summaryrefslogtreecommitdiff
path: root/libgo/go/reflect/value.go
blob: f9a3c8a23c5cc71dee35880b2ad3d5b335542e75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package reflect

import (
	"math"
	"runtime"
	"strconv"
	"unsafe"
)

const bigEndian = false // can be smarter if we find a big-endian machine
const ptrSize = unsafe.Sizeof((*byte)(nil))
const cannotSet = "cannot set value obtained from unexported struct field"

// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc unsafe.Pointer, n uintptr) {
	dst := uintptr(adst)
	src := uintptr(asrc)
	switch {
	case src < dst && src+n > dst:
		// byte copy backward
		// careful: i is unsigned
		for i := n; i > 0; {
			i--
			*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
		}
	case (n|src|dst)&(ptrSize-1) != 0:
		// byte copy forward
		for i := uintptr(0); i < n; i++ {
			*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
		}
	default:
		// word copy forward
		for i := uintptr(0); i < n; i += ptrSize {
			*(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
		}
	}
}

// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values.  Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods.  Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
type Value struct {
	// typ holds the type of the value represented by a Value.
	typ *commonType

	// val holds the 1-word representation of the value.
	// If flag's flagIndir bit is set, then val is a pointer to the data.
	// Otherwise val is a word holding the actual data.
	// When the data is smaller than a word, it begins at
	// the first byte (in the memory address sense) of val.
	// We use unsafe.Pointer so that the garbage collector
	// knows that val could be a pointer.
	val unsafe.Pointer

	// flag holds metadata about the value.
	// The lowest bits are flag bits:
	//	- flagRO: obtained via unexported field, so read-only
	//	- flagIndir: val holds a pointer to the data
	//	- flagAddr: v.CanAddr is true (implies flagIndir)
	//	- flagMethod: v is a method value.
	// The next five bits give the Kind of the value.
	// This repeats typ.Kind() except for method values.
	// The remaining 23+ bits give a method number for method values.
	// If flag.kind() != Func, code can assume that flagMethod is unset.
	// If typ.size > ptrSize, code can assume that flagIndir is set.
	flag

	// A method value represents a curried method invocation
	// like r.Read for some receiver r.  The typ+val+flag bits describe
	// the receiver r, but the flag's Kind bits say Func (methods are
	// functions), and the top bits of the flag give the method number
	// in r's type's method table.
}

type flag uintptr

const (
	flagRO flag = 1 << iota
	flagIndir
	flagAddr
	flagMethod
	flagKindShift        = iota
	flagKindWidth        = 5 // there are 27 kinds
	flagKindMask    flag = 1<<flagKindWidth - 1
	flagMethodShift      = flagKindShift + flagKindWidth
)

func (f flag) kind() Kind {
	return Kind((f >> flagKindShift) & flagKindMask)
}

// A ValueError occurs when a Value method is invoked on
// a Value that does not support it.  Such cases are documented
// in the description of each method.
type ValueError struct {
	Method string
	Kind   Kind
}

func (e *ValueError) Error() string {
	if e.Kind == 0 {
		return "reflect: call of " + e.Method + " on zero Value"
	}
	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}

// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
	pc, _, _, _ := runtime.Caller(2)
	f := runtime.FuncForPC(pc)
	if f == nil {
		return "unknown method"
	}
	return f.Name()
}

// An iword is the word that would be stored in an
// interface to represent a given value v.  Specifically, if v is
// bigger than a pointer, its word is a pointer to v's data.
// Otherwise, its word holds the data stored
// in its leading bytes (so is not a pointer).
// Because the value sometimes holds a pointer, we use
// unsafe.Pointer to represent it, so that if iword appears
// in a struct, the garbage collector knows that might be
// a pointer.
type iword unsafe.Pointer

func (v Value) iword() iword {
	if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
		// Have indirect but want direct word.
		return loadIword(v.val, v.typ.size)
	}
	return iword(v.val)
}

// loadIword loads n bytes at p from memory into an iword.
func loadIword(p unsafe.Pointer, n uintptr) iword {
	// Run the copy ourselves instead of calling memmove
	// to avoid moving w to the heap.
	var w iword
	switch n {
	default:
		panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
	case 0:
	case 1:
		*(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
	case 2:
		*(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
	case 3:
		*(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
	case 4:
		*(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
	case 5:
		*(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
	case 6:
		*(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
	case 7:
		*(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
	case 8:
		*(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
	}
	return w
}

// storeIword stores n bytes from w into p.
func storeIword(p unsafe.Pointer, w iword, n uintptr) {
	// Run the copy ourselves instead of calling memmove
	// to avoid moving w to the heap.
	switch n {
	default:
		panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
	case 0:
	case 1:
		*(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
	case 2:
		*(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
	case 3:
		*(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
	case 4:
		*(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
	case 5:
		*(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
	case 6:
		*(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
	case 7:
		*(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
	case 8:
		*(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
	}
}

// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
	typ  *runtime.Type
	word iword
}

// nonEmptyInterface is the header for a interface value with methods.
type nonEmptyInterface struct {
	// see ../runtime/iface.c:/Itab
	itab *struct {
		typ    *runtime.Type // dynamic concrete type
		fun    [100000]unsafe.Pointer // method table
	}
	word iword
}

