/4
* @param y an array of 2 doubles modified to hold the remander x % pi/2
* @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
* 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
*/
private static int remPiOver2(double x, double[] y)
{
boolean negative = x < 0;
x = abs(x);
double z;
int n;
if (Configuration.DEBUG && (x <= PI / 4 || x != x
|| x == Double.POSITIVE_INFINITY))
throw new InternalError("Assertion failure");
if (x < 3 * PI / 4) // If |x| is small.
{
z = x - PIO2_1;
if ((float) x != (float) (PI / 2)) // 33+53 bit pi is good enough.
{
y[0] = z - PIO2_1L;
y[1] = z - y[0] - PIO2_1L;
}
else // Near pi/2, use 33+33+53 bit pi.
{
z -= PIO2_2;
y[0] = z - PIO2_2L;
y[1] = z - y[0] - PIO2_2L;
}
n = 1;
}
else if (x <= TWO_20 * PI / 2) // Medium size.
{
n = (int) (2 / PI * x + 0.5);
z = x - n * PIO2_1;
double w = n * PIO2_1L; // First round good to 85 bits.
y[0] = z - w;
if (n >= 32 || (float) x == (float) (w))
{
if (x / y[0] >= TWO_16) // Second iteration, good to 118 bits.
{
double t = z;
w = n * PIO2_2;
z = t - w;
w = n * PIO2_2L - (t - z - w);
y[0] = z - w;
if (x / y[0] >= TWO_49) // Third iteration, 151 bits accuracy.
{
t = z;
w = n * PIO2_3;
z = t - w;
w = n * PIO2_3L - (t - z - w);
y[0] = z - w;
}
}
}
y[1] = z - y[0] - w;
}
else
{
// All other (large) arguments.
int e0 = (int) (Double.doubleToLongBits(x) >> 52) - 1046;
z = scale(x, -e0); // e0 = ilogb(z) - 23.
double[] tx = new double[3];
for (int i = 0; i < 2; i++)
{
tx[i] = (int) z;
z = (z - tx[i]) * TWO_24;
}
tx[2] = z;
int nx = 2;
while (tx[nx] == 0)
nx--;
n = remPiOver2(tx, y, e0, nx);
}
if (negative)
{
y[0] = -y[0];
y[1] = -y[1];
return -n;
}
return n;
}
/**
* Helper function for reducing an angle to a multiple of pi/2 within
* [-pi/4, pi/4].
*
* @param x the positive angle, broken into 24-bit chunks
* @param y an array of 2 doubles modified to hold the remander x % pi/2
* @param e0 the exponent of x[0]
* @param nx the last index used in x
* @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
* 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
*/
private static int remPiOver2(double[] x, double[] y, int e0, int nx)
{
int i;
int ih;
int n;
double fw;
double z;
int[] iq = new int[20];
double[] f = new double[20];
double[] q = new double[20];
boolean recompute = false;
// Initialize jk, jz, jv, q0; note that 3>q0.
int jk = 4;
int jz = jk;
int jv = max((e0 - 3) / 24, 0);
int q0 = e0 - 24 * (jv + 1);
// Set up f[0] to f[nx+jk] where f[nx+jk] = TWO_OVER_PI[jv+jk].
int j = jv - nx;
int m = nx + jk;
for (i = 0; i <= m; i++, j++)
f[i] = (j < 0) ? 0 : TWO_OVER_PI[j];
// Compute q[0],q[1],...q[jk].
for (i = 0; i <= jk; i++)
{
for (j = 0, fw = 0; j <= nx; j++)
fw += x[j] * f[nx + i - j];
q[i] = fw;
}
do
{
// Distill q[] into iq[] reversingly.
for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
{
fw = (int) (1 / TWO_24 * z);
iq[i] = (int) (z - TWO_24 * fw);
z = q[j - 1] + fw;
}
// Compute n.
z = scale(z, q0);
z -= 8 * floor(z * 0.125); // Trim off integer >= 8.
n = (int) z;
z -= n;
ih = 0;
if (q0 > 0) // Need iq[jz-1] to determine n.
{
i = iq[jz - 1] >> (24 - q0);
n += i;
iq[jz - 1] -= i << (24 - q0);
ih = iq[jz - 1] >> (23 - q0);
}
else if (q0 == 0)
ih = iq[jz - 1] >> 23;
else if (z >= 0.5)
ih = 2;
if (ih > 0) // If q > 0.5.
