summaryrefslogtreecommitdiff
path: root/libgo/go/cmd/cgo/gcc.go
blob: 796ff8ac520ce5c9ba267f0f1e0312bee53539b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Annotate Ref in Prog with C types by parsing gcc debug output.
// Conversion of debug output to Go types.

package main

import (
	"bytes"
	"debug/dwarf"
	"debug/elf"
	"debug/macho"
	"debug/pe"
	"encoding/binary"
	"errors"
	"flag"
	"fmt"
	"go/ast"
	"go/parser"
	"go/token"
	"internal/xcoff"
	"math"
	"os"
	"strconv"
	"strings"
	"unicode"
	"unicode/utf8"
)

var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")

var nameToC = map[string]string{
	"schar":         "signed char",
	"uchar":         "unsigned char",
	"ushort":        "unsigned short",
	"uint":          "unsigned int",
	"ulong":         "unsigned long",
	"longlong":      "long long",
	"ulonglong":     "unsigned long long",
	"complexfloat":  "float _Complex",
	"complexdouble": "double _Complex",
}

// cname returns the C name to use for C.s.
// The expansions are listed in nameToC and also
// struct_foo becomes "struct foo", and similarly for
// union and enum.
func cname(s string) string {
	if t, ok := nameToC[s]; ok {
		return t
	}

	if strings.HasPrefix(s, "struct_") {
		return "struct " + s[len("struct_"):]
	}
	if strings.HasPrefix(s, "union_") {
		return "union " + s[len("union_"):]
	}
	if strings.HasPrefix(s, "enum_") {
		return "enum " + s[len("enum_"):]
	}
	if strings.HasPrefix(s, "sizeof_") {
		return "sizeof(" + cname(s[len("sizeof_"):]) + ")"
	}
	return s
}

// DiscardCgoDirectives processes the import C preamble, and discards
// all #cgo CFLAGS and LDFLAGS directives, so they don't make their
// way into _cgo_export.h.
func (f *File) DiscardCgoDirectives() {
	linesIn := strings.Split(f.Preamble, "\n")
	linesOut := make([]string, 0, len(linesIn))
	for _, line := range linesIn {
		l := strings.TrimSpace(line)
		if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) {
			linesOut = append(linesOut, line)
		} else {
			linesOut = append(linesOut, "")
		}
	}
	f.Preamble = strings.Join(linesOut, "\n")
}

// addToFlag appends args to flag. All flags are later written out onto the
// _cgo_flags file for the build system to use.
func (p *Package) addToFlag(flag string, args []string) {
	if flag == "CFLAGS" {
		// We'll also need these when preprocessing for dwarf information.
		// However, discard any -g options: we need to be able
		// to parse the debug info, so stick to what we expect.
		for _, arg := range args {
			if !strings.HasPrefix(arg, "-g") {
				p.GccOptions = append(p.GccOptions, arg)
			}
		}
	}

	skip := false
	for i, arg := range args {
		// The go tool will pass us a -I option pointing to objdir;
		// we don't need to record that for later, as the objdir
		// will disappear anyhow.
		if skip {
			// Discard argument in "-I objdir" case.
			skip = false
		} else if strings.HasPrefix(arg, "-I") && strings.HasPrefix(arg[2:], *objDir) {
			// This is -Iobjdir. Don't save this argument.
		} else if arg == "-I" && i+1 < len(args) && strings.HasPrefix(args[i+1], *objDir) {
			// This is -I objdir. Don't save this argument
			// or the next one.
			skip = true
		} else {
			p.CgoFlags[flag] = append(p.CgoFlags[flag], arg)
		}
	}
}

// splitQuoted splits the string s around each instance of one or more consecutive
// white space characters while taking into account quotes and escaping, and
// returns an array of substrings of s or an empty list if s contains only white space.
// Single quotes and double quotes are recognized to prevent splitting within the
// quoted region, and are removed from the resulting substrings. If a quote in s
// isn't closed err will be set and r will have the unclosed argument as the
// last element. The backslash is used for escaping.
//
// For example, the following string:
//
//     `a b:"c d" 'e''f'  "g\""`
//
// Would be parsed as:
//
//     []string{"a", "b:c d", "ef", `g"`}
//
func splitQuoted(s string) (r []string, err error) {
	var args []string
	arg := make([]rune, len(s))
	escaped := false
	quoted := false
	quote := '\x00'
	i := 0
	for _, r := range s {
		switch {
		case escaped:
			escaped = false
		case r == '\\':
			escaped = true
			continue
		case quote != 0:
			if r == quote {
				quote = 0
				continue
			}
		case r == '"' || r == '\'':
			quoted = true
			quote = r
			continue
		case unicode.IsSpace(r):
			if quoted || i > 0 {
				quoted = false
				args = append(args, string(arg[:i]))
				i = 0
			}
			continue
		}
		arg[i] = r
		i++
	}
	if quoted || i > 0 {
		args = append(args, string(arg[:i]))
	}
	if quote != 0 {
		err = errors.New("unclosed quote")
	} else if escaped {
		err = errors.New("unfinished escaping")
	}
	return args, err
}

// Translate rewrites f.AST, the original Go input, to remove
// references to the imported package C, replacing them with
// references to the equivalent Go types, functions, and variables.
func (p *Package) Translate(f *File) {
	for _, cref := range f.Ref {
		// Convert C.ulong to C.unsigned long, etc.
		cref.Name.C = cname(cref.Name.Go)
	}

	var conv typeConv
	conv.Init(p.PtrSize, p.IntSize)

	p.loadDefines(f)
	p.typedefs = map[string]bool{}
	p.typedefList = nil
	numTypedefs := -1
	for len(p.typedefs) > numTypedefs {
		numTypedefs = len(p.typedefs)
		// Also ask about any typedefs we've seen so far.
		for _, info := range p.typedefList {
			if f.Name[info.typedef] != nil {
				continue
			}
			n := &Name{
				Go: info.typedef,
				C:  info.typedef,
			}
			f.Name[info.typedef] = n
			f.NamePos[n] = info.pos
		}
		needType := p.guessKinds(f)
		if len(needType) > 0 {
			p.loadDWARF(f, &conv, needType)
		}

		// In godefs mode we're OK with the typedefs, which
		// will presumably also be defined in the file, we
		// don't want to resolve them to their base types.
		if *godefs {
			break
		}
	}
	p.prepareNames(f)
	if p.rewriteCalls(f) {
		// Add `import _cgo_unsafe "unsafe"` after the package statement.
		f.Edit.Insert(f.offset(f.AST.Name.End()), "; import _cgo_unsafe \"unsafe\"")
	}
	p.rewriteRef(f)
}

// loadDefines coerces gcc into spitting out the #defines in use
// in the file f and saves relevant renamings in f.Name[name].Define.
func (p *Package) loadDefines(f *File) {
	var b bytes.Buffer
	b.WriteString(builtinProlog)
	b.WriteString(f.Preamble)
	stdout := p.gccDefines(b.Bytes())

	for _, line := range strings.Split(stdout, "\n") {
		if len(line) < 9 || line[0:7] != "#define" {
			continue
		}

		line = strings.TrimSpace(line[8:])

		var key, val string
		spaceIndex := strings.Index(line, " ")
		tabIndex := strings.Index(line, "\t")

		if spaceIndex == -1 && tabIndex == -1 {
			continue
		} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
			key = line[0:spaceIndex]
			val = strings.TrimSpace(line[spaceIndex:])
		} else {
			key = line[0:tabIndex]
			val = strings.TrimSpace(line[tabIndex:])
		}

		if key == "__clang__" {
			p.GccIsClang = true
		}

		if n := f.Name[key]; n != nil {
			if *debugDefine {
				fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
			}
			n.Define = val
		}
	}
}

// guessKinds tricks gcc into revealing the kind of each
// name xxx for the references C.xxx in the Go input.
// The kind is either a constant, type, or variable.
func (p *Package) guessKinds(f *File) []*Name {
	// Determine kinds for names we already know about,
	// like #defines or 'struct foo', before bothering with gcc.
	var names, needType []*Name
	optional := map[*Name]bool{}
	for _, key := range nameKeys(f.Name) {
		n := f.Name[key]
		// If we've already found this name as a #define
		// and we can translate it as a constant value, do so.
		if n.Define != "" {
			if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil {
				n.Kind = "iconst"
				// Turn decimal into hex, just for consistency
				// with enum-derived constants. Otherwise
				// in the cgo -godefs output half the constants
				// are in hex and half are in whatever the #define used.
				n.Const = fmt.Sprintf("%#x", i)
			} else if n.Define[0] == '\'' {
				if _, err := parser.ParseExpr(n.Define); err == nil {
					n.Kind = "iconst"
					n.Const = n.Define
				}
			} else if n.Define[0] == '"' {
				if _, err := parser.ParseExpr(n.Define); err == nil {
					n.Kind = "sconst"
					n.Const = n.Define
				}
			}

			if n.IsConst() {
				continue
			}
		}

		// If this is a struct, union, or enum type name, no need to guess the kind.
		if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
			n.Kind = "type"
			needType = append(needType, n)
			continue
		}

		if (goos == "darwin" || goos == "ios") && strings.HasSuffix(n.C, "Ref") {
			// For FooRef, find out if FooGetTypeID exists.
			s := n.C[:len(n.C)-3] + "GetTypeID"
			n := &Name{Go: s, C: s}
			names = append(names, n)
			optional[n] = true
		}

		// Otherwise, we'll need to find out from gcc.
		names = append(names, n)
	}

	// Bypass gcc if there's nothing left to find out.
	if len(names) == 0 {
		return needType
	}

	// Coerce gcc into telling us whether each name is a type, a value, or undeclared.
	// For names, find out whether they are integer constants.
	// We used to look at specific warning or error messages here, but that tied the
	// behavior too closely to specific versions of the compilers.
	// Instead, arrange that we can infer what we need from only the presence or absence
	// of an error on a specific line.
	//
	// For each name, we generate these lines, where xxx is the index in toSniff plus one.
	//
	//	#line xxx "not-declared"
	//	void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__1; }
	//	#line xxx "not-type"
	//	void __cgo_f_xxx_2(void) { name *__cgo_undefined__2; }
	//	#line xxx "not-int-const"
	//	void __cgo_f_xxx_3(void) { enum { __cgo_undefined__3 = (name)*1 }; }
	//	#line xxx "not-num-const"
	//	void __cgo_f_xxx_4(void) { static const double __cgo_undefined__4 = (name); }
	//	#line xxx "not-str-lit"
	//	void __cgo_f_xxx_5(void) { static const char __cgo_undefined__5[] = (name); }
	//
	// If we see an error at not-declared:xxx, the corresponding name is not declared.
	// If we see an error at not-type:xxx, the corresponding name is not a type.
	// If we see an error at not-int-const:xxx, the corresponding name is not an integer constant.
	// If we see an error at not-num-const:xxx, the corresponding name is not a number constant.
	// If we see an error at not-str-lit:xxx, the corresponding name is not a string literal.
	//
	// The specific input forms are chosen so that they are valid C syntax regardless of
	// whether name denotes a type or an expression.

	var b bytes.Buffer
	b.WriteString(builtinProlog)
	b.WriteString(f.Preamble)

	for i, n := range names {
		fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+
			"void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__1; }\n"+
			"#line %d \"not-type\"\n"+
			"void __cgo_f_%d_2(void) { %s *__cgo_undefined__2; }\n"+
			"#line %d \"not-int-const\"\n"+
			"void __cgo_f_%d_3(void) { enum { __cgo_undefined__3 = (%s)*1 }; }\n"+
			"#line %d \"not-num-const\"\n"+
			"void __cgo_f_%d_4(void) { static const double __cgo_undefined__4 = (%s); }\n"+
			"#line %d \"not-str-lit\"\n"+
			"void __cgo_f_%d_5(void) { static const char __cgo_undefined__5[] = (%s); }\n",
			i+1, i+1, n.C,
			i+1, i+1, n.C,
			i+1, i+1, n.C,
			i+1, i+1, n.C,
			i+1, i+1, n.C,
		)
	}
	fmt.Fprintf(&b, "#line 1 \"completed\"\n"+
		"int __cgo__1 = __cgo__2;\n")

