1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package gob manages streams of gobs - binary values exchanged between an
Encoder (transmitter) and a Decoder (receiver). A typical use is transporting
arguments and results of remote procedure calls (RPCs) such as those provided by
package "rpc".
A stream of gobs is self-describing. Each data item in the stream is preceded by
a specification of its type, expressed in terms of a small set of predefined
types. Pointers are not transmitted, but the things they point to are
transmitted; that is, the values are flattened. Recursive types work fine, but
recursive values (data with cycles) are problematic. This may change.
To use gobs, create an Encoder and present it with a series of data items as
values or addresses that can be dereferenced to values. The Encoder makes sure
all type information is sent before it is needed. At the receive side, a
Decoder retrieves values from the encoded stream and unpacks them into local
variables.
The source and destination values/types need not correspond exactly. For structs,
fields (identified by name) that are in the source but absent from the receiving
variable will be ignored. Fields that are in the receiving variable but missing
from the transmitted type or value will be ignored in the destination. If a field
with the same name is present in both, their types must be compatible. Both the
receiver and transmitter will do all necessary indirection and dereferencing to
convert between gobs and actual Go values. For instance, a gob type that is
schematically,
struct { A, B int }
can be sent from or received into any of these Go types:
struct { A, B int } // the same
*struct { A, B int } // extra indirection of the struct
struct { *A, **B int } // extra indirection of the fields
struct { A, B int64 } // different concrete value type; see below
It may also be received into any of these:
struct { A, B int } // the same
struct { B, A int } // ordering doesn't matter; matching is by name
struct { A, B, C int } // extra field (C) ignored
struct { B int } // missing field (A) ignored; data will be dropped
struct { B, C int } // missing field (A) ignored; extra field (C) ignored.
Attempting to receive into these types will draw a decode error:
struct { A int; B uint } // change of signedness for B
struct { A int; B float } // change of type for B
struct { } // no field names in common
struct { C, D int } // no field names in common
Integers are transmitted two ways: arbitrary precision signed integers or
arbitrary precision unsigned integers. There is no int8, int16 etc.
discrimination in the gob format; there are only signed and unsigned integers. As
described below, the transmitter sends the value in a variable-length encoding;
the receiver accepts the value and stores it in the destination variable.
Floating-point numbers are always sent using IEEE-754 64-bit precision (see
below).
Signed integers may be received into any signed integer variable: int, int16, etc.;
unsigned integers may be received into any unsigned integer variable; and floating
point values may be received into any floating point variable. However,
the destination variable must be able to represent the value or the decode
operation will fail.
Structs, arrays and slices are also supported. Strings and arrays of bytes are
supported with a special, efficient representation (see below). When a slice is
decoded, if the existing slice has capacity the slice will be extended in place;
if not, a new array is allocated. Regardless, the length of the resulting slice
reports the number of elements decoded.
Functions and channels cannot be sent in a gob. Attempting
to encode a value that contains one will fail.
The rest of this comment documents the encoding, details that are not important
for most users. Details are presented bottom-up.
An unsigned integer is sent one of two ways. If it is less than 128, it is sent
as a byte with that value. Otherwise it is sent as a minimal-length big-endian
(high byte first) byte stream holding the value, preceded by one byte holding the
byte count, negated. Thus 0 is transmitted as (00), 7 is transmitted as (07) and
256 is transmitted as (FE 01 00).
A boolean is encoded within an unsigned integer: 0 for false, 1 for true.
A signed integer, i, is encoded within an unsigned integer, u. Within u, bits 1
upward contain the value; bit 0 says whether they should be complemented upon
receipt. The encode algorithm looks like this:
uint u;
if i < 0 {
u = (^i << 1) | 1 // complement i, bit 0 is 1
} else {
u = (i << 1) // do not complement i, bit 0 is 0
}
encodeUnsigned(u)
The low bit is therefore analogous to a sign bit, but making it the complement bit
instead guarantees that the largest negative integer is not a special case. For
example, -129=^128=(^256>>1) encodes as (FE 01 01).
Floating-point numbers are always sent as a representation of a float64 value.
That value is converted to a uint64 using math.Float64bits. The uint64 is then
byte-reversed and sent as a regular unsigned integer. The byte-reversal means the
exponent and high-precision part of the mantissa go first. Since the low bits are
often zero, this can save encoding bytes. For instance, 17.0 is encoded in only
three bytes (FE 31 40).