{
n += 1;
int carry = 0;
for (i = 0; i < jz; i++) // Compute 1-q.
{
j = iq[i];
if (carry == 0)
{
if (j != 0)
{
carry = 1;
iq[i] = 0x1000000 - j;
}
}
else
iq[i] = 0xffffff - j;
}
switch (q0)
{
case 1: // Rare case: chance is 1 in 12 for non-default.
iq[jz - 1] &= 0x7fffff;
break;
case 2:
iq[jz - 1] &= 0x3fffff;
}
if (ih == 2)
{
z = 1 - z;
if (carry != 0)
z -= scale(1, q0);
}
}
// Check if recomputation is needed.
if (z == 0)
{
j = 0;
for (i = jz - 1; i >= jk; i--)
j |= iq[i];
if (j == 0) // Need recomputation.
{
int k;
for (k = 1; iq[jk - k] == 0; k++); // k = no. of terms needed.
for (i = jz + 1; i <= jz + k; i++) // Add q[jz+1] to q[jz+k].
{
f[nx + i] = TWO_OVER_PI[jv + i];
for (j = 0, fw = 0; j <= nx; j++)
fw += x[j] * f[nx + i - j];
q[i] = fw;
}
jz += k;
recompute = true;
}
}
}
while (recompute);
// Chop off zero terms.
if (z == 0)
{
jz--;
q0 -= 24;
while (iq[jz] == 0)
{
jz--;
q0 -= 24;
}
}
else // Break z into 24-bit if necessary.
{
z = scale(z, -q0);
if (z >= TWO_24)
{
fw = (int) (1 / TWO_24 * z);
iq[jz] = (int) (z - TWO_24 * fw);
jz++;
q0 += 24;
iq[jz] = (int) fw;
}
else
iq[jz] = (int) z;
}
// Convert integer "bit" chunk to floating-point value.
fw = scale(1, q0);
for (i = jz; i >= 0; i--)
{
q[i] = fw * iq[i];
fw *= 1 / TWO_24;
}
// Compute PI_OVER_TWO[0,...,jk]*q[jz,...,0].
double[] fq = new double[20];
for (i = jz; i >= 0; i--)
{
fw = 0;
for (int k = 0; k <= jk && k <= jz - i; k++)
fw += PI_OVER_TWO[k] * q[i + k];
fq[jz - i] = fw;
}
// Compress fq[] into y[].
fw = 0;
for (i = jz; i >= 0; i--)
fw += fq[i];
y[0] = (ih == 0) ? fw : -fw;
fw = fq[0] - fw;
for (i = 1; i <= jz; i++)
fw += fq[i];
y[1] = (ih == 0) ? fw : -fw;
return n;
}
/**
* Helper method for scaling a double by a power of 2.
*
* @param x the double
* @param n the scale; |n| < 2048
* @return x * 2**n
*/
private static double scale(double x, int n)
{
if (Configuration.DEBUG && abs(n) >= 2048)
throw new InternalError("Assertion failure");
if (x == 0 || x == Double.NEGATIVE_INFINITY
|| ! (x < Double.POSITIVE_INFINITY) || n == 0)
return x;
long bits = Double.doubleToLongBits(x);
int exp = (int) (bits >> 52) & 0x7ff;
if (exp == 0) // Subnormal x.
{
x *= TWO_54;
exp = ((int) (Double.doubleToLongBits(x) >> 52) & 0x7ff) - 54;
}
exp += n;
if (exp > 0x7fe) // Overflow.
return Double.POSITIVE_INFINITY * x;
if (exp > 0) // Normal.
return Double.longBitsToDouble((bits & 0x800fffffffffffffL)
| ((long) exp << 52));
if (exp <= -54)
return 0 * x; // Underflow.
exp += 54; // Subnormal result.
x = Double.longBitsToDouble((bits & 0x800fffffffffffffL)
| ((long) exp << 52));
return x * (1 / TWO_54);
}
/**
* Helper trig function; computes sin in range [-pi/4, pi/4].
*
* @param x angle within about pi/4
* @param y tail of x, created by remPiOver2
* @return sin(x+y)
*/
private static double sin(double x, double y)
{
if (Configuration.DEBUG && abs(x + y) > 0.7854)
throw new InternalError("Assertion failure");
if (abs(x) < 1 / TWO_27)
return x; // If |x| ~< 2**-27, already know answer.
double z = x * x;
double v = z * x;
double r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
if (y == 0)
return x + v * (S1 + z * r);
return x - ((z * (0.5 * y - v * r) - y) - v * S1);
}
/**
* Helper trig function; computes cos in range [-pi/4, pi/4].