	// We need to parse the output from this gcc command, so ensure that it
	// doesn't have any ANSI escape sequences in it. (TERM=dumb is
	// insufficient; if the user specifies CGO_CFLAGS=-fdiagnostics-color,
	// GCC will ignore TERM, and GCC can also be configured at compile-time
	// to ignore TERM.)
	stderr := p.gccErrors(b.Bytes(), "-fdiagnostics-color=never")
	if strings.Contains(stderr, "unrecognized command line option") {
		// We're using an old version of GCC that doesn't understand
		// -fdiagnostics-color. Those versions can't print color anyway,
		// so just rerun without that option.
		stderr = p.gccErrors(b.Bytes())
	}
	if stderr == "" {
		fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes())
	}

	completed := false
	sniff := make([]int, len(names))
	const (
		notType = 1 << iota
		notIntConst
		notNumConst
		notStrLiteral
		notDeclared
	)
	sawUnmatchedErrors := false
	for _, line := range strings.Split(stderr, "\n") {
		// Ignore warnings and random comments, with one
		// exception: newer GCC versions will sometimes emit
		// an error on a macro #define with a note referring
		// to where the expansion occurs. We care about where
		// the expansion occurs, so in that case treat the note
		// as an error.
		isError := strings.Contains(line, ": error:")
		isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors
		if !isError && !isErrorNote {
			continue
		}

		c1 := strings.Index(line, ":")
		if c1 < 0 {
			continue
		}
		c2 := strings.Index(line[c1+1:], ":")
		if c2 < 0 {
			continue
		}
		c2 += c1 + 1

		filename := line[:c1]
		i, _ := strconv.Atoi(line[c1+1 : c2])
		i--
		if i < 0 || i >= len(names) {
			if isError {
				sawUnmatchedErrors = true
			}
			continue
		}

		switch filename {
		case "completed":
			// Strictly speaking, there is no guarantee that seeing the error at completed:1
			// (at the end of the file) means we've seen all the errors from earlier in the file,
			// but usually it does. Certainly if we don't see the completed:1 error, we did
			// not get all the errors we expected.
			completed = true

		case "not-declared":
			sniff[i] |= notDeclared
		case "not-type":
			sniff[i] |= notType
		case "not-int-const":
			sniff[i] |= notIntConst
		case "not-num-const":
			sniff[i] |= notNumConst
		case "not-str-lit":
			sniff[i] |= notStrLiteral
		default:
			if isError {
				sawUnmatchedErrors = true
			}
			continue
		}

		sawUnmatchedErrors = false
	}

	if !completed {
		fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr)
	}

	for i, n := range names {
		switch sniff[i] {
		default:
			if sniff[i]&notDeclared != 0 && optional[n] {
				// Ignore optional undeclared identifiers.
				// Don't report an error, and skip adding n to the needType array.
				continue
			}
			error_(f.NamePos[n], "could not determine kind of name for C.%s", fixGo(n.Go))
		case notStrLiteral | notType:
			n.Kind = "iconst"
		case notIntConst | notStrLiteral | notType:
			n.Kind = "fconst"
		case notIntConst | notNumConst | notType:
			n.Kind = "sconst"
		case notIntConst | notNumConst | notStrLiteral:
			n.Kind = "type"
		case notIntConst | notNumConst | notStrLiteral | notType:
			n.Kind = "not-type"
		}
		needType = append(needType, n)
	}
	if nerrors > 0 {
		// Check if compiling the preamble by itself causes any errors,
		// because the messages we've printed out so far aren't helpful
		// to users debugging preamble mistakes. See issue 8442.
		preambleErrors := p.gccErrors([]byte(f.Preamble))
		if len(preambleErrors) > 0 {
			error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors)
		}

		fatalf("unresolved names")
	}

	return needType
}

// loadDWARF parses the DWARF debug information generated
// by gcc to learn the details of the constants, variables, and types
// being referred to as C.xxx.
func (p *Package) loadDWARF(f *File, conv *typeConv, names []*Name) {
	// Extract the types from the DWARF section of an object
	// from a well-formed C program. Gcc only generates DWARF info
	// for symbols in the object file, so it is not enough to print the
	// preamble and hope the symbols we care about will be there.
	// Instead, emit
	//	__typeof__(names[i]) *__cgo__i;
	// for each entry in names and then dereference the type we
	// learn for __cgo__i.
	var b bytes.Buffer
	b.WriteString(builtinProlog)
	b.WriteString(f.Preamble)
	b.WriteString("#line 1 \"cgo-dwarf-inference\"\n")
	for i, n := range names {
		fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i)
		if n.Kind == "iconst" {
			fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
		}
	}

	// We create a data block initialized with the values,
	// so we can read them out of the object file.
	fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n")
	for _, n := range names {
		if n.Kind == "iconst" {
			fmt.Fprintf(&b, "\t%s,\n", n.C)
		} else {
			fmt.Fprintf(&b, "\t0,\n")
		}
	}
	// for the last entry, we cannot use 0, otherwise
	// in case all __cgodebug_data is zero initialized,
	// LLVM-based gcc will place the it in the __DATA.__common
	// zero-filled section (our debug/macho doesn't support
	// this)
	fmt.Fprintf(&b, "\t1\n")
	fmt.Fprintf(&b, "};\n")

	// do the same work for floats.
	fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n")
	for _, n := range names {
		if n.Kind == "fconst" {
			fmt.Fprintf(&b, "\t%s,\n", n.C)
		} else {
			fmt.Fprintf(&b, "\t0,\n")
		}
	}
	fmt.Fprintf(&b, "\t1\n")
	fmt.Fprintf(&b, "};\n")

	// do the same work for strings.
	for i, n := range names {
		if n.Kind == "sconst" {
			fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C)
			fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C)
		}
	}

	d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names))

	// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
	types := make([]dwarf.Type, len(names))
	r := d.Reader()
	for {
		e, err := r.Next()
		if err != nil {
			fatalf("reading DWARF entry: %s", err)
		}
		if e == nil {
			break
		}
		switch e.Tag {
		case dwarf.TagVariable:
			name, _ := e.Val(dwarf.AttrName).(string)
			typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
			if name == "" || typOff == 0 {
				if e.Val(dwarf.AttrSpecification) != nil {
					// Since we are reading all the DWARF,
					// assume we will see the variable elsewhere.
					break
				}
				fatalf("malformed DWARF TagVariable entry")
			}
			if !strings.HasPrefix(name, "__cgo__") {
				break
			}
			typ, err := d.Type(typOff)
			if err != nil {
				fatalf("loading DWARF type: %s", err)
			}
			t, ok := typ.(*dwarf.PtrType)
			if !ok || t == nil {
				fatalf("internal error: %s has non-pointer type", name)
			}
			i, err := strconv.Atoi(name[7:])
			if err != nil {
				fatalf("malformed __cgo__ name: %s", name)
			}
			types[i] = t.Type
			p.recordTypedefs(t.Type, f.NamePos[names[i]])
		}
		if e.Tag != dwarf.TagCompileUnit {
			r.SkipChildren()
		}
	}

	// Record types and typedef information.
	for i, n := range names {
		if strings.HasSuffix(n.Go, "GetTypeID") && types[i].String() == "func() CFTypeID" {
			conv.getTypeIDs[n.Go[:len(n.Go)-9]] = true
		}
	}
	for i, n := range names {
		if types[i] == nil {
			continue
		}
		pos := f.NamePos[n]
		f, fok := types[i].(*dwarf.FuncType)
		if n.Kind != "type" && fok {
			n.Kind = "func"
			n.FuncType = conv.FuncType(f, pos)
		} else {
			n.Type = conv.Type(types[i], pos)
			switch n.Kind {
			case "iconst":
				if i < len(ints) {
					if _, ok := types[i].(*dwarf.UintType); ok {
						n.Const = fmt.Sprintf("%#x", uint64(ints[i]))
					} else {
						n.Const = fmt.Sprintf("%#x", ints[i])
					}
				}
			case "fconst":
				if i >= len(floats) {
					break
				}
				switch base(types[i]).(type) {
				case *dwarf.IntType, *dwarf.UintType:
					// This has an integer type so it's
					// not really a floating point
					// constant. This can happen when the
					// C compiler complains about using
					// the value as an integer constant,
					// but not as a general constant.
					// Treat this as a variable of the
					// appropriate type, not a constant,
					// to get C-style type handling,
					// avoiding the problem that C permits
					// uint64(-1) but Go does not.
					// See issue 26066.
					n.Kind = "var"
				default:
					n.Const = fmt.Sprintf("%f", floats[i])
				}
			case "sconst":
				if i < len(strs) {
					n.Const = fmt.Sprintf("%q", strs[i])
				}
			}
		}
		conv.FinishType(pos)
	}
}

// recordTypedefs remembers in p.typedefs all the typedefs used in dtypes and its children.
func (p *Package) recordTypedefs(dtype dwarf.Type, pos token.Pos) {
	p.recordTypedefs1(dtype, pos, map[dwarf.Type]bool{})
}

func (p *Package) recordTypedefs1(dtype dwarf.Type, pos token.Pos, visited map[dwarf.Type]bool) {
	if dtype == nil {
		return
	}
	if visited[dtype] {
		return
	}
	visited[dtype] = true
	switch dt := dtype.(type) {
	case *dwarf.TypedefType:
		if strings.HasPrefix(dt.Name, "__builtin") {
			// Don't look inside builtin types. There be dragons.
			return
		}
		if !p.typedefs[dt.Name] {
			p.typedefs[dt.Name] = true
			p.typedefList = append(p.typedefList, typedefInfo{dt.Name, pos})
			p.recordTypedefs1(dt.Type, pos, visited)
		}
	case *dwarf.PtrType:
		p.recordTypedefs1(dt.Type, pos, visited)
	case *dwarf.ArrayType:
		p.recordTypedefs1(dt.Type, pos, visited)
	case *dwarf.QualType:
		p.recordTypedefs1(dt.Type, pos, visited)
	case *dwarf.FuncType:
		p.recordTypedefs1(dt.ReturnType, pos, visited)
		for _, a := range dt.ParamType {
			p.recordTypedefs1(a, pos, visited)
		}
	case *dwarf.StructType:
		for _, f := range dt.Field {
			p.recordTypedefs1(f.Type, pos, visited)
		}
	}
}

// prepareNames finalizes the Kind field of not-type names and sets
// the mangled name of all names.
func (p *Package) prepareNames(f *File) {
	for _, n := range f.Name {
		if n.Kind == "not-type" {
			if n.Define == "" {
				n.Kind = "var"
			} else {
				n.Kind = "macro"
				n.FuncType = &FuncType{
					Result: n.Type,
					Go: &ast.FuncType{
						Results: &ast.FieldList{List: []*ast.Field{{Type: n.Type.Go}}},
					},
				}
			}
		}
		p.mangleName(n)
		if n.Kind == "type" && typedef[n.Mangle] == nil {
			typedef[n.Mangle] = n.Type
		}
	}
}