// mustBe panics if f's kind is not expected.
// Making this a method on flag instead of on Value
// (and embedding flag in Value) means that we can write
// the very clear v.mustBe(Bool) and have it compile into
// v.flag.mustBe(Bool), which will only bother to copy the
// single important word for the receiver.
func (f flag) mustBe(expected Kind) {
	k := f.kind()
	if k != expected {
		panic(&ValueError{methodName(), k})
	}
}

// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
	if f == 0 {
		panic(&ValueError{methodName(), 0})
	}
	if f&flagRO != 0 {
		panic(methodName() + " using value obtained using unexported field")
	}
}

// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
	if f == 0 {
		panic(&ValueError{methodName(), Invalid})
	}
	// Assignable if addressable and not read-only.
	if f&flagRO != 0 {
		panic(methodName() + " using value obtained using unexported field")
	}
	if f&flagAddr == 0 {
		panic(methodName() + " using unaddressable value")
	}
}

// Addr returns a pointer value representing the address of v.
// It panics if CanAddr() returns false.
// Addr is typically used to obtain a pointer to a struct field
// or slice element in order to call a method that requires a
// pointer receiver.
func (v Value) Addr() Value {
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.Addr of unaddressable value")
	}
	return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
}

// Bool returns v's underlying value.
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
	v.mustBe(Bool)
	if v.flag&flagIndir != 0 {
		return *(*bool)(v.val)
	}
	return *(*bool)(unsafe.Pointer(&v.val))
}

// Bytes returns v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) Bytes() []byte {
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.Bytes of non-byte slice")
	}
	// Slice is always bigger than a word; assume flagIndir.
	return *(*[]byte)(v.val)
}

// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable.  A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, or the result of dereferencing a pointer.
// If CanAddr returns false, calling Addr will panic.
func (v Value) CanAddr() bool {
	return v.flag&flagAddr != 0
}

// CanSet returns true if the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt64) will panic.
func (v Value) CanSet() bool {
	return v.flag&(flagAddr|flagRO) == flagAddr
}

// Call calls the function v with the input arguments in.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
// Call panics if v's Kind is not Func.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
// If v is a variadic function, Call creates the variadic slice parameter
// itself, copying in the corresponding values.
func (v Value) Call(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("Call", in)
}

// CallSlice calls the variadic function v with the input arguments in,
// assigning the slice in[len(in)-1] to v's final variadic argument.  
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
// Call panics if v's Kind is not Func or if v is not variadic.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
func (v Value) CallSlice(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("CallSlice", in)
}

func (v Value) call(method string, in []Value) []Value {
	// Get function pointer, type.
	t := v.typ
	var (
		fn   unsafe.Pointer
		rcvr iword
	)
	if v.flag&flagMethod != 0 {
		i := int(v.flag) >> flagMethodShift
		if v.typ.Kind() == Interface {
			tt := (*interfaceType)(unsafe.Pointer(v.typ))
			if i < 0 || i >= len(tt.methods) {
				panic("reflect: broken Value")
			}
			m := &tt.methods[i]
			if m.pkgPath != nil {
				panic(method + " of unexported method")
			}
			t = toCommonType(m.typ)
			iface := (*nonEmptyInterface)(v.val)
			if iface.itab == nil {
				panic(method + " of method on nil interface value")
			}
			fn = iface.itab.fun[i]
			rcvr = iface.word
		} else {
			ut := v.typ.uncommon()
			if ut == nil || i < 0 || i >= len(ut.methods) {
				panic("reflect: broken Value")
			}
			m := &ut.methods[i]
			if m.pkgPath != nil {
				panic(method + " of unexported method")
			}
			fn = m.tfn
			t = toCommonType(m.mtyp)
			rcvr = v.iword()
		}
	} else if v.flag&flagIndir != 0 {
		fn = *(*unsafe.Pointer)(v.val)
	} else {
		fn = v.val
	}

	if fn == nil {
		panic("reflect.Value.Call: call of nil function")
	}

	isSlice := method == "CallSlice"
	n := t.NumIn()
	if isSlice {
		if !t.IsVariadic() {
			panic("reflect: CallSlice of non-variadic function")
		}
		if len(in) < n {
			panic("reflect: CallSlice with too few input arguments")
		}
		if len(in) > n {
			panic("reflect: CallSlice with too many input arguments")
		}
	} else {
		if t.IsVariadic() {
			n--
		}
		if len(in) < n {
			panic("reflect: Call with too few input arguments")
		}
		if !t.IsVariadic() && len(in) > n {
			panic("reflect: Call with too many input arguments")
		}
	}
	for _, x := range in {
		if x.Kind() == Invalid {
			panic("reflect: " + method + " using zero Value argument")
		}
	}
	for i := 0; i < n; i++ {
		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
			panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
		}
	}
	if !isSlice && t.IsVariadic() {
		// prepare slice for remaining values
		m := len(in) - n
		slice := MakeSlice(t.In(n), m, m)
		elem := t.In(n).Elem()
		for i := 0; i < m; i++ {
			x := in[n+i]
			if xt := x.Type(); !xt.AssignableTo(elem) {
				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
			}
			slice.Index(i).Set(x)
		}
		origIn := in
		in = make([]Value, n+1)
		copy(in[:n], origIn)
		in[n] = slice
	}