Strings and slices of bytes are sent as an unsigned count followed by that many
uninterpreted bytes of the value.
All other slices and arrays are sent as an unsigned count followed by that many
elements using the standard gob encoding for their type, recursively.
Maps are sent as an unsigned count followed by that man key, element
pairs. Empty but non-nil maps are sent, so if the sender has allocated
a map, the receiver will allocate a map even no elements are
transmitted.
Structs are sent as a sequence of (field number, field value) pairs. The field
value is sent using the standard gob encoding for its type, recursively. If a
field has the zero value for its type, it is omitted from the transmission. The
field number is defined by the type of the encoded struct: the first field of the
encoded type is field 0, the second is field 1, etc. When encoding a value, the
field numbers are delta encoded for efficiency and the fields are always sent in
order of increasing field number; the deltas are therefore unsigned. The
initialization for the delta encoding sets the field number to -1, so an unsigned
integer field 0 with value 7 is transmitted as unsigned delta = 1, unsigned value
= 7 or (01 07). Finally, after all the fields have been sent a terminating mark
denotes the end of the struct. That mark is a delta=0 value, which has
representation (00).
Interface types are not checked for compatibility; all interface types are
treated, for transmission, as members of a single "interface" type, analogous to
int or []byte - in effect they're all treated as interface{}. Interface values
are transmitted as a string identifying the concrete type being sent (a name
that must be pre-defined by calling Register), followed by a byte count of the
length of the following data (so the value can be skipped if it cannot be
stored), followed by the usual encoding of concrete (dynamic) value stored in
the interface value. (A nil interface value is identified by the empty string
and transmits no value.) Upon receipt, the decoder verifies that the unpacked
concrete item satisfies the interface of the receiving variable.
The representation of types is described below. When a type is defined on a given
connection between an Encoder and Decoder, it is assigned a signed integer type
id. When Encoder.Encode(v) is called, it makes sure there is an id assigned for
the type of v and all its elements and then it sends the pair (typeid, encoded-v)
where typeid is the type id of the encoded type of v and encoded-v is the gob
encoding of the value v.
To define a type, the encoder chooses an unused, positive type id and sends the
pair (-type id, encoded-type) where encoded-type is the gob encoding of a wireType
description, constructed from these types:
type wireType struct {
ArrayT *ArrayType
SliceT *SliceType
StructT *StructType
MapT *MapType
}
type arrayType struct {
CommonType
Elem typeId
Len int
}
type CommonType struct {
Name string // the name of the struct type
Id int // the id of the type, repeated so it's inside the type
}
type sliceType struct {
CommonType
Elem typeId
}
type structType struct {
CommonType
Field []*fieldType // the fields of the struct.
}
type fieldType struct {
Name string // the name of the field.
Id int // the type id of the field, which must be already defined
}
type mapType struct {
CommonType
Key typeId
Elem typeId
}
If there are nested type ids, the types for all inner type ids must be defined
before the top-level type id is used to describe an encoded-v.
For simplicity in setup, the connection is defined to understand these types a
priori, as well as the basic gob types int, uint, etc. Their ids are:
bool 1
int 2
uint 3
float 4
[]byte 5
string 6
complex 7
interface 8
// gap for reserved ids.
WireType 16
ArrayType 17
CommonType 18
SliceType 19
StructType 20
FieldType 21
// 22 is slice of fieldType.
MapType 23
Finally, each message created by a call to Encode is preceded by an encoded
unsigned integer count of the number of bytes remaining in the message. After
the initial type name, interface values are wrapped the same way; in effect, the
interface value acts like a recursive invocation of Encode.
In summary, a gob stream looks like
(byteCount (-type id, encoding of a wireType)* (type id, encoding of a value))*
where * signifies zero or more repetitions and the type id of a value must
be predefined or be defined before the value in the stream.
See "Gobs of data" for a design discussion of the gob wire format:
http://blog.golang.org/2011/03/gobs-of-data.html
*/
package gob
/*
Grammar:
Tokens starting with a lower case letter are terminals; int(n)
and uint(n) represent the signed/unsigned encodings of the value n.
GobStream:
DelimitedMessage*
DelimitedMessage:
uint(lengthOfMessage) Message
Message:
TypeSequence TypedValue
TypeSequence
(TypeDefinition DelimitedTypeDefinition*)?
