summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/mstats.go
blob: 178c32c03204ad7b5f5af5a27e583e36a7f01be3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Memory statistics

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// Statistics.
// If you edit this structure, also edit type MemStats below.
// Their layouts must match exactly.
//
// For detailed descriptions see the documentation for MemStats.
// Fields that differ from MemStats are further documented here.
//
// Many of these fields are updated on the fly, while others are only
// updated when updatememstats is called.
type mstats struct {
	// General statistics.
	alloc       uint64 // bytes allocated and not yet freed
	total_alloc uint64 // bytes allocated (even if freed)
	sys         uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
	nlookup     uint64 // number of pointer lookups
	nmalloc     uint64 // number of mallocs
	nfree       uint64 // number of frees

	// Statistics about malloc heap.
	// Protected by mheap.lock
	//
	// In mstats, heap_sys and heap_inuse includes stack memory,
	// while in MemStats stack memory is separated out from the
	// heap stats.
	heap_alloc    uint64 // bytes allocated and not yet freed (same as alloc above)
	heap_sys      uint64 // virtual address space obtained from system
	heap_idle     uint64 // bytes in idle spans
	heap_inuse    uint64 // bytes in non-idle spans
	heap_released uint64 // bytes released to the os
	heap_objects  uint64 // total number of allocated objects

	// TODO(austin): heap_released is both useless and inaccurate
	// in its current form. It's useless because, from the user's
	// and OS's perspectives, there's no difference between a page
	// that has not yet been faulted in and a page that has been
	// released back to the OS. We could fix this by considering
	// newly mapped spans to be "released". It's inaccurate
	// because when we split a large span for allocation, we
	// "unrelease" all pages in the large span and not just the
	// ones we split off for use. This is trickier to fix because
	// we currently don't know which pages of a span we've
	// released. We could fix it by separating "free" and
	// "released" spans, but then we have to allocate from runs of
	// free and released spans.

	// Statistics about allocation of low-level fixed-size structures.
	// Protected by FixAlloc locks.
	stacks_inuse uint64 // this number is included in heap_inuse above; differs from MemStats.StackInuse
	stacks_sys   uint64 // only counts newosproc0 stack in mstats; differs from MemStats.StackSys
	mspan_inuse  uint64 // mspan structures
	mspan_sys    uint64
	mcache_inuse uint64 // mcache structures
	mcache_sys   uint64
	buckhash_sys uint64 // profiling bucket hash table
	gc_sys       uint64
	other_sys    uint64

	// Statistics about garbage collector.
	// Protected by mheap or stopping the world during GC.
	next_gc         uint64 // goal heap_live for when next GC ends; ^0 if disabled
	last_gc         uint64 // last gc (in absolute time)
	pause_total_ns  uint64
	pause_ns        [256]uint64 // circular buffer of recent gc pause lengths
	pause_end       [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970)
	numgc           uint32
	numforcedgc     uint32  // number of user-forced GCs
	gc_cpu_fraction float64 // fraction of CPU time used by GC
	enablegc        bool
	debuggc         bool

	// Statistics about allocation size classes.

	by_size [_NumSizeClasses]struct {
		size    uint32
		nmalloc uint64
		nfree   uint64
	}

	// Statistics below here are not exported to MemStats directly.

	tinyallocs uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly

	// gc_trigger is the heap size that triggers marking.
	//
	// When heap_live ≥ gc_trigger, the mark phase will start.
	// This is also the heap size by which proportional sweeping
	// must be complete.
	gc_trigger uint64

	// heap_live is the number of bytes considered live by the GC.
	// That is: retained by the most recent GC plus allocated
	// since then. heap_live <= heap_alloc, since heap_alloc
	// includes unmarked objects that have not yet been swept (and
	// hence goes up as we allocate and down as we sweep) while
	// heap_live excludes these objects (and hence only goes up
	// between GCs).
	//
	// This is updated atomically without locking. To reduce
	// contention, this is updated only when obtaining a span from
	// an mcentral and at this point it counts all of the
	// unallocated slots in that span (which will be allocated
	// before that mcache obtains another span from that
	// mcentral). Hence, it slightly overestimates the "true" live
	// heap size. It's better to overestimate than to
	// underestimate because 1) this triggers the GC earlier than
	// necessary rather than potentially too late and 2) this
	// leads to a conservative GC rate rather than a GC rate that
	// is potentially too low.
	//
	// Whenever this is updated, call traceHeapAlloc() and
	// gcController.revise().
	heap_live uint64

	// heap_scan is the number of bytes of "scannable" heap. This
	// is the live heap (as counted by heap_live), but omitting
	// no-scan objects and no-scan tails of objects.
	//
	// Whenever this is updated, call gcController.revise().
	heap_scan uint64

	// heap_marked is the number of bytes marked by the previous
	// GC. After mark termination, heap_live == heap_marked, but
	// unlike heap_live, heap_marked does not change until the
	// next mark termination.
	heap_marked uint64
}

var memstats mstats

// A MemStats records statistics about the memory allocator.
type MemStats struct {
	// General statistics.