	nin := len(in)
	if nin != t.NumIn() {
		panic("reflect.Value.Call: wrong argument count")
	}
	nout := t.NumOut()

	if v.flag&flagMethod != 0 {
		nin++
	}
	params := make([]unsafe.Pointer, nin)
	delta := 0
	off := 0
	if v.flag&flagMethod != 0 {
		// Hard-wired first argument.
		p := new(iword)
		*p = rcvr
		params[0] = unsafe.Pointer(p)
		off = 1
	}
	first_pointer := false
	for i, pv := range in {
		pv.mustBeExported()
		targ := t.In(i).(*commonType)
		pv = pv.assignTo("reflect.Value.Call", targ, nil)
		if pv.flag&flagIndir == 0 {
			p := new(unsafe.Pointer)
			*p = pv.val
			params[off] = unsafe.Pointer(p)
		} else {
			params[off] = pv.val
		}
		if i == 0 && Kind(targ.kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ) {
			p := new(unsafe.Pointer)
			*p = params[off]
			params[off] = unsafe.Pointer(p)
			first_pointer = true
		}
		off++
	}

	ret := make([]Value, nout)
	results := make([]unsafe.Pointer, nout)
	for i := 0; i < nout; i++ {
		v := New(t.Out(i))
		results[i] = unsafe.Pointer(v.Pointer())
		ret[i] = Indirect(v)
	}

	var pp *unsafe.Pointer
	if len(params) > 0 {
		pp = &params[0]
	}
	var pr *unsafe.Pointer
	if len(results) > 0 {
		pr = &results[0]
	}

	call(t, fn, v.flag&flagMethod != 0, first_pointer, pp, pr)

	return ret
}

// gccgo specific test to see if typ is a method.  We can tell by
// looking at the string to see if there is a receiver.  We need this
// because for gccgo all methods take pointer receivers.
func isMethod(t *commonType) bool {
	if Kind(t.kind) != Func {
		return false
	}
	s := *t.string
	parens := 0
	params := 0
	sawRet := false
	for i, c := range s {
		if c == '(' {
			parens++
			params++
		} else if c == ')' {
			parens--
		} else if parens == 0 && c == ' ' && s[i + 1] != '(' && !sawRet {
			params++
			sawRet = true
		}
	}
	return params > 2
}

// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
	k := v.kind()
	switch k {
	case Array:
		return v.typ.Len()
	case Chan:
		return int(chancap(*(*iword)(v.iword())))
	case Slice:
		// Slice is always bigger than a word; assume flagIndir.
		return (*SliceHeader)(v.val).Cap
	}
	panic(&ValueError{"reflect.Value.Cap", k})
}

// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
	v.mustBe(Chan)
	v.mustBeExported()
	chanclose(*(*iword)(v.iword()))
}

// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
	k := v.kind()
	switch k {
	case Complex64:
		if v.flag&flagIndir != 0 {
			return complex128(*(*complex64)(v.val))
		}
		return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
	case Complex128:
		// complex128 is always bigger than a word; assume flagIndir.
		return *(*complex128)(v.val)
	}
	panic(&ValueError{"reflect.Value.Complex", k})
}

// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
	k := v.kind()
	switch k {
	case Interface:
		var (
			typ *commonType
			val unsafe.Pointer
		)
		if v.typ.NumMethod() == 0 {
			eface := (*emptyInterface)(v.val)
			if eface.typ == nil {
				// nil interface value
				return Value{}
			}
			typ = toCommonType(eface.typ)
			val = unsafe.Pointer(eface.word)
		} else {
			iface := (*nonEmptyInterface)(v.val)
			if iface.itab == nil {
				// nil interface value
				return Value{}
			}
			typ = toCommonType(iface.itab.typ)
			val = unsafe.Pointer(iface.word)
		}
		fl := v.flag & flagRO
		fl |= flag(typ.Kind()) << flagKindShift
		if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
			fl |= flagIndir
		}
		return Value{typ, val, fl}

	case Ptr:
		val := v.val
		if v.flag&flagIndir != 0 {
			val = *(*unsafe.Pointer)(val)
		}
		// The returned value's address is v's value.
		if val == nil {
			return Value{}
		}
		tt := (*ptrType)(unsafe.Pointer(v.typ))
		typ := toCommonType(tt.elem)
		fl := v.flag&flagRO | flagIndir | flagAddr
		fl |= flag(typ.Kind() << flagKindShift)
		return Value{typ, val, fl}
	}
	panic(&ValueError{"reflect.Value.Elem", k})
}

// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct or i is out of range.
func (v Value) Field(i int) Value {
	v.mustBe(Struct)
	tt := (*structType)(unsafe.Pointer(v.typ))
	if i < 0 || i >= len(tt.fields) {
		panic("reflect: Field index out of range")
	}
	field := &tt.fields[i]
	typ := toCommonType(field.typ)