*
* @param x angle within about pi/4
* @param y tail of x, created by remPiOver2
* @return cos(x+y)
*/
private static double cos(double x, double y)
{
if (Configuration.DEBUG && abs(x + y) > 0.7854)
throw new InternalError("Assertion failure");
x = abs(x);
if (x < 1 / TWO_27)
return 1; // If |x| ~< 2**-27, already know answer.
double z = x * x;
double r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
if (x < 0.3)
return 1 - (0.5 * z - (z * r - x * y));
double qx = (x > 0.78125) ? 0.28125 : (x * 0.25);
return 1 - qx - ((0.5 * z - qx) - (z * r - x * y));
}
/**
* Helper trig function; computes tan in range [-pi/4, pi/4].
*
* @param x angle within about pi/4
* @param y tail of x, created by remPiOver2
* @param invert true iff -1/tan should be returned instead
* @return tan(x+y)
*/
private static double tan(double x, double y, boolean invert)
{
// PI/2 is irrational, so no double is a perfect multiple of it.
if (Configuration.DEBUG && (abs(x + y) > 0.7854 || (x == 0 && invert)))
throw new InternalError("Assertion failure");
boolean negative = x < 0;
if (negative)
{
x = -x;
y = -y;
}
if (x < 1 / TWO_28) // If |x| ~< 2**-28, already know answer.
return (negative ? -1 : 1) * (invert ? -1 / x : x);
double z;
double w;
boolean large = x >= 0.6744;
if (large)
{
z = PI / 4 - x;
w = PI_L / 4 - y;
x = z + w;
y = 0;
}
z = x * x;
w = z * z;
// Break x**5*(T1+x**2*T2+...) into
// x**5(T1+x**4*T3+...+x**20*T11)
// + x**5(x**2*(T2+x**4*T4+...+x**22*T12)).
double r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11))));
double v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12)))));
double s = z * x;
r = y + z * (s * (r + v) + y);
r += T0 * s;
w = x + r;
if (large)
{
v = invert ? -1 : 1;
return (negative ? -1 : 1) * (v - 2 * (x - (w * w / (w + v) - r)));
}
if (! invert)
return w;
// Compute -1.0/(x+r) accurately.
z = (float) w;
v = r - (z - x);
double a = -1 / w;
double t = (float) a;
return t + a * (1 + t * z + t * v);
}
/**
* <p>
* Returns the sign of the argument as follows:
* </p>
* <ul>
* <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
* <li>If <code>a</code> is less than zero, the result is -1.0.</li>
* <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
* <li>If <code>a</code> is positive or negative zero, the result is the
* same.</li>
* </ul>
*
* @param a the numeric argument.
* @return the sign of the argument.
* @since 1.5.
*/
public static double signum(double a)
{
// There's no difference.
return Math.signum(a);
}
/**
* <p>
* Returns the sign of the argument as follows:
* </p>
* <ul>
* <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
* <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
* <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
* <li>If <code>a</code> is positive or negative zero, the result is the
* same.</li>
* </ul>
*
* @param a the numeric argument.
* @return the sign of the argument.
* @since 1.5.
*/
public static float signum(float a)
{
// There's no difference.
return Math.signum(a);
}
/**
* Return the ulp for the given double argument. The ulp is the
* difference between the argument and the next larger double. Note
* that the sign of the double argument is ignored, that is,
* ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
* If the argument is an infinity, then +Inf is returned. If the
* argument is zero (either positive or negative), then
* {@link Double#MIN_VALUE} is returned.
* @param d the double whose ulp should be returned
* @return the difference between the argument and the next larger double
* @since 1.5
*/
public static double ulp(double d)
{
// There's no difference.
return Math.ulp(d);
}
/**
* Return the ulp for the given float argument. The ulp is the
* difference between the argument and the next larger float. Note
* that the sign of the float argument is ignored, that is,
* ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
* If the argument is an infinity, then +Inf is returned. If the
* argument is zero (either positive or negative), then
* {@link Float#MIN_VALUE} is returned.
* @param f the float whose ulp should be returned
* @return the difference between the argument and the next larger float
* @since 1.5
*/
public static float ulp(float f)
{
// There's no difference.
return Math.ulp(f);
}
}
|