	// Alloc is bytes of allocated heap objects.
	//
	// This is the same as HeapAlloc (see below).
	Alloc uint64

	// TotalAlloc is cumulative bytes allocated for heap objects.
	//
	// TotalAlloc increases as heap objects are allocated, but
	// unlike Alloc and HeapAlloc, it does not decrease when
	// objects are freed.
	TotalAlloc uint64

	// Sys is the total bytes of memory obtained from the OS.
	//
	// Sys is the sum of the XSys fields below. Sys measures the
	// virtual address space reserved by the Go runtime for the
	// heap, stacks, and other internal data structures. It's
	// likely that not all of the virtual address space is backed
	// by physical memory at any given moment, though in general
	// it all was at some point.
	Sys uint64

	// Lookups is the number of pointer lookups performed by the
	// runtime.
	//
	// This is primarily useful for debugging runtime internals.
	Lookups uint64

	// Mallocs is the cumulative count of heap objects allocated.
	// The number of live objects is Mallocs - Frees.
	Mallocs uint64

	// Frees is the cumulative count of heap objects freed.
	Frees uint64

	// Heap memory statistics.
	//
	// Interpreting the heap statistics requires some knowledge of
	// how Go organizes memory. Go divides the virtual address
	// space of the heap into "spans", which are contiguous
	// regions of memory 8K or larger. A span may be in one of
	// three states:
	//
	// An "idle" span contains no objects or other data. The
	// physical memory backing an idle span can be released back
	// to the OS (but the virtual address space never is), or it
	// can be converted into an "in use" or "stack" span.
	//
	// An "in use" span contains at least one heap object and may
	// have free space available to allocate more heap objects.
	//
	// A "stack" span is used for goroutine stacks. Stack spans
	// are not considered part of the heap. A span can change
	// between heap and stack memory; it is never used for both
	// simultaneously.

	// HeapAlloc is bytes of allocated heap objects.
	//
	// "Allocated" heap objects include all reachable objects, as
	// well as unreachable objects that the garbage collector has
	// not yet freed. Specifically, HeapAlloc increases as heap
	// objects are allocated and decreases as the heap is swept
	// and unreachable objects are freed. Sweeping occurs
	// incrementally between GC cycles, so these two processes
	// occur simultaneously, and as a result HeapAlloc tends to
	// change smoothly (in contrast with the sawtooth that is
	// typical of stop-the-world garbage collectors).
	HeapAlloc uint64

	// HeapSys is bytes of heap memory obtained from the OS.
	//
	// HeapSys measures the amount of virtual address space
	// reserved for the heap. This includes virtual address space
	// that has been reserved but not yet used, which consumes no
	// physical memory, but tends to be small, as well as virtual
	// address space for which the physical memory has been
	// returned to the OS after it became unused (see HeapReleased
	// for a measure of the latter).
	//
	// HeapSys estimates the largest size the heap has had.
	HeapSys uint64

	// HeapIdle is bytes in idle (unused) spans.
	//
	// Idle spans have no objects in them. These spans could be
	// (and may already have been) returned to the OS, or they can
	// be reused for heap allocations, or they can be reused as
	// stack memory.
	//
	// HeapIdle minus HeapReleased estimates the amount of memory
	// that could be returned to the OS, but is being retained by
	// the runtime so it can grow the heap without requesting more
	// memory from the OS. If this difference is significantly
	// larger than the heap size, it indicates there was a recent
	// transient spike in live heap size.
	HeapIdle uint64

	// HeapInuse is bytes in in-use spans.
	//
	// In-use spans have at least one object in them. These spans
	// can only be used for other objects of roughly the same
	// size.
	//
	// HeapInuse minus HeapAlloc esimates the amount of memory
	// that has been dedicated to particular size classes, but is
	// not currently being used. This is an upper bound on
	// fragmentation, but in general this memory can be reused
	// efficiently.
	HeapInuse uint64

	// HeapReleased is bytes of physical memory returned to the OS.
	//
	// This counts heap memory from idle spans that was returned
	// to the OS and has not yet been reacquired for the heap.
	HeapReleased uint64

	// HeapObjects is the number of allocated heap objects.
	//
	// Like HeapAlloc, this increases as objects are allocated and
	// decreases as the heap is swept and unreachable objects are
	// freed.
	HeapObjects uint64

	// Stack memory statistics.
	//
	// Stacks are not considered part of the heap, but the runtime
	// can reuse a span of heap memory for stack memory, and
	// vice-versa.