// mangleName does name mangling to translate names
// from the original Go source files to the names
// used in the final Go files generated by cgo.
func (p *Package) mangleName(n *Name) {
	// When using gccgo variables have to be
	// exported so that they become global symbols
	// that the C code can refer to.
	prefix := "_C"
	if *gccgo && n.IsVar() {
		prefix = "C"
	}
	n.Mangle = prefix + n.Kind + "_" + n.Go
}

func (f *File) isMangledName(s string) bool {
	prefix := "_C"
	if strings.HasPrefix(s, prefix) {
		t := s[len(prefix):]
		for _, k := range nameKinds {
			if strings.HasPrefix(t, k+"_") {
				return true
			}
		}
	}
	return false
}

// rewriteCalls rewrites all calls that pass pointers to check that
// they follow the rules for passing pointers between Go and C.
// This reports whether the package needs to import unsafe as _cgo_unsafe.
func (p *Package) rewriteCalls(f *File) bool {
	needsUnsafe := false
	// Walk backward so that in C.f1(C.f2()) we rewrite C.f2 first.
	for _, call := range f.Calls {
		if call.Done {
			continue
		}
		start := f.offset(call.Call.Pos())
		end := f.offset(call.Call.End())
		str, nu := p.rewriteCall(f, call)
		if str != "" {
			f.Edit.Replace(start, end, str)
			if nu {
				needsUnsafe = true
			}
		}
	}
	return needsUnsafe
}

// rewriteCall rewrites one call to add pointer checks.
// If any pointer checks are required, we rewrite the call into a
// function literal that calls _cgoCheckPointer for each pointer
// argument and then calls the original function.
// This returns the rewritten call and whether the package needs to
// import unsafe as _cgo_unsafe.
// If it returns the empty string, the call did not need to be rewritten.
func (p *Package) rewriteCall(f *File, call *Call) (string, bool) {
	// This is a call to C.xxx; set goname to "xxx".
	// It may have already been mangled by rewriteName.
	var goname string
	switch fun := call.Call.Fun.(type) {
	case *ast.SelectorExpr:
		goname = fun.Sel.Name
	case *ast.Ident:
		goname = strings.TrimPrefix(fun.Name, "_C2func_")
		goname = strings.TrimPrefix(goname, "_Cfunc_")
	}
	if goname == "" || goname == "malloc" {
		return "", false
	}
	name := f.Name[goname]
	if name == nil || name.Kind != "func" {
		// Probably a type conversion.
		return "", false
	}

	params := name.FuncType.Params
	args := call.Call.Args

	// Avoid a crash if the number of arguments doesn't match
	// the number of parameters.
	// This will be caught when the generated file is compiled.
	if len(args) != len(params) {
		return "", false
	}

	any := false
	for i, param := range params {
		if p.needsPointerCheck(f, param.Go, args[i]) {
			any = true
			break
		}
	}
	if !any {
		return "", false
	}

	// We need to rewrite this call.
	//
	// Rewrite C.f(p) to
	//    func() {
	//            _cgo0 := p
	//            _cgoCheckPointer(_cgo0, nil)
	//            C.f(_cgo0)
	//    }()
	// Using a function literal like this lets us evaluate the
	// function arguments only once while doing pointer checks.
	// This is particularly useful when passing additional arguments
	// to _cgoCheckPointer, as done in checkIndex and checkAddr.
	//
	// When the function argument is a conversion to unsafe.Pointer,
	// we unwrap the conversion before checking the pointer,
	// and then wrap again when calling C.f. This lets us check
	// the real type of the pointer in some cases. See issue #25941.
	//
	// When the call to C.f is deferred, we use an additional function
	// literal to evaluate the arguments at the right time.
	//    defer func() func() {
	//            _cgo0 := p
	//            return func() {
	//                    _cgoCheckPointer(_cgo0, nil)
	//                    C.f(_cgo0)
	//            }
	//    }()()
	// This works because the defer statement evaluates the first
	// function literal in order to get the function to call.

	var sb bytes.Buffer
	sb.WriteString("func() ")
	if call.Deferred {
		sb.WriteString("func() ")
	}

	needsUnsafe := false
	result := false
	twoResults := false
	if !call.Deferred {
		// Check whether this call expects two results.
		for _, ref := range f.Ref {
			if ref.Expr != &call.Call.Fun {
				continue
			}
			if ref.Context == ctxCall2 {
				sb.WriteString("(")
				result = true
				twoResults = true
			}
			break
		}

		// Add the result type, if any.
		if name.FuncType.Result != nil {
			rtype := p.rewriteUnsafe(name.FuncType.Result.Go)
			if rtype != name.FuncType.Result.Go {
				needsUnsafe = true
			}
			sb.WriteString(gofmtLine(rtype))
			result = true
		}

		// Add the second result type, if any.
		if twoResults {
			if name.FuncType.Result == nil {
				// An explicit void result looks odd but it
				// seems to be how cgo has worked historically.
				sb.WriteString("_Ctype_void")
			}
			sb.WriteString(", error)")
		}
	}

	sb.WriteString("{ ")

	// Define _cgoN for each argument value.
	// Write _cgoCheckPointer calls to sbCheck.
	var sbCheck bytes.Buffer
	for i, param := range params {
		origArg := args[i]
		arg, nu := p.mangle(f, &args[i])
		if nu {
			needsUnsafe = true
		}

		// Use "var x T = ..." syntax to explicitly convert untyped
		// constants to the parameter type, to avoid a type mismatch.
		ptype := p.rewriteUnsafe(param.Go)

		if !p.needsPointerCheck(f, param.Go, args[i]) || param.BadPointer {
			if ptype != param.Go {
				needsUnsafe = true
			}
			fmt.Fprintf(&sb, "var _cgo%d %s = %s; ", i,
				gofmtLine(ptype), gofmtPos(arg, origArg.Pos()))
			continue
		}

		// Check for &a[i].
		if p.checkIndex(&sb, &sbCheck, arg, i) {
			continue
		}

		// Check for &x.
		if p.checkAddr(&sb, &sbCheck, arg, i) {
			continue
		}

		fmt.Fprintf(&sb, "_cgo%d := %s; ", i, gofmtPos(arg, origArg.Pos()))
		fmt.Fprintf(&sbCheck, "_cgoCheckPointer(_cgo%d, nil); ", i)
	}

	if call.Deferred {
		sb.WriteString("return func() { ")
	}

	// Write out the calls to _cgoCheckPointer.
	sb.WriteString(sbCheck.String())

	if result {
		sb.WriteString("return ")
	}

	m, nu := p.mangle(f, &call.Call.Fun)
	if nu {
		needsUnsafe = true
	}
	sb.WriteString(gofmtLine(m))

	sb.WriteString("(")
	for i := range params {
		if i > 0 {
			sb.WriteString(", ")
		}
		fmt.Fprintf(&sb, "_cgo%d", i)
	}
	sb.WriteString("); ")
	if call.Deferred {
		sb.WriteString("}")
	}
	sb.WriteString("}")
	if call.Deferred {
		sb.WriteString("()")
	}
	sb.WriteString("()")

	return sb.String(), needsUnsafe
}

// needsPointerCheck reports whether the type t needs a pointer check.
// This is true if t is a pointer and if the value to which it points
// might contain a pointer.
func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool {
	// An untyped nil does not need a pointer check, and when
	// _cgoCheckPointer returns the untyped nil the type assertion we
	// are going to insert will fail.  Easier to just skip nil arguments.
	// TODO: Note that this fails if nil is shadowed.
	if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" {
		return false
	}

	return p.hasPointer(f, t, true)
}

// hasPointer is used by needsPointerCheck. If top is true it returns
// whether t is or contains a pointer that might point to a pointer.
// If top is false it reports whether t is or contains a pointer.
// f may be nil.
func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool {
	switch t := t.(type) {
	case *ast.ArrayType:
		if t.Len == nil {
			if !top {
				return true
			}
			return p.hasPointer(f, t.Elt, false)
		}
		return p.hasPointer(f, t.Elt, top)
	case *ast.StructType:
		for _, field := range t.Fields.List {
			if p.hasPointer(f, field.Type, top) {
				return true
			}
		}
		return false
	case *ast.StarExpr: // Pointer type.
		if !top {
			return true
		}
		// Check whether this is a pointer to a C union (or class)
		// type that contains a pointer.
		if unionWithPointer[t.X] {
			return true
		}
		return p.hasPointer(f, t.X, false)
	case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
		return true
	case *ast.Ident:
		// TODO: Handle types defined within function.
		for _, d := range p.Decl {
			gd, ok := d.(*ast.GenDecl)
			if !ok || gd.Tok != token.TYPE {
				continue
			}
			for _, spec := range gd.Specs {
				ts, ok := spec.(*ast.TypeSpec)
				if !ok {
					continue
				}
				if ts.Name.Name == t.Name {
					return p.hasPointer(f, ts.Type, top)
				}
			}
		}
		if def := typedef[t.Name]; def != nil {
			return p.hasPointer(f, def.Go, top)
		}
		if t.Name == "string" {
			return !top
		}
		if t.Name == "error" {
			return true
		}
		if goTypes[t.Name] != nil {
			return false
		}
		// We can't figure out the type. Conservative
		// approach is to assume it has a pointer.
		return true
	case *ast.SelectorExpr:
		if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" {
			// Type defined in a different package.
			// Conservative approach is to assume it has a
			// pointer.
			return true
		}
		if f == nil {
			// Conservative approach: assume pointer.
			return true
		}
		name := f.Name[t.Sel.Name]
		if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil {
			return p.hasPointer(f, name.Type.Go, top)
		}
		// We can't figure out the type. Conservative
		// approach is to assume it has a pointer.
		return true
	default:
		error_(t.Pos(), "could not understand type %s", gofmt(t))
		return true
	}
}

// mangle replaces references to C names in arg with the mangled names,
// rewriting calls when it finds them.
// It removes the corresponding references in f.Ref and f.Calls, so that we
// don't try to do the replacement again in rewriteRef or rewriteCall.
func (p *Package) mangle(f *File, arg *ast.Expr) (ast.Expr, bool) {
	needsUnsafe := false
	f.walk(arg, ctxExpr, func(f *File, arg interface{}, context astContext) {
		px, ok := arg.(*ast.Expr)
		if !ok {
			return
		}
		sel, ok := (*px).(*ast.SelectorExpr)
		if ok {
			if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" {
				return
			}

			for _, r := range f.Ref {
				if r.Expr == px {
					*px = p.rewriteName(f, r)
					r.Done = true
					break
				}
			}

			return
		}

		call, ok := (*px).(*ast.CallExpr)
		if !ok {
			return
		}

		for _, c := range f.Calls {
			if !c.Done && c.Call.Lparen == call.Lparen {
				cstr, nu := p.rewriteCall(f, c)
				if cstr != "" {
					// Smuggle the rewritten call through an ident.
					*px = ast.NewIdent(cstr)
					if nu {
						needsUnsafe = true
					}
					c.Done = true
				}
			}
		}
	})
	return *arg, needsUnsafe
}