DelimitedTypeDefinition:
uint(lengthOfTypeDefinition) TypeDefinition
TypedValue:
int(typeId) Value
TypeDefinition:
int(-typeId) encodingOfWireType
Value:
SingletonValue | StructValue
SingletonValue:
uint(0) FieldValue
FieldValue:
builtinValue | ArrayValue | MapValue | SliceValue | StructValue | InterfaceValue
InterfaceValue:
NilInterfaceValue | NonNilInterfaceValue
NilInterfaceValue:
uint(0)
NonNilInterfaceValue:
ConcreteTypeName TypeSequence InterfaceContents
ConcreteTypeName:
uint(lengthOfName) [already read=n] name
InterfaceContents:
int(concreteTypeId) DelimitedValue
DelimitedValue:
uint(length) Value
ArrayValue:
uint(n) FieldValue*n [n elements]
MapValue:
uint(n) (FieldValue FieldValue)*n [n (key, value) pairs]
SliceValue:
uint(n) FieldValue*n [n elements]
StructValue:
(uint(fieldDelta) FieldValue)*
*/
/*
For implementers and the curious, here is an encoded example. Given
type Point struct {X, Y int}
and the value
p := Point{22, 33}
the bytes transmitted that encode p will be:
1f ff 81 03 01 01 05 50 6f 69 6e 74 01 ff 82 00
01 02 01 01 58 01 04 00 01 01 59 01 04 00 00 00
07 ff 82 01 2c 01 42 00
They are determined as follows.
Since this is the first transmission of type Point, the type descriptor
for Point itself must be sent before the value. This is the first type
we've sent on this Encoder, so it has type id 65 (0 through 64 are
reserved).
1f // This item (a type descriptor) is 31 bytes long.
ff 81 // The negative of the id for the type we're defining, -65.
// This is one byte (indicated by FF = -1) followed by
// ^-65<<1 | 1. The low 1 bit signals to complement the
// rest upon receipt.
// Now we send a type descriptor, which is itself a struct (wireType).
// The type of wireType itself is known (it's built in, as is the type of
// all its components), so we just need to send a *value* of type wireType
// that represents type "Point".
// Here starts the encoding of that value.
// Set the field number implicitly to -1; this is done at the beginning
// of every struct, including nested structs.
03 // Add 3 to field number; now 2 (wireType.structType; this is a struct).
// structType starts with an embedded CommonType, which appears
// as a regular structure here too.
01 // add 1 to field number (now 0); start of embedded CommonType.
01 // add 1 to field number (now 0, the name of the type)
05 // string is (unsigned) 5 bytes long
50 6f 69 6e 74 // wireType.structType.CommonType.name = "Point"
01 // add 1 to field number (now 1, the id of the type)
ff 82 // wireType.structType.CommonType._id = 65
00 // end of embedded wiretype.structType.CommonType struct
01 // add 1 to field number (now 1, the field array in wireType.structType)
02 // There are two fields in the type (len(structType.field))
01 // Start of first field structure; add 1 to get field number 0: field[0].name
01 // 1 byte
58 // structType.field[0].name = "X"
01 // Add 1 to get field number 1: field[0].id
04 // structType.field[0].typeId is 2 (signed int).
00 // End of structType.field[0]; start structType.field[1]; set field number to -1.
01 // Add 1 to get field number 0: field[1].name
01 // 1 byte
59 // structType.field[1].name = "Y"
01 // Add 1 to get field number 1: field[0].id
04 // struct.Type.field[1].typeId is 2 (signed int).
00 // End of structType.field[1]; end of structType.field.
00 // end of wireType.structType structure
00 // end of wireType structure
Now we can send the Point value. Again the field number resets to -1:
07 // this value is 7 bytes long
ff 82 // the type number, 65 (1 byte (-FF) followed by 65<<1)
01 // add one to field number, yielding field 0
2c // encoding of signed "22" (0x22 = 44 = 22<<1); Point.x = 22
01 // add one to field number, yielding field 1
42 // encoding of signed "33" (0x42 = 66 = 33<<1); Point.y = 33
00 // end of structure
The type encoding is long and fairly intricate but we send it only once.
If p is transmitted a second time, the type is already known so the
output will be just:
07 ff 82 01 2c 01 42 00
A single non-struct value at top level is transmitted like a field with
delta tag 0. For instance, a signed integer with value 3 presented as
the argument to Encode will emit:
03 04 00 06
Which represents:
03 // this value is 3 bytes long
04 // the type number, 2, represents an integer
00 // tag delta 0
06 // value 3
*/
|