	// StackInuse is bytes in stack spans.
	//
	// In-use stack spans have at least one stack in them. These
	// spans can only be used for other stacks of the same size.
	//
	// There is no StackIdle because unused stack spans are
	// returned to the heap (and hence counted toward HeapIdle).
	StackInuse uint64

	// StackSys is bytes of stack memory obtained from the OS.
	//
	// StackSys is StackInuse, plus any memory obtained directly
	// from the OS for OS thread stacks (which should be minimal).
	StackSys uint64

	// Off-heap memory statistics.
	//
	// The following statistics measure runtime-internal
	// structures that are not allocated from heap memory (usually
	// because they are part of implementing the heap). Unlike
	// heap or stack memory, any memory allocated to these
	// structures is dedicated to these structures.
	//
	// These are primarily useful for debugging runtime memory
	// overheads.

	// MSpanInuse is bytes of allocated mspan structures.
	MSpanInuse uint64

	// MSpanSys is bytes of memory obtained from the OS for mspan
	// structures.
	MSpanSys uint64

	// MCacheInuse is bytes of allocated mcache structures.
	MCacheInuse uint64

	// MCacheSys is bytes of memory obtained from the OS for
	// mcache structures.
	MCacheSys uint64

	// BuckHashSys is bytes of memory in profiling bucket hash tables.
	BuckHashSys uint64

	// GCSys is bytes of memory in garbage collection metadata.
	GCSys uint64

	// OtherSys is bytes of memory in miscellaneous off-heap
	// runtime allocations.
	OtherSys uint64

	// Garbage collector statistics.

	// NextGC is the target heap size of the next GC cycle.
	//
	// The garbage collector's goal is to keep HeapAlloc ≤ NextGC.
	// At the end of each GC cycle, the target for the next cycle
	// is computed based on the amount of reachable data and the
	// value of GOGC.
	NextGC uint64

	// LastGC is the time the last garbage collection finished, as
	// nanoseconds since 1970 (the UNIX epoch).
	LastGC uint64

	// PauseTotalNs is the cumulative nanoseconds in GC
	// stop-the-world pauses since the program started.
	//
	// During a stop-the-world pause, all goroutines are paused
	// and only the garbage collector can run.
	PauseTotalNs uint64

	// PauseNs is a circular buffer of recent GC stop-the-world
	// pause times in nanoseconds.
	//
	// The most recent pause is at PauseNs[(NumGC+255)%256]. In
	// general, PauseNs[N%256] records the time paused in the most
	// recent N%256th GC cycle. There may be multiple pauses per
	// GC cycle; this is the sum of all pauses during a cycle.
	PauseNs [256]uint64

	// PauseEnd is a circular buffer of recent GC pause end times,
	// as nanoseconds since 1970 (the UNIX epoch).
	//
	// This buffer is filled the same way as PauseNs. There may be
	// multiple pauses per GC cycle; this records the end of the
	// last pause in a cycle.
	PauseEnd [256]uint64

	// NumGC is the number of completed GC cycles.
	NumGC uint32

	// NumForcedGC is the number of GC cycles that were forced by
	// the application calling the GC function.
	NumForcedGC uint32

	// GCCPUFraction is the fraction of this program's available
	// CPU time used by the GC since the program started.
	//
	// GCCPUFraction is expressed as a number between 0 and 1,
	// where 0 means GC has consumed none of this program's CPU. A
	// program's available CPU time is defined as the integral of
	// GOMAXPROCS since the program started. That is, if
	// GOMAXPROCS is 2 and a program has been running for 10
	// seconds, its "available CPU" is 20 seconds. GCCPUFraction
	// does not include CPU time used for write barrier activity.
	//
	// This is the same as the fraction of CPU reported by
	// GODEBUG=gctrace=1.
	GCCPUFraction float64

	// EnableGC indicates that GC is enabled. It is always true,
	// even if GOGC=off.
	EnableGC bool