// checkIndex checks whether arg has the form &a[i], possibly inside
// type conversions. If so, then in the general case it writes
//    _cgoIndexNN := a
//    _cgoNN := &cgoIndexNN[i] // with type conversions, if any
// to sb, and writes
//    _cgoCheckPointer(_cgoNN, _cgoIndexNN)
// to sbCheck, and returns true. If a is a simple variable or field reference,
// it writes
//    _cgoIndexNN := &a
// and dereferences the uses of _cgoIndexNN. Taking the address avoids
// making a copy of an array.
//
// This tells _cgoCheckPointer to check the complete contents of the
// slice or array being indexed, but no other part of the memory allocation.
func (p *Package) checkIndex(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool {
	// Strip type conversions.
	x := arg
	for {
		c, ok := x.(*ast.CallExpr)
		if !ok || len(c.Args) != 1 || !p.isType(c.Fun) {
			break
		}
		x = c.Args[0]
	}
	u, ok := x.(*ast.UnaryExpr)
	if !ok || u.Op != token.AND {
		return false
	}
	index, ok := u.X.(*ast.IndexExpr)
	if !ok {
		return false
	}

	addr := ""
	deref := ""
	if p.isVariable(index.X) {
		addr = "&"
		deref = "*"
	}

	fmt.Fprintf(sb, "_cgoIndex%d := %s%s; ", i, addr, gofmtPos(index.X, index.X.Pos()))
	origX := index.X
	index.X = ast.NewIdent(fmt.Sprintf("_cgoIndex%d", i))
	if deref == "*" {
		index.X = &ast.StarExpr{X: index.X}
	}
	fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos()))
	index.X = origX

	fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgo%d, %s_cgoIndex%d); ", i, deref, i)

	return true
}

// checkAddr checks whether arg has the form &x, possibly inside type
// conversions. If so, it writes
//    _cgoBaseNN := &x
//    _cgoNN := _cgoBaseNN // with type conversions, if any
// to sb, and writes
//    _cgoCheckPointer(_cgoBaseNN, true)
// to sbCheck, and returns true. This tells _cgoCheckPointer to check
// just the contents of the pointer being passed, not any other part
// of the memory allocation. This is run after checkIndex, which looks
// for the special case of &a[i], which requires different checks.
func (p *Package) checkAddr(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool {
	// Strip type conversions.
	px := &arg
	for {
		c, ok := (*px).(*ast.CallExpr)
		if !ok || len(c.Args) != 1 || !p.isType(c.Fun) {
			break
		}
		px = &c.Args[0]
	}
	if u, ok := (*px).(*ast.UnaryExpr); !ok || u.Op != token.AND {
		return false
	}

	fmt.Fprintf(sb, "_cgoBase%d := %s; ", i, gofmtPos(*px, (*px).Pos()))

	origX := *px
	*px = ast.NewIdent(fmt.Sprintf("_cgoBase%d", i))
	fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos()))
	*px = origX

	// Use "0 == 0" to do the right thing in the unlikely event
	// that "true" is shadowed.
	fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgoBase%d, 0 == 0); ", i)

	return true
}

// isType reports whether the expression is definitely a type.
// This is conservative--it returns false for an unknown identifier.
func (p *Package) isType(t ast.Expr) bool {
	switch t := t.(type) {
	case *ast.SelectorExpr:
		id, ok := t.X.(*ast.Ident)
		if !ok {
			return false
		}
		if id.Name == "unsafe" && t.Sel.Name == "Pointer" {
			return true
		}
		if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil {
			return true
		}
		return false
	case *ast.Ident:
		// TODO: This ignores shadowing.
		switch t.Name {
		case "unsafe.Pointer", "bool", "byte",
			"complex64", "complex128",
			"error",
			"float32", "float64",
			"int", "int8", "int16", "int32", "int64",
			"rune", "string",
			"uint", "uint8", "uint16", "uint32", "uint64", "uintptr":

			return true
		}
		if strings.HasPrefix(t.Name, "_Ctype_") {
			return true
		}
	case *ast.ParenExpr:
		return p.isType(t.X)
	case *ast.StarExpr:
		return p.isType(t.X)
	case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType,
		*ast.MapType, *ast.ChanType:

		return true
	}
	return false
}

// isVariable reports whether x is a variable, possibly with field references.
func (p *Package) isVariable(x ast.Expr) bool {
	switch x := x.(type) {
	case *ast.Ident:
		return true
	case *ast.SelectorExpr:
		return p.isVariable(x.X)
	case *ast.IndexExpr:
		return true
	}
	return false
}

// rewriteUnsafe returns a version of t with references to unsafe.Pointer
// rewritten to use _cgo_unsafe.Pointer instead.
func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr {
	switch t := t.(type) {
	case *ast.Ident:
		// We don't see a SelectorExpr for unsafe.Pointer;
		// this is created by code in this file.
		if t.Name == "unsafe.Pointer" {
			return ast.NewIdent("_cgo_unsafe.Pointer")
		}
	case *ast.ArrayType:
		t1 := p.rewriteUnsafe(t.Elt)
		if t1 != t.Elt {
			r := *t
			r.Elt = t1
			return &r
		}
	case *ast.StructType:
		changed := false
		fields := *t.Fields
		fields.List = nil
		for _, f := range t.Fields.List {
			ft := p.rewriteUnsafe(f.Type)
			if ft == f.Type {
				fields.List = append(fields.List, f)
			} else {
				fn := *f
				fn.Type = ft
				fields.List = append(fields.List, &fn)
				changed = true
			}
		}
		if changed {
			r := *t
			r.Fields = &fields
			return &r
		}
	case *ast.StarExpr: // Pointer type.
		x1 := p.rewriteUnsafe(t.X)
		if x1 != t.X {
			r := *t
			r.X = x1
			return &r
		}
	}
	return t
}

// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
// Go equivalents, now that we have figured out the meaning of all
// the xxx. In *godefs mode, rewriteRef replaces the names
// with full definitions instead of mangled names.
func (p *Package) rewriteRef(f *File) {
	// Keep a list of all the functions, to remove the ones
	// only used as expressions and avoid generating bridge
	// code for them.
	functions := make(map[string]bool)

	for _, n := range f.Name {
		if n.Kind == "func" {
			functions[n.Go] = false
		}
	}

	// Now that we have all the name types filled in,
	// scan through the Refs to identify the ones that
	// are trying to do a ,err call. Also check that
	// functions are only used in calls.
	for _, r := range f.Ref {
		if r.Name.IsConst() && r.Name.Const == "" {
			error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go))
		}

		if r.Name.Kind == "func" {
			switch r.Context {
			case ctxCall, ctxCall2:
				functions[r.Name.Go] = true
			}
		}

		expr := p.rewriteName(f, r)

		if *godefs {
			// Substitute definition for mangled type name.
			if r.Name.Type != nil && r.Name.Kind == "type" {
				expr = r.Name.Type.Go
			}
			if id, ok := expr.(*ast.Ident); ok {
				if t := typedef[id.Name]; t != nil {
					expr = t.Go
				}
				if id.Name == r.Name.Mangle && r.Name.Const != "" {
					expr = ast.NewIdent(r.Name.Const)
				}
			}
		}

		// Copy position information from old expr into new expr,
		// in case expression being replaced is first on line.
		// See golang.org/issue/6563.
		pos := (*r.Expr).Pos()
		if x, ok := expr.(*ast.Ident); ok {
			expr = &ast.Ident{NamePos: pos, Name: x.Name}
		}

		// Change AST, because some later processing depends on it,
		// and also because -godefs mode still prints the AST.
		old := *r.Expr
		*r.Expr = expr

		// Record source-level edit for cgo output.
		if !r.Done {
			// Prepend a space in case the earlier code ends
			// with '/', which would give us a "//" comment.
			repl := " " + gofmtPos(expr, old.Pos())
			end := fset.Position(old.End())
			// Subtract 1 from the column if we are going to
			// append a close parenthesis. That will set the
			// correct column for the following characters.
			sub := 0
			if r.Name.Kind != "type" {
				sub = 1
			}
			if end.Column > sub {
				repl = fmt.Sprintf("%s /*line :%d:%d*/", repl, end.Line, end.Column-sub)
			}
			if r.Name.Kind != "type" {
				repl = "(" + repl + ")"
			}
			f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), repl)
		}
	}

	// Remove functions only used as expressions, so their respective
	// bridge functions are not generated.
	for name, used := range functions {
		if !used {
			delete(f.Name, name)
		}
	}
}

// rewriteName returns the expression used to rewrite a reference.
func (p *Package) rewriteName(f *File, r *Ref) ast.Expr {
	var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
	switch r.Context {
	case ctxCall, ctxCall2:
		if r.Name.Kind != "func" {
			if r.Name.Kind == "type" {
				r.Context = ctxType
				if r.Name.Type == nil {
					error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
				}
				break
			}
			error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go))
			break
		}
		if r.Context == ctxCall2 {
			if r.Name.Go == "_CMalloc" {
				error_(r.Pos(), "no two-result form for C.malloc")
				break
			}
			// Invent new Name for the two-result function.
			n := f.Name["2"+r.Name.Go]
			if n == nil {
				n = new(Name)
				*n = *r.Name
				n.AddError = true
				n.Mangle = "_C2func_" + n.Go
				f.Name["2"+r.Name.Go] = n
			}
			expr = ast.NewIdent(n.Mangle)
			r.Name = n
			break
		}
	case ctxExpr:
		switch r.Name.Kind {
		case "func":
			if builtinDefs[r.Name.C] != "" {
				error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C))
			}

			// Function is being used in an expression, to e.g. pass around a C function pointer.
			// Create a new Name for this Ref which causes the variable to be declared in Go land.
			fpName := "fp_" + r.Name.Go
			name := f.Name[fpName]
			if name == nil {
				name = &Name{
					Go:   fpName,
					C:    r.Name.C,
					Kind: "fpvar",
					Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")},
				}
				p.mangleName(name)
				f.Name[fpName] = name
			}
			r.Name = name
			// Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr
			// function is defined in out.go and simply returns its argument. See
			// issue 7757.
			expr = &ast.CallExpr{
				Fun:  &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"},
				Args: []ast.Expr{ast.NewIdent(name.Mangle)},
			}
		case "type":
			// Okay - might be new(T)
			if r.Name.Type == nil {
				error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
			}
		case "var":
			expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
		case "macro":
			expr = &ast.CallExpr{Fun: expr}
		}
	case ctxSelector:
		if r.Name.Kind == "var" {
			expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
		} else {
			error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go))
		}
	case ctxType:
		if r.Name.Kind != "type" {
			error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go))
		} else if r.Name.Type == nil {
			// Use of C.enum_x, C.struct_x or C.union_x without C definition.
			// GCC won't raise an error when using pointers to such unknown types.
			error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
		}
	default:
		if r.Name.Kind == "func" {
			error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go))
		}
	}
	return expr
}

// gofmtPos returns the gofmt-formatted string for an AST node,
// with a comment setting the position before the node.
func gofmtPos(n ast.Expr, pos token.Pos) string {
	s := gofmtLine(n)
	p := fset.Position(pos)
	if p.Column == 0 {
		return s
	}
	return fmt.Sprintf("/*line :%d:%d*/%s", p.Line, p.Column, s)
}

// gccBaseCmd returns the start of the compiler command line.
// It uses $CC if set, or else $GCC, or else the compiler recorded
// during the initial build as defaultCC.
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
func (p *Package) gccBaseCmd() []string {
	// Use $CC if set, since that's what the build uses.
	if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 {
		return ret
	}
	// Try $GCC if set, since that's what we used to use.
	if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 {
		return ret
	}
	return strings.Fields(defaultCC(goos, goarch))
}

// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm".
func (p *Package) gccMachine() []string {
	switch goarch {
	case "amd64":
		return []string{"-m64"}
	case "386":
		return []string{"-m32"}
	case "arm":
		return []string{"-marm"} // not thumb
	case "s390":
		return []string{"-m31"}
	case "s390x":
		return []string{"-m64"}
	case "mips64", "mips64le":
		return []string{"-mabi=64"}
	case "mips", "mipsle":
		return []string{"-mabi=32"}
	case "ppc64":
		if goos == "aix" {
			return []string{"-maix64"}
		}
	case "ppc":
		if goos == "aix" {
			return []string{"-maix32"}
		}
	}
	return nil
}

func gccTmp() string {
	return *objDir + "_cgo_.o"
}

// gccCmd returns the gcc command line to use for compiling
// the input.
func (p *Package) gccCmd() []string {
	c := append(p.gccBaseCmd(),
		"-w",          // no warnings
		"-Wno-error",  // warnings are not errors
		"-o"+gccTmp(), // write object to tmp
		"-gdwarf-2",   // generate DWARF v2 debugging symbols
		"-c",          // do not link
		"-xc",         // input language is C
	)
	if p.GccIsClang {
		c = append(c,
			"-ferror-limit=0",
			// Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn)
			// doesn't have -Wno-unneeded-internal-declaration, so we need yet another
			// flag to disable the warning. Yes, really good diagnostics, clang.
			"-Wno-unknown-warning-option",
			"-Wno-unneeded-internal-declaration",
			"-Wno-unused-function",
			"-Qunused-arguments",
			// Clang embeds prototypes for some builtin functions,
			// like malloc and calloc, but all size_t parameters are
			// incorrectly typed unsigned long. We work around that
			// by disabling the builtin functions (this is safe as
			// it won't affect the actual compilation of the C code).
			// See: https://golang.org/issue/6506.
			"-fno-builtin",
		)
	}

	c = append(c, p.GccOptions...)
	c = append(c, p.gccMachine()...)
	if goos == "aix" {
		c = append(c, "-mcmodel=large")
	}
	c = append(c, "-") //read input from standard input
	return c
}

// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and, if present, debug data block.
func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) {
	runGcc(stdin, p.gccCmd())

	isDebugInts := func(s string) bool {
		// Some systems use leading _ to denote non-assembly symbols.
		return s == "__cgodebug_ints" || s == "___cgodebug_ints"
	}
	isDebugFloats := func(s string) bool {
		// Some systems use leading _ to denote non-assembly symbols.
		return s == "__cgodebug_floats" || s == "___cgodebug_floats"
	}
	indexOfDebugStr := func(s string) int {
		// Some systems use leading _ to denote non-assembly symbols.
		if strings.HasPrefix(s, "___") {
			s = s[1:]
		}
		if strings.HasPrefix(s, "__cgodebug_str__") {
			if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil {
				return n
			}
		}
		return -1
	}
	indexOfDebugStrlen := func(s string) int {
		// Some systems use leading _ to denote non-assembly symbols.
		if strings.HasPrefix(s, "___") {
			s = s[1:]
		}
		if strings.HasPrefix(s, "__cgodebug_strlen__") {
			if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil {
				return n
			}
		}
		return -1
	}

	strs = make([]string, nnames)

	strdata := make(map[int]string, nnames)
	strlens := make(map[int]int, nnames)

	buildStrings := func() {
		for n, strlen := range strlens {
			data := strdata[n]
			if len(data) <= strlen {
				fatalf("invalid string literal")
			}
			strs[n] = data[:strlen]
		}
	}

	if f, err := macho.Open(gccTmp()); err == nil {
		defer f.Close()
		d, err := f.DWARF()
		if err != nil {
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
		}
		bo := f.ByteOrder
		if f.Symtab != nil {
			for i := range f.Symtab.Syms {
				s := &f.Symtab.Syms[i]
				switch {
				case isDebugInts(s.Name):
					// Found it. Now find data section.
					if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value-sect.Addr:]
								ints = make([]int64, len(data)/8)
								for i := range ints {
									ints[i] = int64(bo.Uint64(data[i*8:]))
								}
							}
						}
					}
				case isDebugFloats(s.Name):
					// Found it. Now find data section.
					if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value-sect.Addr:]
								floats = make([]float64, len(data)/8)
								for i := range floats {
									floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
								}
							}
						}
					}
				default:
					if n := indexOfDebugStr(s.Name); n != -1 {
						// Found it. Now find data section.
						if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
							sect := f.Sections[i]
							if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
								if sdat, err := sect.Data(); err == nil {
									data := sdat[s.Value-sect.Addr:]
									strdata[n] = string(data)
								}
							}
						}
						break
					}
					if n := indexOfDebugStrlen(s.Name); n != -1 {
						// Found it. Now find data section.
						if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
							sect := f.Sections[i]
							if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
								if sdat, err := sect.Data(); err == nil {
									data := sdat[s.Value-sect.Addr:]
									strlen := bo.Uint64(data[:8])
									if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
										fatalf("string literal too big")
									}
									strlens[n] = int(strlen)
								}
							}
						}
						break
					}
				}
			}

			buildStrings()
		}
		return d, ints, floats, strs
	}

	if f, err := elf.Open(gccTmp()); err == nil {
		defer f.Close()
		d, err := f.DWARF()
		if err != nil {
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
		}
		bo := f.ByteOrder
		symtab, err := f.Symbols()
		if err == nil {
			for i := range symtab {
				s := &symtab[i]
				switch {
				case isDebugInts(s.Name):
					// Found it. Now find data section.
					if i := int(s.Section); 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value-sect.Addr:]
								ints = make([]int64, len(data)/8)
								for i := range ints {
									ints[i] = int64(bo.Uint64(data[i*8:]))
								}
							}
						}
					}
				case isDebugFloats(s.Name):
					// Found it. Now find data section.
					if i := int(s.Section); 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value-sect.Addr:]
								floats = make([]float64, len(data)/8)
								for i := range floats {
									floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
								}
							}
						}
					}
				default:
					if n := indexOfDebugStr(s.Name); n != -1 {
						// Found it. Now find data section.
						if i := int(s.Section); 0 <= i && i < len(f.Sections) {
							sect := f.Sections[i]
							if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
								if sdat, err := sect.Data(); err == nil {
									data := sdat[s.Value-sect.Addr:]
									strdata[n] = string(data)
								}
							}
						}
						break
					}
					if n := indexOfDebugStrlen(s.Name); n != -1 {
						// Found it. Now find data section.
						if i := int(s.Section); 0 <= i && i < len(f.Sections) {
							sect := f.Sections[i]
							if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
								if sdat, err := sect.Data(); err == nil {
									data := sdat[s.Value-sect.Addr:]
									strlen := bo.Uint64(data[:8])
									if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
										fatalf("string literal too big")
									}
									strlens[n] = int(strlen)
								}
							}
						}
						break
					}
				}
			}

			buildStrings()
		}
		return d, ints, floats, strs
	}

	if f, err := pe.Open(gccTmp()); err == nil {
		defer f.Close()
		d, err := f.DWARF()
		if err != nil {
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
		}
		bo := binary.LittleEndian
		for _, s := range f.Symbols {
			switch {
			case isDebugInts(s.Name):
				if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
					sect := f.Sections[i]
					if s.Value < sect.Size {
						if sdat, err := sect.Data(); err == nil {
							data := sdat[s.Value:]
							ints = make([]int64, len(data)/8)
							for i := range ints {
								ints[i] = int64(bo.Uint64(data[i*8:]))
							}
						}
					}
				}
			case isDebugFloats(s.Name):
				if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
					sect := f.Sections[i]
					if s.Value < sect.Size {
						if sdat, err := sect.Data(); err == nil {
							data := sdat[s.Value:]
							floats = make([]float64, len(data)/8)
							for i := range floats {
								floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
							}
						}
					}
				}
			default:
				if n := indexOfDebugStr(s.Name); n != -1 {
					if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if s.Value < sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value:]
								strdata[n] = string(data)
							}
						}
					}
					break
				}
				if n := indexOfDebugStrlen(s.Name); n != -1 {
					if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if s.Value < sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value:]
								strlen := bo.Uint64(data[:8])
								if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
									fatalf("string literal too big")
								}
								strlens[n] = int(strlen)
							}
						}
					}
					break
				}
			}
		}

		buildStrings()

		return d, ints, floats, strs
	}

	if f, err := xcoff.Open(gccTmp()); err == nil {
		defer f.Close()
		d, err := f.DWARF()
		if err != nil {
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
		}
		bo := binary.BigEndian
		for _, s := range f.Symbols {
			switch {
			case isDebugInts(s.Name):
				if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
					sect := f.Sections[i]
					if s.Value < sect.Size {
						if sdat, err := sect.Data(); err == nil {
							data := sdat[s.Value:]
							ints = make([]int64, len(data)/8)
							for i := range ints {
								ints[i] = int64(bo.Uint64(data[i*8:]))
							}
						}
					}
				}
			case isDebugFloats(s.Name):
				if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
					sect := f.Sections[i]
					if s.Value < sect.Size {
						if sdat, err := sect.Data(); err == nil {
							data := sdat[s.Value:]
							floats = make([]float64, len(data)/8)
							for i := range floats {
								floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
							}
						}
					}
				}
			default:
				if n := indexOfDebugStr(s.Name); n != -1 {
					if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if s.Value < sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value:]
								strdata[n] = string(data)
							}
						}
					}
					break
				}
				if n := indexOfDebugStrlen(s.Name); n != -1 {
					if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
						sect := f.Sections[i]
						if s.Value < sect.Size {
							if sdat, err := sect.Data(); err == nil {
								data := sdat[s.Value:]
								strlen := bo.Uint64(data[:8])
								if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
									fatalf("string literal too big")
								}
								strlens[n] = int(strlen)
							}
						}
					}
					break
				}
			}
		}

		buildStrings()
		return d, ints, floats, strs
	}
	fatalf("cannot parse gcc output %s as ELF, Mach-O, PE, XCOFF object", gccTmp())
	panic("not reached")
}

// gccDefines runs gcc -E -dM -xc - over the C program stdin
// and returns the corresponding standard output, which is the
// #defines that gcc encountered while processing the input
// and its included files.
func (p *Package) gccDefines(stdin []byte) string {
	base := append(p.gccBaseCmd(), "-E", "-dM", "-xc")
	base = append(base, p.gccMachine()...)
	stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
	return stdout
}

// gccErrors runs gcc over the C program stdin and returns
// the errors that gcc prints. That is, this function expects
// gcc to fail.
func (p *Package) gccErrors(stdin []byte, extraArgs ...string) string {
	// TODO(rsc): require failure
	args := p.gccCmd()

	// Optimization options can confuse the error messages; remove them.
	nargs := make([]string, 0, len(args)+len(extraArgs))
	for _, arg := range args {
		if !strings.HasPrefix(arg, "-O") {
			nargs = append(nargs, arg)
		}
	}

	// Force -O0 optimization and append extra arguments, but keep the
	// trailing "-" at the end.
	li := len(nargs) - 1
	last := nargs[li]
	nargs[li] = "-O0"
	nargs = append(nargs, extraArgs...)
	nargs = append(nargs, last)

	if *debugGcc {
		fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " "))
		os.Stderr.Write(stdin)
		fmt.Fprint(os.Stderr, "EOF\n")
	}
	stdout, stderr, _ := run(stdin, nargs)
	if *debugGcc {
		os.Stderr.Write(stdout)
		os.Stderr.Write(stderr)
	}
	return string(stderr)
}

// runGcc runs the gcc command line args with stdin on standard input.
// If the command exits with a non-zero exit status, runGcc prints
// details about what was run and exits.
// Otherwise runGcc returns the data written to standard output and standard error.
// Note that for some of the uses we expect useful data back
// on standard error, but for those uses gcc must still exit 0.
func runGcc(stdin []byte, args []string) (string, string) {
	if *debugGcc {
		fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
		os.Stderr.Write(stdin)
		fmt.Fprint(os.Stderr, "EOF\n")
	}
	stdout, stderr, ok := run(stdin, args)
	if *debugGcc {
		os.Stderr.Write(stdout)
		os.Stderr.Write(stderr)
	}
	if !ok {
		os.Stderr.Write(stderr)
		os.Exit(2)
	}
	return string(stdout), string(stderr)
}

// A typeConv is a translator from dwarf types to Go types
// with equivalent memory layout.
type typeConv struct {
	// Cache of already-translated or in-progress types.
	m map[string]*Type