	// Inherit permission bits from v.
	fl := v.flag & (flagRO | flagIndir | flagAddr)
	// Using an unexported field forces flagRO.
	if field.pkgPath != nil {
		fl |= flagRO
	}
	fl |= flag(typ.Kind()) << flagKindShift

	var val unsafe.Pointer
	switch {
	case fl&flagIndir != 0:
		// Indirect.  Just bump pointer.
		val = unsafe.Pointer(uintptr(v.val) + field.offset)
	case bigEndian:
		// Direct.  Discard leading bytes.
		val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
	default:
		// Direct.  Discard leading bytes.
		val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
	}

	return Value{typ, val, fl}
}

// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
	v.mustBe(Struct)
	for i, x := range index {
		if i > 0 {
			if v.Kind() == Ptr && v.Elem().Kind() == Struct {
				v = v.Elem()
			}
		}
		v = v.Field(x)
	}
	return v
}

// FieldByName returns the struct field with the given name.
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
	v.mustBe(Struct)
	if f, ok := v.typ.FieldByName(name); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// FieldByNameFunc returns the struct field with a name
// that satisfies the match function.
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
	v.mustBe(Struct)
	if f, ok := v.typ.FieldByNameFunc(match); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// Float returns v's underlying value, as an float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
	k := v.kind()
	switch k {
	case Float32:
		if v.flag&flagIndir != 0 {
			return float64(*(*float32)(v.val))
		}
		return float64(*(*float32)(unsafe.Pointer(&v.val)))
	case Float64:
		if v.flag&flagIndir != 0 {
			return *(*float64)(v.val)
		}
		return *(*float64)(unsafe.Pointer(&v.val))
	}
	panic(&ValueError{"reflect.Value.Float", k})
}

// Index returns v's i'th element.
// It panics if v's Kind is not Array or Slice or i is out of range.
func (v Value) Index(i int) Value {
	k := v.kind()
	switch k {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		if i < 0 || i > int(tt.len) {
			panic("reflect: array index out of range")
		}
		typ := toCommonType(tt.elem)
		fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
		fl |= flag(typ.Kind()) << flagKindShift
		offset := uintptr(i) * typ.size

		var val unsafe.Pointer
		switch {
		case fl&flagIndir != 0:
			// Indirect.  Just bump pointer.
			val = unsafe.Pointer(uintptr(v.val) + offset)
		case bigEndian:
			// Direct.  Discard leading bytes.
			val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
		default:
			// Direct.  Discard leading bytes.
			val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
		}
		return Value{typ, val, fl}

	case Slice:
		// Element flag same as Elem of Ptr.
		// Addressable, indirect, possibly read-only.
		fl := flagAddr | flagIndir | v.flag&flagRO
		s := (*SliceHeader)(v.val)
		if i < 0 || i >= s.Len {
			panic("reflect: slice index out of range")
		}
		tt := (*sliceType)(unsafe.Pointer(v.typ))
		typ := toCommonType(tt.elem)
		fl |= flag(typ.Kind()) << flagKindShift
		val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
		return Value{typ, val, fl}
	}
	panic(&ValueError{"reflect.Value.Index", k})
}

// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
	k := v.kind()
	var p unsafe.Pointer
	if v.flag&flagIndir != 0 {
		p = v.val
	} else {
		// The escape analysis is good enough that &v.val
		// does not trigger a heap allocation.
		p = unsafe.Pointer(&v.val)
	}
	switch k {
	case Int:
		return int64(*(*int)(p))
	case Int8:
		return int64(*(*int8)(p))
	case Int16:
		return int64(*(*int16)(p))
	case Int32:
		return int64(*(*int32)(p))
	case Int64:
		return int64(*(*int64)(p))
	}
	panic(&ValueError{"reflect.Value.Int", k})
}

// CanInterface returns true if Interface can be used without panicking.
func (v Value) CanInterface() bool {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
	}
	return v.flag&(flagMethod|flagRO) == 0
}

// Interface returns v's value as an interface{}.
// If v is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
// interface value, so it panics.
func (v Value) Interface() interface{} {
	return valueInterface(v, true)
}

func valueInterface(v Value, safe bool) interface{} {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.Interface", 0})
	}
	if v.flag&flagMethod != 0 {
		panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
	}

	if safe && v.flag&flagRO != 0 {
		// Do not allow access to unexported values via Interface,
		// because they might be pointers that should not be 
		// writable or methods or function that should not be callable.
		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
	}

	k := v.kind()
	if k == Interface {
		// Special case: return the element inside the interface.
		// Empty interface has one layout, all interfaces with
		// methods have a second layout.
		if v.NumMethod() == 0 {
			return *(*interface{})(v.val)
		}
		return *(*interface {
			M()
		})(v.val)
	}

	// Non-interface value.
	var eface emptyInterface
	eface.typ = v.typ.runtimeType()
	eface.word = v.iword()
	return *(*interface{})(unsafe.Pointer(&eface))
}

// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
	v.mustBe(Interface)
	// We treat this as a read operation, so we allow
	// it even for unexported data, because the caller
	// has to import "unsafe" to turn it into something
	// that can be abused.
	// Interface value is always bigger than a word; assume flagIndir.
	return *(*[2]uintptr)(v.val)
}