	// DebugGC is currently unused.
	DebugGC bool

	// BySize reports per-size class allocation statistics.
	//
	// BySize[N] gives statistics for allocations of size S where
	// BySize[N-1].Size < S ≤ BySize[N].Size.
	//
	// This does not report allocations larger than BySize[60].Size.
	BySize [61]struct {
		// Size is the maximum byte size of an object in this
		// size class.
		Size uint32

		// Mallocs is the cumulative count of heap objects
		// allocated in this size class. The cumulative bytes
		// of allocation is Size*Mallocs. The number of live
		// objects in this size class is Mallocs - Frees.
		Mallocs uint64

		// Frees is the cumulative count of heap objects freed
		// in this size class.
		Frees uint64
	}
}

// Size of the trailing by_size array differs between mstats and MemStats,
// and all data after by_size is local to runtime, not exported.
// NumSizeClasses was changed, but we cannot change MemStats because of backward compatibility.
// sizeof_C_MStats is the size of the prefix of mstats that
// corresponds to MemStats. It should match Sizeof(MemStats{}).
var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0])

func init() {
	var memStats MemStats
	if sizeof_C_MStats != unsafe.Sizeof(memStats) {
		println(sizeof_C_MStats, unsafe.Sizeof(memStats))
		throw("MStats vs MemStatsType size mismatch")
	}

	if unsafe.Offsetof(memstats.heap_live)%8 != 0 {
		println(unsafe.Offsetof(memstats.heap_live))
		throw("memstats.heap_live not aligned to 8 bytes")
	}
}

// ReadMemStats populates m with memory allocator statistics.
//
// The returned memory allocator statistics are up to date as of the
// call to ReadMemStats. This is in contrast with a heap profile,
// which is a snapshot as of the most recently completed garbage
// collection cycle.
func ReadMemStats(m *MemStats) {
	stopTheWorld("read mem stats")

	systemstack(func() {
		readmemstats_m(m)
	})

	startTheWorld()
}

func readmemstats_m(stats *MemStats) {
	updatememstats(nil)

	// The size of the trailing by_size array differs between
	// mstats and MemStats. NumSizeClasses was changed, but we
	// cannot change MemStats because of backward compatibility.
	memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)

	// Stack numbers are part of the heap numbers, separate those out for user consumption
	stats.StackSys += stats.StackInuse
	stats.HeapInuse -= stats.StackInuse
	stats.HeapSys -= stats.StackInuse
}

// For gccgo this is in runtime/mgc0.c.
func updatememstats(stats *gcstats)

/*
For gccgo these are still in runtime/mgc0.c.

//go:linkname readGCStats runtime/debug.readGCStats
func readGCStats(pauses *[]uint64) {
	systemstack(func() {
		readGCStats_m(pauses)
	})
}

func readGCStats_m(pauses *[]uint64) {
	p := *pauses
	// Calling code in runtime/debug should make the slice large enough.
	if cap(p) < len(memstats.pause_ns)+3 {
		throw("short slice passed to readGCStats")
	}

	// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
	lock(&mheap_.lock)

	n := memstats.numgc
	if n > uint32(len(memstats.pause_ns)) {
		n = uint32(len(memstats.pause_ns))
	}

	// The pause buffer is circular. The most recent pause is at
	// pause_ns[(numgc-1)%len(pause_ns)], and then backward
	// from there to go back farther in time. We deliver the times
	// most recent first (in p[0]).
	p = p[:cap(p)]
	for i := uint32(0); i < n; i++ {
		j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
		p[i] = memstats.pause_ns[j]
		p[n+i] = memstats.pause_end[j]
	}

	p[n+n] = memstats.last_gc
	p[n+n+1] = uint64(memstats.numgc)
	p[n+n+2] = memstats.pause_total_ns
	unlock(&mheap_.lock)
	*pauses = p[:n+n+3]
}

//go:nowritebarrier
func updatememstats(stats *gcstats) {
	if stats != nil {
		*stats = gcstats{}
	}
	for mp := allm; mp != nil; mp = mp.alllink {
		if stats != nil {
			src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
			dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
			for i, v := range src {
				dst[i] += v
			}
			mp.gcstats = gcstats{}
		}
	}

	memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
	memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
	memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
		memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys

	// Calculate memory allocator stats.
	// During program execution we only count number of frees and amount of freed memory.
	// Current number of alive object in the heap and amount of alive heap memory
	// are calculated by scanning all spans.
	// Total number of mallocs is calculated as number of frees plus number of alive objects.
	// Similarly, total amount of allocated memory is calculated as amount of freed memory
	// plus amount of alive heap memory.
	memstats.alloc = 0
	memstats.total_alloc = 0
	memstats.nmalloc = 0
	memstats.nfree = 0
	for i := 0; i < len(memstats.by_size); i++ {
		memstats.by_size[i].nmalloc = 0
		memstats.by_size[i].nfree = 0
	}