	// Map from types to incomplete pointers to those types.
	ptrs map[string][]*Type
	// Keys of ptrs in insertion order (deterministic worklist)
	// ptrKeys contains exactly the keys in ptrs.
	ptrKeys []dwarf.Type

	// Type names X for which there exists an XGetTypeID function with type func() CFTypeID.
	getTypeIDs map[string]bool

	// Predeclared types.
	bool                                   ast.Expr
	byte                                   ast.Expr // denotes padding
	int8, int16, int32, int64              ast.Expr
	uint8, uint16, uint32, uint64, uintptr ast.Expr
	float32, float64                       ast.Expr
	complex64, complex128                  ast.Expr
	void                                   ast.Expr
	string                                 ast.Expr
	goVoid                                 ast.Expr // _Ctype_void, denotes C's void
	goVoidPtr                              ast.Expr // unsafe.Pointer or *byte

	ptrSize int64
	intSize int64
}

var tagGen int
var typedef = make(map[string]*Type)
var goIdent = make(map[string]*ast.Ident)

// unionWithPointer is true for a Go type that represents a C union (or class)
// that may contain a pointer. This is used for cgo pointer checking.
var unionWithPointer = make(map[ast.Expr]bool)

// anonymousStructTag provides a consistent tag for an anonymous struct.
// The same dwarf.StructType pointer will always get the same tag.
var anonymousStructTag = make(map[*dwarf.StructType]string)

func (c *typeConv) Init(ptrSize, intSize int64) {
	c.ptrSize = ptrSize
	c.intSize = intSize
	c.m = make(map[string]*Type)
	c.ptrs = make(map[string][]*Type)
	c.getTypeIDs = make(map[string]bool)
	c.bool = c.Ident("bool")
	c.byte = c.Ident("byte")
	c.int8 = c.Ident("int8")
	c.int16 = c.Ident("int16")
	c.int32 = c.Ident("int32")
	c.int64 = c.Ident("int64")
	c.uint8 = c.Ident("uint8")
	c.uint16 = c.Ident("uint16")
	c.uint32 = c.Ident("uint32")
	c.uint64 = c.Ident("uint64")
	c.uintptr = c.Ident("uintptr")
	c.float32 = c.Ident("float32")
	c.float64 = c.Ident("float64")
	c.complex64 = c.Ident("complex64")
	c.complex128 = c.Ident("complex128")
	c.void = c.Ident("void")
	c.string = c.Ident("string")
	c.goVoid = c.Ident("_Ctype_void")

	// Normally cgo translates void* to unsafe.Pointer,
	// but for historical reasons -godefs uses *byte instead.
	if *godefs {
		c.goVoidPtr = &ast.StarExpr{X: c.byte}
	} else {
		c.goVoidPtr = c.Ident("unsafe.Pointer")
	}
}

// base strips away qualifiers and typedefs to get the underlying type
func base(dt dwarf.Type) dwarf.Type {
	for {
		if d, ok := dt.(*dwarf.QualType); ok {
			dt = d.Type
			continue
		}
		if d, ok := dt.(*dwarf.TypedefType); ok {
			dt = d.Type
			continue
		}
		break
	}
	return dt
}

// unqual strips away qualifiers from a DWARF type.
// In general we don't care about top-level qualifiers.
func unqual(dt dwarf.Type) dwarf.Type {
	for {
		if d, ok := dt.(*dwarf.QualType); ok {
			dt = d.Type
		} else {
			break
		}
	}
	return dt
}

// Map from dwarf text names to aliases we use in package "C".
var dwarfToName = map[string]string{
	"long int":               "long",
	"long unsigned int":      "ulong",
	"unsigned int":           "uint",
	"short unsigned int":     "ushort",
	"unsigned short":         "ushort", // Used by Clang; issue 13129.
	"short int":              "short",
	"long long int":          "longlong",
	"long long unsigned int": "ulonglong",
	"signed char":            "schar",
	"unsigned char":          "uchar",
}

const signedDelta = 64

// String returns the current type representation. Format arguments
// are assembled within this method so that any changes in mutable
// values are taken into account.
func (tr *TypeRepr) String() string {
	if len(tr.Repr) == 0 {
		return ""
	}
	if len(tr.FormatArgs) == 0 {
		return tr.Repr
	}
	return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
}

// Empty reports whether the result of String would be "".
func (tr *TypeRepr) Empty() bool {
	return len(tr.Repr) == 0
}

// Set modifies the type representation.
// If fargs are provided, repr is used as a format for fmt.Sprintf.
// Otherwise, repr is used unprocessed as the type representation.
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
	tr.Repr = repr
	tr.FormatArgs = fargs
}

// FinishType completes any outstanding type mapping work.
// In particular, it resolves incomplete pointer types.
func (c *typeConv) FinishType(pos token.Pos) {
	// Completing one pointer type might produce more to complete.
	// Keep looping until they're all done.
	for len(c.ptrKeys) > 0 {
		dtype := c.ptrKeys[0]
		dtypeKey := dtype.String()
		c.ptrKeys = c.ptrKeys[1:]
		ptrs := c.ptrs[dtypeKey]
		delete(c.ptrs, dtypeKey)

		// Note Type might invalidate c.ptrs[dtypeKey].
		t := c.Type(dtype, pos)
		for _, ptr := range ptrs {
			ptr.Go.(*ast.StarExpr).X = t.Go
			ptr.C.Set("%s*", t.C)
		}
	}
}

// Type returns a *Type with the same memory layout as
// dtype when used as the type of a variable or a struct field.
func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type {
	return c.loadType(dtype, pos, "")
}

// loadType recursively loads the requested dtype and its dependency graph.
func (c *typeConv) loadType(dtype dwarf.Type, pos token.Pos, parent string) *Type {
	// Always recompute bad pointer typedefs, as the set of such
	// typedefs changes as we see more types.
	checkCache := true
	if dtt, ok := dtype.(*dwarf.TypedefType); ok && c.badPointerTypedef(dtt) {
		checkCache = false
	}

	// The cache key should be relative to its parent.
	// See issue https://golang.org/issue/31891
	key := parent + " > " + dtype.String()

	if checkCache {
		if t, ok := c.m[key]; ok {
			if t.Go == nil {
				fatalf("%s: type conversion loop at %s", lineno(pos), dtype)
			}
			return t
		}
	}

	t := new(Type)
	t.Size = dtype.Size() // note: wrong for array of pointers, corrected below
	t.Align = -1
	t.C = &TypeRepr{Repr: dtype.Common().Name}
	c.m[key] = t

	switch dt := dtype.(type) {
	default:
		fatalf("%s: unexpected type: %s", lineno(pos), dtype)

	case *dwarf.AddrType:
		if t.Size != c.ptrSize {
			fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype)
		}
		t.Go = c.uintptr
		t.Align = t.Size

	case *dwarf.ArrayType:
		if dt.StrideBitSize > 0 {
			// Cannot represent bit-sized elements in Go.
			t.Go = c.Opaque(t.Size)
			break
		}
		count := dt.Count
		if count == -1 {
			// Indicates flexible array member, which Go doesn't support.
			// Translate to zero-length array instead.
			count = 0
		}
		sub := c.Type(dt.Type, pos)
		t.Align = sub.Align
		t.Go = &ast.ArrayType{
			Len: c.intExpr(count),
			Elt: sub.Go,
		}
		// Recalculate t.Size now that we know sub.Size.
		t.Size = count * sub.Size
		t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count)

	case *dwarf.BoolType:
		t.Go = c.bool
		t.Align = 1

	case *dwarf.CharType:
		if t.Size != 1 {
			fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype)
		}
		t.Go = c.int8
		t.Align = 1

	case *dwarf.EnumType:
		if t.Align = t.Size; t.Align >= c.ptrSize {
			t.Align = c.ptrSize
		}
		t.C.Set("enum " + dt.EnumName)
		signed := 0
		t.EnumValues = make(map[string]int64)
		for _, ev := range dt.Val {
			t.EnumValues[ev.Name] = ev.Val
			if ev.Val < 0 {
				signed = signedDelta
			}
		}
		switch t.Size + int64(signed) {
		default:
			fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype)
		case 1:
			t.Go = c.uint8
		case 2:
			t.Go = c.uint16
		case 4:
			t.Go = c.uint32
		case 8:
			t.Go = c.uint64
		case 1 + signedDelta:
			t.Go = c.int8
		case 2 + signedDelta:
			t.Go = c.int16
		case 4 + signedDelta:
			t.Go = c.int32
		case 8 + signedDelta:
			t.Go = c.int64
		}

	case *dwarf.FloatType:
		switch t.Size {
		default:
			fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype)
		case 4:
			t.Go = c.float32
		case 8:
			t.Go = c.float64
		}
		if t.Align = t.Size; t.Align >= c.ptrSize {
			t.Align = c.ptrSize
		}

	case *dwarf.ComplexType:
		switch t.Size {
		default:
			fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype)
		case 8:
			t.Go = c.complex64
		case 16:
			t.Go = c.complex128
		}
		if t.Align = t.Size / 2; t.Align >= c.ptrSize {
			t.Align = c.ptrSize
		}

	case *dwarf.FuncType:
		// No attempt at translation: would enable calls
		// directly between worlds, but we need to moderate those.
		t.Go = c.uintptr
		t.Align = c.ptrSize

	case *dwarf.IntType:
		if dt.BitSize > 0 {
			fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype)
		}
		switch t.Size {
		default:
			fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype)
		case 1:
			t.Go = c.int8
		case 2:
			t.Go = c.int16
		case 4:
			t.Go = c.int32
		case 8:
			t.Go = c.int64
		case 16:
			t.Go = &ast.ArrayType{
				Len: c.intExpr(t.Size),
				Elt: c.uint8,
			}
		}
		if t.Align = t.Size; t.Align >= c.ptrSize {
			t.Align = c.ptrSize
		}

	case *dwarf.PtrType:
		// Clang doesn't emit DW_AT_byte_size for pointer types.
		if t.Size != c.ptrSize && t.Size != -1 {
			fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype)
		}
		t.Size = c.ptrSize
		t.Align = c.ptrSize

		if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
			t.Go = c.goVoidPtr
			t.C.Set("void*")
			dq := dt.Type
			for {
				if d, ok := dq.(*dwarf.QualType); ok {
					t.C.Set(d.Qual + " " + t.C.String())
					dq = d.Type
				} else {
					break
				}
			}
			break
		}