// IsNil returns true if v is a nil value.
// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
func (v Value) IsNil() bool {
	k := v.kind()
	switch k {
	case Chan, Func, Map, Ptr:
		if v.flag&flagMethod != 0 {
			panic("reflect: IsNil of method Value")
		}
		ptr := v.val
		if v.flag&flagIndir != 0 {
			ptr = *(*unsafe.Pointer)(ptr)
		}
		return ptr == nil
	case Interface, Slice:
		// Both interface and slice are nil if first word is 0.
		// Both are always bigger than a word; assume flagIndir.
		return *(*unsafe.Pointer)(v.val) == nil
	}
	panic(&ValueError{"reflect.Value.IsNil", k})
}

// IsValid returns true if v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
	return v.flag != 0
}

// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
	return v.kind()
}

// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
	k := v.kind()
	switch k {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		return int(tt.len)
	case Chan:
		return int(chanlen(*(*iword)(v.iword())))
	case Map:
		return int(maplen(*(*iword)(v.iword())))
	case Slice:
		// Slice is bigger than a word; assume flagIndir.
		return (*SliceHeader)(v.val).Len
	case String:
		// String is bigger than a word; assume flagIndir.
		return (*StringHeader)(v.val).Len
	}
	panic(&ValueError{"reflect.Value.Len", k})
}

// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not Map.
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))

	// Do not require key to be exported, so that DeepEqual
	// and other programs can use all the keys returned by
	// MapKeys as arguments to MapIndex.  If either the map
	// or the key is unexported, though, the result will be
	// considered unexported.  This is consistent with the
	// behavior for structs, which allow read but not write
	// of unexported fields.
	key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)

	word, ok := mapaccess(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword())
	if !ok {
		return Value{}
	}
	typ := toCommonType(tt.elem)
	fl := (v.flag | key.flag) & flagRO
	if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
		fl |= flagIndir
	}
	fl |= flag(typ.Kind()) << flagKindShift
	return Value{typ, unsafe.Pointer(word), fl}
}

// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not Map.
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))
	keyType := toCommonType(tt.key)

	fl := v.flag & flagRO
	fl |= flag(keyType.Kind()) << flagKindShift
	if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
		fl |= flagIndir
	}

	m := *(*iword)(v.iword())
	mlen := int32(0)
	if m != nil {
		mlen = maplen(m)
	}
	it := mapiterinit(v.typ.runtimeType(), m)
	a := make([]Value, mlen)
	var i int
	for i = 0; i < len(a); i++ {
		keyWord, ok := mapiterkey(it)
		if !ok {
			break
		}
		a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
		mapiternext(it)
	}
	return a[:i]
}

// Method returns a function value corresponding to v's i'th method.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// Method panics if i is out of range.
func (v Value) Method(i int) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.Method", Invalid})
	}
	if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
		panic("reflect: Method index out of range")
	}
	fl := v.flag & (flagRO | flagAddr | flagIndir)
	fl |= flag(Func) << flagKindShift
	fl |= flag(i)<<flagMethodShift | flagMethod
	return Value{v.typ, v.val, fl}
}

// NumMethod returns the number of methods in the value's method set.
func (v Value) NumMethod() int {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return 0
	}
	return v.typ.NumMethod()
}

// MethodByName returns a function value corresponding to the method
// of v with the given name.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// It returns the zero Value if no method was found.
func (v Value) MethodByName(name string) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return Value{}
	}
	m, ok := v.typ.MethodByName(name)
	if !ok {
		return Value{}
	}
	return v.Method(m.Index)
}

// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
	v.mustBe(Struct)
	tt := (*structType)(unsafe.Pointer(v.typ))
	return len(tt.fields)
}

// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
	k := v.kind()
	switch k {
	case Complex64:
		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
	case Complex128:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowComplex", k})
}

// OverflowFloat returns true if the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
	k := v.kind()
	switch k {
	case Float32:
		return overflowFloat32(x)
	case Float64:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowFloat", k})
}

func overflowFloat32(x float64) bool {
	if x < 0 {
		x = -x
	}
	return math.MaxFloat32 <= x && x <= math.MaxFloat64
}

// OverflowInt returns true if the int64 x cannot be represented by v's type.
// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
func (v Value) OverflowInt(x int64) bool {
	k := v.kind()
	switch k {
	case Int, Int8, Int16, Int32, Int64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowInt", k})
}

// OverflowUint returns true if the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) OverflowUint(x uint64) bool {
	k := v.kind()
	switch k {
	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowUint", k})
}

// Pointer returns v's value as a uintptr.
// It returns uintptr instead of unsafe.Pointer so that
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
func (v Value) Pointer() uintptr {
	k := v.kind()
	switch k {
	case Chan, Func, Map, Ptr, UnsafePointer:
		if k == Func && v.flag&flagMethod != 0 {
			panic("reflect.Value.Pointer of method Value")
		}
		p := v.val
		if v.flag&flagIndir != 0 {
			p = *(*unsafe.Pointer)(p)
		}
		return uintptr(p)
	case Slice:
		return (*SliceHeader)(v.val).Data
	}
	panic(&ValueError{"reflect.Value.Pointer", k})
}

// Recv receives and returns a value from the channel v.
// It panics if v's Kind is not Chan.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(false)
}