	// Flush MCache's to MCentral.
	systemstack(flushallmcaches)

	// Aggregate local stats.
	cachestats()

	// Scan all spans and count number of alive objects.
	lock(&mheap_.lock)
	for _, s := range mheap_.allspans {
		if s.state != mSpanInUse {
			continue
		}
		if s.sizeclass == 0 {
			memstats.nmalloc++
			memstats.alloc += uint64(s.elemsize)
		} else {
			memstats.nmalloc += uint64(s.allocCount)
			memstats.by_size[s.sizeclass].nmalloc += uint64(s.allocCount)
			memstats.alloc += uint64(s.allocCount) * uint64(s.elemsize)
		}
	}
	unlock(&mheap_.lock)

	// Aggregate by size class.
	smallfree := uint64(0)
	memstats.nfree = mheap_.nlargefree
	for i := 0; i < len(memstats.by_size); i++ {
		memstats.nfree += mheap_.nsmallfree[i]
		memstats.by_size[i].nfree = mheap_.nsmallfree[i]
		memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
		smallfree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
	}
	memstats.nfree += memstats.tinyallocs
	memstats.nmalloc += memstats.nfree

	// Calculate derived stats.
	memstats.total_alloc = memstats.alloc + mheap_.largefree + smallfree
	memstats.heap_alloc = memstats.alloc
	memstats.heap_objects = memstats.nmalloc - memstats.nfree
}

//go:nowritebarrier
func cachestats() {
	for i := 0; ; i++ {
		p := allp[i]
		if p == nil {
			break
		}
		c := p.mcache
		if c == nil {
			continue
		}
		purgecachedstats(c)
	}
}

// flushmcache flushes the mcache of allp[i].
//
// The world must be stopped.
//
//go:nowritebarrier
func flushmcache(i int) {
	p := allp[i]
	if p == nil {
		return
	}
	c := p.mcache
	if c == nil {
		return
	}
	c.releaseAll()
	stackcache_clear(c)
}

// flushallmcaches flushes the mcaches of all Ps.
//
// The world must be stopped.
//
//go:nowritebarrier
func flushallmcaches() {
	for i := 0; i < int(gomaxprocs); i++ {
		flushmcache(i)
	}
}

//go:nosplit
func purgecachedstats(c *mcache) {
	// Protected by either heap or GC lock.
	h := &mheap_
	memstats.heap_scan += uint64(c.local_scan)
	c.local_scan = 0
	memstats.tinyallocs += uint64(c.local_tinyallocs)
	c.local_tinyallocs = 0
	memstats.nlookup += uint64(c.local_nlookup)
	c.local_nlookup = 0
	h.largefree += uint64(c.local_largefree)
	c.local_largefree = 0
	h.nlargefree += uint64(c.local_nlargefree)
	c.local_nlargefree = 0
	for i := 0; i < len(c.local_nsmallfree); i++ {
		h.nsmallfree[i] += uint64(c.local_nsmallfree[i])
		c.local_nsmallfree[i] = 0
	}
}

*/

// Atomically increases a given *system* memory stat. We are counting on this
// stat never overflowing a uintptr, so this function must only be used for
// system memory stats.
//
// The current implementation for little endian architectures is based on
// xadduintptr(), which is less than ideal: xadd64() should really be used.
// Using xadduintptr() is a stop-gap solution until arm supports xadd64() that
// doesn't use locks.  (Locks are a problem as they require a valid G, which
// restricts their useability.)
//
// A side-effect of using xadduintptr() is that we need to check for
// overflow errors.
//go:nosplit
func mSysStatInc(sysStat *uint64, n uintptr) {
	if sys.BigEndian != 0 {
		atomic.Xadd64(sysStat, int64(n))
		return
	}
	if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n {
		print("runtime: stat overflow: val ", val, ", n ", n, "\n")
		exit(2)
	}
}

// Atomically decreases a given *system* memory stat. Same comments as
// mSysStatInc apply.
//go:nosplit
func mSysStatDec(sysStat *uint64, n uintptr) {
	if sys.BigEndian != 0 {
		atomic.Xadd64(sysStat, -int64(n))
		return
	}
	if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n {
		print("runtime: stat underflow: val ", val, ", n ", n, "\n")
		exit(2)
	}
}