		// Placeholder initialization; completed in FinishType.
		t.Go = &ast.StarExpr{}
		t.C.Set("<incomplete>*")
		key := dt.Type.String()
		if _, ok := c.ptrs[key]; !ok {
			c.ptrKeys = append(c.ptrKeys, dt.Type)
		}
		c.ptrs[key] = append(c.ptrs[key], t)

	case *dwarf.QualType:
		t1 := c.Type(dt.Type, pos)
		t.Size = t1.Size
		t.Align = t1.Align
		t.Go = t1.Go
		if unionWithPointer[t1.Go] {
			unionWithPointer[t.Go] = true
		}
		t.EnumValues = nil
		t.Typedef = ""
		t.C.Set("%s "+dt.Qual, t1.C)
		return t

	case *dwarf.StructType:
		// Convert to Go struct, being careful about alignment.
		// Have to give it a name to simulate C "struct foo" references.
		tag := dt.StructName
		if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible
			break
		}
		if tag == "" {
			tag = anonymousStructTag[dt]
			if tag == "" {
				tag = "__" + strconv.Itoa(tagGen)
				tagGen++
				anonymousStructTag[dt] = tag
			}
		} else if t.C.Empty() {
			t.C.Set(dt.Kind + " " + tag)
		}
		name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
		t.Go = name // publish before recursive calls
		goIdent[name.Name] = name
		if dt.ByteSize < 0 {
			// Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown),
			// so execute the basic things that the struct case would do
			// other than try to determine a Go representation.
			tt := *t
			tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}}
			tt.Go = c.Ident("struct{}")
			if dt.Kind == "struct" {
				// We don't know what the representation of this struct is, so don't let
				// anyone allocate one on the Go side. As a side effect of this annotation,
				// pointers to this type will not be considered pointers in Go. They won't
				// get writebarrier-ed or adjusted during a stack copy. This should handle
				// all the cases badPointerTypedef used to handle, but hopefully will
				// continue to work going forward without any more need for cgo changes.
				tt.NotInHeap = true
				// TODO: we should probably do the same for unions. Unions can't live
				// on the Go heap, right? It currently doesn't work for unions because
				// they are defined as a type alias for struct{}, not a defined type.
			}
			typedef[name.Name] = &tt
			break
		}
		switch dt.Kind {
		case "class", "union":
			t.Go = c.Opaque(t.Size)
			if c.dwarfHasPointer(dt, pos) {
				unionWithPointer[t.Go] = true
			}
			if t.C.Empty() {
				t.C.Set("__typeof__(unsigned char[%d])", t.Size)
			}
			t.Align = 1 // TODO: should probably base this on field alignment.
			typedef[name.Name] = t
		case "struct":
			g, csyntax, align := c.Struct(dt, pos)
			if t.C.Empty() {
				t.C.Set(csyntax)
			}
			t.Align = align
			tt := *t
			if tag != "" {
				tt.C = &TypeRepr{"struct %s", []interface{}{tag}}
			}
			tt.Go = g
			typedef[name.Name] = &tt
		}

	case *dwarf.TypedefType:
		// Record typedef for printing.
		if dt.Name == "_GoString_" {
			// Special C name for Go string type.
			// Knows string layout used by compilers: pointer plus length,
			// which rounds up to 2 pointers after alignment.
			t.Go = c.string
			t.Size = c.ptrSize * 2
			t.Align = c.ptrSize
			break
		}
		if dt.Name == "_GoBytes_" {
			// Special C name for Go []byte type.
			// Knows slice layout used by compilers: pointer, length, cap.
			t.Go = c.Ident("[]byte")
			t.Size = c.ptrSize + 4 + 4
			t.Align = c.ptrSize
			break
		}
		name := c.Ident("_Ctype_" + dt.Name)
		goIdent[name.Name] = name
		akey := ""
		if c.anonymousStructTypedef(dt) {
			// only load type recursively for typedefs of anonymous
			// structs, see issues 37479 and 37621.
			akey = key
		}
		sub := c.loadType(dt.Type, pos, akey)
		if c.badPointerTypedef(dt) {
			// Treat this typedef as a uintptr.
			s := *sub
			s.Go = c.uintptr
			s.BadPointer = true
			sub = &s
			// Make sure we update any previously computed type.
			if oldType := typedef[name.Name]; oldType != nil {
				oldType.Go = sub.Go
				oldType.BadPointer = true
			}
		}
		t.Go = name
		t.BadPointer = sub.BadPointer
		t.NotInHeap = sub.NotInHeap
		if unionWithPointer[sub.Go] {
			unionWithPointer[t.Go] = true
		}
		t.Size = sub.Size
		t.Align = sub.Align
		oldType := typedef[name.Name]
		if oldType == nil {
			tt := *t
			tt.Go = sub.Go
			tt.BadPointer = sub.BadPointer
			tt.NotInHeap = sub.NotInHeap
			typedef[name.Name] = &tt
		}

		// If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo",
		// use that as the Go form for this typedef too, so that the typedef will be interchangeable
		// with the base type.
		// In -godefs mode, do this for all typedefs.
		if isStructUnionClass(sub.Go) || *godefs {
			t.Go = sub.Go

			if isStructUnionClass(sub.Go) {
				// Use the typedef name for C code.
				typedef[sub.Go.(*ast.Ident).Name].C = t.C
			}

			// If we've seen this typedef before, and it
			// was an anonymous struct/union/class before
			// too, use the old definition.
			// TODO: it would be safer to only do this if
			// we verify that the types are the same.
			if oldType != nil && isStructUnionClass(oldType.Go) {
				t.Go = oldType.Go
			}
		}

	case *dwarf.UcharType:
		if t.Size != 1 {
			fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype)
		}
		t.Go = c.uint8
		t.Align = 1

	case *dwarf.UintType:
		if dt.BitSize > 0 {
			fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype)
		}
		switch t.Size {
		default:
			fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype)
		case 1:
			t.Go = c.uint8
		case 2:
			t.Go = c.uint16
		case 4:
			t.Go = c.uint32
		case 8:
			t.Go = c.uint64
		case 16:
			t.Go = &ast.ArrayType{
				Len: c.intExpr(t.Size),
				Elt: c.uint8,
			}
		}
		if t.Align = t.Size; t.Align >= c.ptrSize {
			t.Align = c.ptrSize
		}

	case *dwarf.VoidType:
		t.Go = c.goVoid
		t.C.Set("void")
		t.Align = 1
	}

	switch dtype.(type) {
	case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
		s := dtype.Common().Name
		if s != "" {
			if ss, ok := dwarfToName[s]; ok {
				s = ss
			}
			s = strings.Replace(s, " ", "", -1)
			name := c.Ident("_Ctype_" + s)
			tt := *t
			typedef[name.Name] = &tt
			if !*godefs {
				t.Go = name
			}
		}
	}

	if t.Size < 0 {
		// Unsized types are [0]byte, unless they're typedefs of other types
		// or structs with tags.
		// if so, use the name we've already defined.
		t.Size = 0
		switch dt := dtype.(type) {
		case *dwarf.TypedefType:
			// ok
		case *dwarf.StructType:
			if dt.StructName != "" {
				break
			}
			t.Go = c.Opaque(0)
		default:
			t.Go = c.Opaque(0)
		}
		if t.C.Empty() {
			t.C.Set("void")
		}
	}

	if t.C.Empty() {
		fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype)
	}

	return t
}

// isStructUnionClass reports whether the type described by the Go syntax x
// is a struct, union, or class with a tag.
func isStructUnionClass(x ast.Expr) bool {
	id, ok := x.(*ast.Ident)
	if !ok {
		return false
	}
	name := id.Name
	return strings.HasPrefix(name, "_Ctype_struct_") ||
		strings.HasPrefix(name, "_Ctype_union_") ||
		strings.HasPrefix(name, "_Ctype_class_")
}

// FuncArg returns a Go type with the same memory layout as
// dtype when used as the type of a C function argument.
func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type {
	t := c.Type(unqual(dtype), pos)
	switch dt := dtype.(type) {
	case *dwarf.ArrayType:
		// Arrays are passed implicitly as pointers in C.
		// In Go, we must be explicit.
		tr := &TypeRepr{}
		tr.Set("%s*", t.C)
		return &Type{
			Size:  c.ptrSize,
			Align: c.ptrSize,
			Go:    &ast.StarExpr{X: t.Go},
			C:     tr,
		}
	case *dwarf.TypedefType:
		// C has much more relaxed rules than Go for
		// implicit type conversions. When the parameter
		// is type T defined as *X, simulate a little of the
		// laxness of C by making the argument *X instead of T.
		if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
			// Unless the typedef happens to point to void* since
			// Go has special rules around using unsafe.Pointer.
			if _, void := base(ptr.Type).(*dwarf.VoidType); void {
				break
			}
			// ...or the typedef is one in which we expect bad pointers.
			// It will be a uintptr instead of *X.
			if c.baseBadPointerTypedef(dt) {
				break
			}

			t = c.Type(ptr, pos)
			if t == nil {
				return nil
			}

			// For a struct/union/class, remember the C spelling,
			// in case it has __attribute__((unavailable)).
			// See issue 2888.
			if isStructUnionClass(t.Go) {
				t.Typedef = dt.Name
			}
		}
	}
	return t
}

// FuncType returns the Go type analogous to dtype.
// There is no guarantee about matching memory layout.
func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType {
	p := make([]*Type, len(dtype.ParamType))
	gp := make([]*ast.Field, len(dtype.ParamType))
	for i, f := range dtype.ParamType {
		// gcc's DWARF generator outputs a single DotDotDotType parameter for
		// function pointers that specify no parameters (e.g. void
		// (*__cgo_0)()).  Treat this special case as void. This case is
		// invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
		// legal).
		if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
			p, gp = nil, nil
			break
		}
		p[i] = c.FuncArg(f, pos)
		gp[i] = &ast.Field{Type: p[i].Go}
	}
	var r *Type
	var gr []*ast.Field
	if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok {
		gr = []*ast.Field{{Type: c.goVoid}}
	} else if dtype.ReturnType != nil {
		r = c.Type(unqual(dtype.ReturnType), pos)
		gr = []*ast.Field{{Type: r.Go}}
	}
	return &FuncType{
		Params: p,
		Result: r,
		Go: &ast.FuncType{
			Params:  &ast.FieldList{List: gp},
			Results: &ast.FieldList{List: gr},
		},
	}
}

// Identifier
func (c *typeConv) Ident(s string) *ast.Ident {
	return ast.NewIdent(s)
}

// Opaque type of n bytes.
func (c *typeConv) Opaque(n int64) ast.Expr {
	return &ast.ArrayType{
		Len: c.intExpr(n),
		Elt: c.byte,
	}
}

// Expr for integer n.
func (c *typeConv) intExpr(n int64) ast.Expr {
	return &ast.BasicLit{
		Kind:  token.INT,
		Value: strconv.FormatInt(n, 10),
	}
}

// Add padding of given size to fld.
func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) {
	n := len(fld)
	fld = fld[0 : n+1]
	fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
	sizes = sizes[0 : n+1]
	sizes[n] = size
	return fld, sizes
}

// Struct conversion: return Go and (gc) C syntax for type.
func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) {
	// Minimum alignment for a struct is 1 byte.
	align = 1

	var buf bytes.Buffer
	buf.WriteString("struct {")
	fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
	sizes := make([]int64, 0, 2*len(dt.Field)+1)
	off := int64(0)

	// Rename struct fields that happen to be named Go keywords into
	// _{keyword}.  Create a map from C ident -> Go ident. The Go ident will
	// be mangled. Any existing identifier that already has the same name on
	// the C-side will cause the Go-mangled version to be prefixed with _.
	// (e.g. in a struct with fields '_type' and 'type', the latter would be
	// rendered as '__type' in Go).
	ident := make(map[string]string)
	used := make(map[string]bool)
	for _, f := range dt.Field {
		ident[f.Name] = f.Name
		used[f.Name] = true
	}

	if !*godefs {
		for cid, goid := range ident {
			if token.Lookup(goid).IsKeyword() {
				// Avoid keyword
				goid = "_" + goid

				// Also avoid existing fields
				for _, exist := used[goid]; exist; _, exist = used[goid] {
					goid = "_" + goid
				}

				used[goid] = true
				ident[cid] = goid
			}
		}
	}

	anon := 0
	for _, f := range dt.Field {
		name := f.Name
		ft := f.Type

		// In godefs mode, if this field is a C11
		// anonymous union then treat the first field in the
		// union as the field in the struct. This handles
		// cases like the glibc <sys/resource.h> file; see
		// issue 6677.
		if *godefs {
			if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] {
				name = st.Field[0].Name
				ident[name] = name
				ft = st.Field[0].Type
			}
		}

		// TODO: Handle fields that are anonymous structs by
		// promoting the fields of the inner struct.