// internal recv, possibly non-blocking (nb).
// v is known to be a channel.
func (v Value) recv(nb bool) (val Value, ok bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&RecvDir == 0 {
		panic("recv on send-only channel")
	}
	word, selected, ok := chanrecv(v.typ.runtimeType(), *(*iword)(v.iword()), nb)
	if selected {
		typ := toCommonType(tt.elem)
		fl := flag(typ.Kind()) << flagKindShift
		if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
			fl |= flagIndir
		}
		val = Value{typ, unsafe.Pointer(word), fl}
	}
	return
}

// Send sends x on the channel v.
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) Send(x Value) {
	v.mustBe(Chan)
	v.mustBeExported()
	v.send(x, false)
}

// internal send, possibly non-blocking.
// v is known to be a channel.
func (v Value) send(x Value, nb bool) (selected bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&SendDir == 0 {
		panic("send on recv-only channel")
	}
	x.mustBeExported()
	x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)
	return chansend(v.typ.runtimeType(), *(*iword)(v.iword()), x.iword(), nb)
}

// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
	v.mustBeAssignable()
	x.mustBeExported() // do not let unexported x leak
	var target *interface{}
	if v.kind() == Interface {
		target = (*interface{})(v.val)
	}
	x = x.assignTo("reflect.Set", v.typ, target)
	if x.flag&flagIndir != 0 {
		memmove(v.val, x.val, v.typ.size)
	} else {
		storeIword(v.val, iword(x.val), v.typ.size)
	}
}

// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
	v.mustBeAssignable()
	v.mustBe(Bool)
	*(*bool)(v.val) = x
}

// SetBytes sets v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) SetBytes(x []byte) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.SetBytes of non-byte slice")
	}
	*(*[]byte)(v.val) = x
}

// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetComplex", k})
	case Complex64:
		*(*complex64)(v.val) = complex64(x)
	case Complex128:
		*(*complex128)(v.val) = x
	}
}

// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetFloat", k})
	case Float32:
		*(*float32)(v.val) = float32(x)
	case Float64:
		*(*float64)(v.val) = x
	}
}

// SetInt sets v's underlying value to x.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
func (v Value) SetInt(x int64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetInt", k})
	case Int:
		*(*int)(v.val) = int(x)
	case Int8:
		*(*int8)(v.val) = int8(x)
	case Int16:
		*(*int16)(v.val) = int16(x)
	case Int32:
		*(*int32)(v.val) = int32(x)
	case Int64:
		*(*int64)(v.val) = x
	}
}

// SetLen sets v's length to n.
// It panics if v's Kind is not Slice.
func (v Value) SetLen(n int) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	s := (*SliceHeader)(v.val)
	if n < 0 || n > int(s.Cap) {
		panic("reflect: slice length out of range in SetLen")
	}
	s.Len = n
}

// SetMapIndex sets the value associated with key in the map v to val.
// It panics if v's Kind is not Map.
// If val is the zero Value, SetMapIndex deletes the key from the map.
// As in Go, key's value must be assignable to the map's key type,
// and val's value must be assignable to the map's value type.
func (v Value) SetMapIndex(key, val Value) {
	v.mustBe(Map)
	v.mustBeExported()
	key.mustBeExported()
	tt := (*mapType)(unsafe.Pointer(v.typ))
	key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)
	if val.typ != nil {
		val.mustBeExported()
		val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)
	}
	mapassign(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)
}

// SetUint sets v's underlying value to x.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetUint", k})
	case Uint:
		*(*uint)(v.val) = uint(x)
	case Uint8:
		*(*uint8)(v.val) = uint8(x)
	case Uint16:
		*(*uint16)(v.val) = uint16(x)
	case Uint32:
		*(*uint32)(v.val) = uint32(x)
	case Uint64:
		*(*uint64)(v.val) = x
	case Uintptr:
		*(*uintptr)(v.val) = uintptr(x)
	}
}

// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
	v.mustBeAssignable()
	v.mustBe(UnsafePointer)
	*(*unsafe.Pointer)(v.val) = x
}

// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
	v.mustBeAssignable()
	v.mustBe(String)
	*(*string)(v.val) = x
}

// Slice returns a slice of v.
// It panics if v's Kind is not Array or Slice.
func (v Value) Slice(beg, end int) Value {
	var (
		cap  int
		typ  *sliceType
		base unsafe.Pointer
	)
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.Slice", k})
	case Array:
		if v.flag&flagAddr == 0 {
			panic("reflect.Value.Slice: slice of unaddressable array")
		}
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		cap = int(tt.len)
		typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))
		base = v.val
	case Slice:
		typ = (*sliceType)(unsafe.Pointer(v.typ))
		s := (*SliceHeader)(v.val)
		base = unsafe.Pointer(s.Data)
		cap = s.Cap

	}
	if beg < 0 || end < beg || end > cap {
		panic("reflect.Value.Slice: slice index out of bounds")
	}

	// Declare slice so that gc can see the base pointer in it.
	var x []byte

	// Reinterpret as *SliceHeader to edit.
	s := (*SliceHeader)(unsafe.Pointer(&x))
	s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()
	s.Len = end - beg
	s.Cap = cap - beg

	fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
	return Value{typ.common(), unsafe.Pointer(&x), fl}
}

// String returns the string v's underlying value, as a string.
// String is a special case because of Go's String method convention.
// Unlike the other getters, it does not panic if v's Kind is not String.
// Instead, it returns a string of the form "<T value>" where T is v's type.
func (v Value) String() string {
	switch k := v.kind(); k {
	case Invalid:
		return "<invalid Value>"
	case String:
		return *(*string)(v.val)
	}
	// If you call String on a reflect.Value of other type, it's better to
	// print something than to panic. Useful in debugging.
	return "<" + v.typ.String() + " Value>"
}

// TryRecv attempts to receive a value from the channel v but will not block.
// It panics if v's Kind is not Chan.
// If the receive cannot finish without blocking, x is the zero Value.
// The boolean ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) TryRecv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(true)
}

// TrySend attempts to send x on the channel v but will not block.
// It panics if v's Kind is not Chan.
// It returns true if the value was sent, false otherwise.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) TrySend(x Value) bool {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.send(x, true)
}

// Type returns v's type.
func (v Value) Type() Type {
	f := v.flag
	if f == 0 {
		panic(&ValueError{"reflect.Value.Type", Invalid})
	}
	if f&flagMethod == 0 {
		// Easy case
		return v.typ.toType()
	}

	// Method value.
	// v.typ describes the receiver, not the method type.
	i := int(v.flag) >> flagMethodShift
	if v.typ.Kind() == Interface {
		// Method on interface.
		tt := (*interfaceType)(unsafe.Pointer(v.typ))
		if i < 0 || i >= len(tt.methods) {
			panic("reflect: broken Value")
		}
		m := &tt.methods[i]
		return toCommonType(m.typ).toType()
	}
	// Method on concrete type.
	ut := v.typ.uncommon()
	if ut == nil || i < 0 || i >= len(ut.methods) {
		panic("reflect: broken Value")
	}
	m := &ut.methods[i]
	return toCommonType(m.mtyp).toType()
}

// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) Uint() uint64 {
	k := v.kind()
	var p unsafe.Pointer
	if v.flag&flagIndir != 0 {
		p = v.val
	} else {
		// The escape analysis is good enough that &v.val
		// does not trigger a heap allocation.
		p = unsafe.Pointer(&v.val)
	}
	switch k {
	case Uint:
		return uint64(*(*uint)(p))
	case Uint8:
		return uint64(*(*uint8)(p))
	case Uint16:
		return uint64(*(*uint16)(p))
	case Uint32:
		return uint64(*(*uint32)(p))
	case Uint64:
		return uint64(*(*uint64)(p))
	case Uintptr:
		return uint64(*(*uintptr)(p))
	}
	panic(&ValueError{"reflect.Value.Uint", k})
}

// UnsafeAddr returns a pointer to v's data.
// It is for advanced clients that also import the "unsafe" package.
// It panics if v is not addressable.
func (v Value) UnsafeAddr() uintptr {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
	}
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.UnsafeAddr of unaddressable value")
	}
	return uintptr(v.val)
}

// StringHeader is the runtime representation of a string.
// It cannot be used safely or portably.
type StringHeader struct {
	Data uintptr
	Len  int
}

// SliceHeader is the runtime representation of a slice.
// It cannot be used safely or portably.
type SliceHeader struct {
	Data uintptr
	Len  int
	Cap  int
}

func typesMustMatch(what string, t1, t2 Type) {
	if t1 != t2 {
		panic(what + ": " + t1.String() + " != " + t2.String())
	}
}

// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s Value, extra int) (Value, int, int) {
	i0 := s.Len()
	i1 := i0 + extra
	if i1 < i0 {
		panic("reflect.Append: slice overflow")
	}
	m := s.Cap()
	if i1 <= m {
		return s.Slice(0, i1), i0, i1
	}
	if m == 0 {
		m = extra
	} else {
		for m < i1 {
			if i0 < 1024 {
				m += m
			} else {
				m += m / 4
			}
		}
	}
	t := MakeSlice(s.Type(), i1, m)
	Copy(t, s)
	return t, i0, i1
}

// Append appends the values x to a slice s and returns the resulting slice.
// As in Go, each x's value must be assignable to the slice's element type.
func Append(s Value, x ...Value) Value {
	s.mustBe(Slice)
	s, i0, i1 := grow(s, len(x))
	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
		s.Index(i).Set(x[j])
	}
	return s
}

// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t Value) Value {
	s.mustBe(Slice)
	t.mustBe(Slice)
	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
	s, i0, i1 := grow(s, t.Len())
	Copy(s.Slice(i0, i1), t)
	return s
}

// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// Dst and src each must have kind Slice or Array, and
// dst and src must have the same element type.
func Copy(dst, src Value) int {
	dk := dst.kind()
	if dk != Array && dk != Slice {
		panic(&ValueError{"reflect.Copy", dk})
	}
	if dk == Array {
		dst.mustBeAssignable()
	}
	dst.mustBeExported()

	sk := src.kind()
	if sk != Array && sk != Slice {
		panic(&ValueError{"reflect.Copy", sk})
	}
	src.mustBeExported()

	de := dst.typ.Elem()
	se := src.typ.Elem()
	typesMustMatch("reflect.Copy", de, se)

	n := dst.Len()
	if sn := src.Len(); n > sn {
		n = sn
	}

	// If sk is an in-line array, cannot take its address.
	// Instead, copy element by element.
	if src.flag&flagIndir == 0 {
		for i := 0; i < n; i++ {
			dst.Index(i).Set(src.Index(i))
		}
		return n
	}