		t := c.Type(ft, pos)
		tgo := t.Go
		size := t.Size
		talign := t.Align
		if f.BitOffset > 0 || f.BitSize > 0 {
			// The layout of bitfields is implementation defined,
			// so we don't know how they correspond to Go fields
			// even if they are aligned at byte boundaries.
			continue
		}

		if talign > 0 && f.ByteOffset%talign != 0 {
			// Drop misaligned fields, the same way we drop integer bit fields.
			// The goal is to make available what can be made available.
			// Otherwise one bad and unneeded field in an otherwise okay struct
			// makes the whole program not compile. Much of the time these
			// structs are in system headers that cannot be corrected.
			continue
		}

		// Round off up to talign, assumed to be a power of 2.
		off = (off + talign - 1) &^ (talign - 1)

		if f.ByteOffset > off {
			fld, sizes = c.pad(fld, sizes, f.ByteOffset-off)
			off = f.ByteOffset
		}
		if f.ByteOffset < off {
			// Drop a packed field that we can't represent.
			continue
		}

		n := len(fld)
		fld = fld[0 : n+1]
		if name == "" {
			name = fmt.Sprintf("anon%d", anon)
			anon++
			ident[name] = name
		}
		fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo}
		sizes = sizes[0 : n+1]
		sizes[n] = size
		off += size
		buf.WriteString(t.C.String())
		buf.WriteString(" ")
		buf.WriteString(name)
		buf.WriteString("; ")
		if talign > align {
			align = talign
		}
	}
	if off < dt.ByteSize {
		fld, sizes = c.pad(fld, sizes, dt.ByteSize-off)
		off = dt.ByteSize
	}

	// If the last field in a non-zero-sized struct is zero-sized
	// the compiler is going to pad it by one (see issue 9401).
	// We can't permit that, because then the size of the Go
	// struct will not be the same as the size of the C struct.
	// Our only option in such a case is to remove the field,
	// which means that it cannot be referenced from Go.
	for off > 0 && sizes[len(sizes)-1] == 0 {
		n := len(sizes)
		fld = fld[0 : n-1]
		sizes = sizes[0 : n-1]
	}

	if off != dt.ByteSize {
		fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize)
	}
	buf.WriteString("}")
	csyntax = buf.String()

	if *godefs {
		godefsFields(fld)
	}
	expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
	return
}

// dwarfHasPointer reports whether the DWARF type dt contains a pointer.
func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool {
	switch dt := dt.(type) {
	default:
		fatalf("%s: unexpected type: %s", lineno(pos), dt)
		return false

	case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType,
		*dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType,
		*dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType:

		return false

	case *dwarf.ArrayType:
		return c.dwarfHasPointer(dt.Type, pos)

	case *dwarf.PtrType:
		return true

	case *dwarf.QualType:
		return c.dwarfHasPointer(dt.Type, pos)

	case *dwarf.StructType:
		for _, f := range dt.Field {
			if c.dwarfHasPointer(f.Type, pos) {
				return true
			}
		}
		return false

	case *dwarf.TypedefType:
		if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" {
			return true
		}
		return c.dwarfHasPointer(dt.Type, pos)
	}
}

func upper(s string) string {
	if s == "" {
		return ""
	}
	r, size := utf8.DecodeRuneInString(s)
	if r == '_' {
		return "X" + s
	}
	return string(unicode.ToUpper(r)) + s[size:]
}

// godefsFields rewrites field names for use in Go or C definitions.
// It strips leading common prefixes (like tv_ in tv_sec, tv_usec)
// converts names to upper case, and rewrites _ into Pad_godefs_n,
// so that all fields are exported.
func godefsFields(fld []*ast.Field) {
	prefix := fieldPrefix(fld)
	npad := 0
	for _, f := range fld {
		for _, n := range f.Names {
			if n.Name != prefix {
				n.Name = strings.TrimPrefix(n.Name, prefix)
			}
			if n.Name == "_" {
				// Use exported name instead.
				n.Name = "Pad_cgo_" + strconv.Itoa(npad)
				npad++
			}
			n.Name = upper(n.Name)
		}
	}
}

// fieldPrefix returns the prefix that should be removed from all the
// field names when generating the C or Go code. For generated
// C, we leave the names as is (tv_sec, tv_usec), since that's what
// people are used to seeing in C.  For generated Go code, such as
// package syscall's data structures, we drop a common prefix
// (so sec, usec, which will get turned into Sec, Usec for exporting).
func fieldPrefix(fld []*ast.Field) string {
	prefix := ""
	for _, f := range fld {
		for _, n := range f.Names {
			// Ignore field names that don't have the prefix we're
			// looking for. It is common in C headers to have fields
			// named, say, _pad in an otherwise prefixed header.
			// If the struct has 3 fields tv_sec, tv_usec, _pad1, then we
			// still want to remove the tv_ prefix.
			// The check for "orig_" here handles orig_eax in the
			// x86 ptrace register sets, which otherwise have all fields
			// with reg_ prefixes.
			if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") {
				continue
			}
			i := strings.Index(n.Name, "_")
			if i < 0 {
				continue
			}
			if prefix == "" {
				prefix = n.Name[:i+1]
			} else if prefix != n.Name[:i+1] {
				return ""
			}
		}
	}
	return prefix
}

// anonymousStructTypedef reports whether dt is a C typedef for an anonymous
// struct.
func (c *typeConv) anonymousStructTypedef(dt *dwarf.TypedefType) bool {
	st, ok := dt.Type.(*dwarf.StructType)
	return ok && st.StructName == ""
}

// badPointerTypedef reports whether dt is a C typedef that should not be
// considered a pointer in Go. A typedef is bad if C code sometimes stores
// non-pointers in this type.
// TODO: Currently our best solution is to find these manually and list them as
// they come up. A better solution is desired.
// Note: DEPRECATED. There is now a better solution. Search for NotInHeap in this file.
func (c *typeConv) badPointerTypedef(dt *dwarf.TypedefType) bool {
	if c.badCFType(dt) {
		return true
	}
	if c.badJNI(dt) {
		return true
	}
	if c.badEGLType(dt) {
		return true
	}
	return false
}

// baseBadPointerTypedef reports whether the base of a chain of typedefs is a bad typedef
// as badPointerTypedef reports.
func (c *typeConv) baseBadPointerTypedef(dt *dwarf.TypedefType) bool {
	for {
		if t, ok := dt.Type.(*dwarf.TypedefType); ok {
			dt = t
			continue
		}
		break
	}
	return c.badPointerTypedef(dt)
}

func (c *typeConv) badCFType(dt *dwarf.TypedefType) bool {
	// The real bad types are CFNumberRef and CFDateRef.
	// Sometimes non-pointers are stored in these types.
	// CFTypeRef is a supertype of those, so it can have bad pointers in it as well.
	// We return true for the other *Ref types just so casting between them is easier.
	// We identify the correct set of types as those ending in Ref and for which
	// there exists a corresponding GetTypeID function.
	// See comment below for details about the bad pointers.
	if goos != "darwin" && goos != "ios" {
		return false
	}
	s := dt.Name
	if !strings.HasSuffix(s, "Ref") {
		return false
	}
	s = s[:len(s)-3]
	if s == "CFType" {
		return true
	}
	if c.getTypeIDs[s] {
		return true
	}
	if i := strings.Index(s, "Mutable"); i >= 0 && c.getTypeIDs[s[:i]+s[i+7:]] {
		// Mutable and immutable variants share a type ID.
		return true
	}
	return false
}

// Comment from Darwin's CFInternal.h
/*
// Tagged pointer support
// Low-bit set means tagged object, next 3 bits (currently)
// define the tagged object class, next 4 bits are for type
// information for the specific tagged object class.  Thus,
// the low byte is for type info, and the rest of a pointer
// (32 or 64-bit) is for payload, whatever the tagged class.
//
// Note that the specific integers used to identify the
// specific tagged classes can and will change from release
// to release (that's why this stuff is in CF*Internal*.h),
// as can the definition of type info vs payload above.
//
#if __LP64__
#define CF_IS_TAGGED_OBJ(PTR)	((uintptr_t)(PTR) & 0x1)
#define CF_TAGGED_OBJ_TYPE(PTR)	((uintptr_t)(PTR) & 0xF)
#else
#define CF_IS_TAGGED_OBJ(PTR)	0
#define CF_TAGGED_OBJ_TYPE(PTR)	0
#endif

enum {
    kCFTaggedObjectID_Invalid = 0,
    kCFTaggedObjectID_Atom = (0 << 1) + 1,
    kCFTaggedObjectID_Undefined3 = (1 << 1) + 1,
    kCFTaggedObjectID_Undefined2 = (2 << 1) + 1,
    kCFTaggedObjectID_Integer = (3 << 1) + 1,
    kCFTaggedObjectID_DateTS = (4 << 1) + 1,
    kCFTaggedObjectID_ManagedObjectID = (5 << 1) + 1, // Core Data
    kCFTaggedObjectID_Date = (6 << 1) + 1,
    kCFTaggedObjectID_Undefined7 = (7 << 1) + 1,
};
*/

func (c *typeConv) badJNI(dt *dwarf.TypedefType) bool {
	// In Dalvik and ART, the jobject type in the JNI interface of the JVM has the
	// property that it is sometimes (always?) a small integer instead of a real pointer.
	// Note: although only the android JVMs are bad in this respect, we declare the JNI types
	// bad regardless of platform, so the same Go code compiles on both android and non-android.
	if parent, ok := jniTypes[dt.Name]; ok {
		// Try to make sure we're talking about a JNI type, not just some random user's
		// type that happens to use the same name.
		// C doesn't have the notion of a package, so it's hard to be certain.

		// Walk up to jobject, checking each typedef on the way.
		w := dt
		for parent != "" {
			t, ok := w.Type.(*dwarf.TypedefType)
			if !ok || t.Name != parent {
				return false
			}
			w = t
			parent, ok = jniTypes[w.Name]
			if !ok {
				return false
			}
		}

		// Check that the typedef is either:
		// 1:
		//     	struct _jobject;
		//     	typedef struct _jobject *jobject;
		// 2: (in NDK16 in C++)
		//     	class _jobject {};
		//     	typedef _jobject* jobject;
		// 3: (in NDK16 in C)
		//     	typedef void* jobject;
		if ptr, ok := w.Type.(*dwarf.PtrType); ok {
			switch v := ptr.Type.(type) {
			case *dwarf.VoidType:
				return true
			case *dwarf.StructType:
				if v.StructName == "_jobject" && len(v.Field) == 0 {
					switch v.Kind {
					case "struct":
						if v.Incomplete {
							return true
						}
					case "class":
						if !v.Incomplete {
							return true
						}
					}
				}
			}
		}
	}
	return false
}

func (c *typeConv) badEGLType(dt *dwarf.TypedefType) bool {
	if dt.Name != "EGLDisplay" && dt.Name != "EGLConfig" {
		return false
	}
	// Check that the typedef is "typedef void *<name>".
	if ptr, ok := dt.Type.(*dwarf.PtrType); ok {
		if _, ok := ptr.Type.(*dwarf.VoidType); ok {
			return true
		}
	}
	return false
}

// jniTypes maps from JNI types that we want to be uintptrs, to the underlying type to which
// they are mapped. The base "jobject" maps to the empty string.
var jniTypes = map[string]string{
	"jobject":       "",
	"jclass":        "jobject",
	"jthrowable":    "jobject",
	"jstring":       "jobject",
	"jarray":        "jobject",
	"jbooleanArray": "jarray",
	"jbyteArray":    "jarray",
	"jcharArray":    "jarray",
	"jshortArray":   "jarray",
	"jintArray":     "jarray",
	"jlongArray":    "jarray",
	"jfloatArray":   "jarray",
	"jdoubleArray":  "jarray",
	"jobjectArray":  "jarray",
	"jweak":         "jobject",
}