	// Copy via memmove.
	var da, sa unsafe.Pointer
	if dk == Array {
		da = dst.val
	} else {
		da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
	}
	if sk == Array {
		sa = src.val
	} else {
		sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
	}
	memmove(da, sa, uintptr(n)*de.Size())
	return n
}

/*
 * constructors
 */

// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
	if typ.Kind() != Slice {
		panic("reflect.MakeSlice of non-slice type")
	}

	// Declare slice so that gc can see the base pointer in it.
	var x []byte

	// Reinterpret as *SliceHeader to edit.
	s := (*SliceHeader)(unsafe.Pointer(&x))
	s.Data = uintptr(unsafe.NewArray(typ.Elem(), cap))
	s.Len = len
	s.Cap = cap

	return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
}

// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
	if typ.Kind() != Chan {
		panic("reflect.MakeChan of non-chan type")
	}
	if buffer < 0 {
		panic("reflect.MakeChan: negative buffer size")
	}
	if typ.ChanDir() != BothDir {
		panic("reflect.MakeChan: unidirectional channel type")
	}
	ch := makechan(typ.runtimeType(), uint32(buffer))
	return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan)<<flagKindShift)}
}

// MakeMap creates a new map of the specified type.
func MakeMap(typ Type) Value {
	if typ.Kind() != Map {
		panic("reflect.MakeMap of non-map type")
	}
	m := makemap(typ.runtimeType())
	return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map)<<flagKindShift)}
}

// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
	if v.Kind() != Ptr {
		return v
	}
	return v.Elem()
}

// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i.  ValueOf(nil) returns the zero Value.
func ValueOf(i interface{}) Value {
	if i == nil {
		return Value{}
	}

	// TODO(rsc): Eliminate this terrible hack.
	// In the call to packValue, eface.typ doesn't escape,
	// and eface.word is an integer.  So it looks like
	// i (= eface) doesn't escape.  But really it does,
	// because eface.word is actually a pointer.
	escapes(i)

	// For an interface value with the noAddr bit set,
	// the representation is identical to an empty interface.
	eface := *(*emptyInterface)(unsafe.Pointer(&i))
	typ := toCommonType(eface.typ)
	fl := flag(typ.Kind()) << flagKindShift
	if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
		fl |= flagIndir
	}
	return Value{typ, unsafe.Pointer(eface.word), fl}
}

// Zero returns a Value representing a zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
func Zero(typ Type) Value {
	if typ == nil {
		panic("reflect: Zero(nil)")
	}
	t := typ.common()
	fl := flag(t.Kind()) << flagKindShift
	if t.Kind() == Ptr || t.Kind() == UnsafePointer {
		return Value{t, nil, fl}
	}
	return Value{t, unsafe.New(typ), fl | flagIndir}
}

// New returns a Value representing a pointer to a new zero value
// for the specified type.  That is, the returned Value's Type is PtrTo(t).
func New(typ Type) Value {
	if typ == nil {
		panic("reflect: New(nil)")
	}
	ptr := unsafe.New(typ)
	fl := flag(Ptr) << flagKindShift
	return Value{typ.common().ptrTo(), ptr, fl}
}

// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {
	if v.flag&flagMethod != 0 {
		panic(context + ": cannot assign method value to type " + dst.String())
	}

	switch {
	case directlyAssignable(dst, v.typ):
		// Overwrite type so that they match.
		// Same memory layout, so no harm done.
		v.typ = dst
		fl := v.flag & (flagRO | flagAddr | flagIndir)
		fl |= flag(dst.Kind()) << flagKindShift
		return Value{dst, v.val, fl}

	case implements(dst, v.typ):
		if target == nil {
			target = new(interface{})
		}
		x := valueInterface(v, false)
		if dst.NumMethod() == 0 {
			*target = x
		} else {
			ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))
		}
		return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
	}

	// Failed.
	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}

// implemented in ../pkg/runtime
func chancap(ch iword) int32
func chanclose(ch iword)
func chanlen(ch iword) int32
func chanrecv(t *runtime.Type, ch iword, nb bool) (val iword, selected, received bool)
func chansend(t *runtime.Type, ch iword, val iword, nb bool) bool

func makechan(typ *runtime.Type, size uint32) (ch iword)
func makemap(t *runtime.Type) (m iword)
func mapaccess(t *runtime.Type, m iword, key iword) (val iword, ok bool)
func mapassign(t *runtime.Type, m iword, key, val iword, ok bool)
func mapiterinit(t *runtime.Type, m iword) *byte
func mapiterkey(it *byte) (key iword, ok bool)
func mapiternext(it *byte)
func maplen(m iword) int32

func call(typ *commonType, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
func ifaceE2I(t *runtime.Type, src interface{}, dst unsafe.Pointer)

// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
	if dummy.b {
		dummy.x = x
	}
}

var dummy struct {
	b bool
	x interface{}
}