summaryrefslogtreecommitdiff
path: root/libgfortran/io/transfer.c
blob: 73ae853fc87da387b5eb6df41184ae7967a35ede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
/* Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Libgfortran; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* transfer.c -- Top level handling of data transfer statements.  */

#include "config.h"
#include <string.h>
#include <assert.h>
#include "libgfortran.h"
#include "io.h"


/* Calling conventions:  Data transfer statements are unlike other
   library calls in that they extend over several calls.

   The first call is always a call to st_read() or st_write().  These
   subroutines return no status unless a namelist read or write is
   being done, in which case there is the usual status.  No further
   calls are necessary in this case.

   For other sorts of data transfer, there are zero or more data
   transfer statement that depend on the format of the data transfer
   statement.

      transfer_integer
      transfer_logical
      transfer_character
      transfer_real
      transfer_complex

    These subroutines do not return status.

    The last call is a call to st_[read|write]_done().  While
    something can easily go wrong with the initial st_read() or
    st_write(), an error inhibits any data from actually being
    transferred.  */

extern void transfer_integer (void *, int);
export_proto(transfer_integer);

extern void transfer_real (void *, int);
export_proto(transfer_real);

extern void transfer_logical (void *, int);
export_proto(transfer_logical);

extern void transfer_character (void *, int);
export_proto(transfer_character);

extern void transfer_complex (void *, int);
export_proto(transfer_complex);

gfc_unit *current_unit = NULL;
static int sf_seen_eor = 0;

char scratch[SCRATCH_SIZE] = { };
static char *line_buffer = NULL;

static unit_advance advance_status;

static st_option advance_opt[] = {
  {"yes", ADVANCE_YES},
  {"no", ADVANCE_NO},
  {NULL}
};


static void (*transfer) (bt, void *, int);


typedef enum
{ FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
  FORMATTED_DIRECT, UNFORMATTED_DIRECT
}
file_mode;


static file_mode
current_mode (void)
{
  file_mode m;

  if (current_unit->flags.access == ACCESS_DIRECT)
    {
      m = current_unit->flags.form == FORM_FORMATTED ?
	FORMATTED_DIRECT : UNFORMATTED_DIRECT;
    }
  else
    {
      m = current_unit->flags.form == FORM_FORMATTED ?
	FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
    }

  return m;
}


/* Mid level data transfer statements.  These subroutines do reading
   and writing in the style of salloc_r()/salloc_w() within the
   current record.  */

/* When reading sequential formatted records we have a problem.  We
   don't know how long the line is until we read the trailing newline,
   and we don't want to read too much.  If we read too much, we might
   have to do a physical seek backwards depending on how much data is
   present, and devices like terminals aren't seekable and would cause
   an I/O error.

   Given this, the solution is to read a byte at a time, stopping if
   we hit the newline.  For small locations, we use a static buffer.
   For larger allocations, we are forced to allocate memory on the
   heap.  Hopefully this won't happen very often.  */

static char *
read_sf (int *length)
{
  static char data[SCRATCH_SIZE];
  char *base, *p, *q;
  int n, readlen;

  if (*length > SCRATCH_SIZE)
    p = base = line_buffer = get_mem (*length);
  else
    p = base = data;

  memset(base,'\0',*length);

  current_unit->bytes_left = options.default_recl;
  readlen = 1;
  n = 0;

  do
    {
      if (is_internal_unit())
        {
	  /* readlen may be modified inside salloc_r if 
	     is_internal_unit() is true.  */
          readlen = 1;
        }

      q = salloc_r (current_unit->s, &readlen);
      if (q == NULL)
	break;

      /* If we have a line without a terminating \n, drop through to
	 EOR below.  */
      if (readlen < 1 && n == 0)
	{
	  generate_error (ERROR_END, NULL);
	  return NULL;
	}

      if (readlen < 1 || *q == '\n')
	{
	  /* ??? What is this for?  */
          if (current_unit->unit_number == options.stdin_unit)
            {
              if (n <= 0)
                continue;
            }
	  /* Unexpected end of line.  */
	  if (current_unit->flags.pad == PAD_NO)
	    {
	      generate_error (ERROR_EOR, NULL);
	      return NULL;
	    }

	  current_unit->bytes_left = 0;
	  *length = n;
          sf_seen_eor = 1;
	  break;
	}

      n++;
      *p++ = *q;
      sf_seen_eor = 0;
    }
  while (n < *length);

  return base;
}


/* Function for reading the next couple of bytes from the current
   file, advancing the current position.  We return a pointer to a
   buffer containing the bytes.  We return NULL on end of record or
   end of file.
  
   If the read is short, then it is because the current record does not
   have enough data to satisfy the read request and the file was
   opened with PAD=YES.  The caller must assume tailing spaces for
   short reads.  */

void *
read_block (int *length)
{
  char *source;
  int nread;

  if (current_unit->flags.form == FORM_FORMATTED &&
      current_unit->flags.access == ACCESS_SEQUENTIAL)
    return read_sf (length);	/* Special case.  */

  if (current_unit->bytes_left < *length)
    {
      if (current_unit->flags.pad == PAD_NO)
	{
	  generate_error (ERROR_EOR, NULL); /* Not enough data left.  */
	  return NULL;
	}

      *length = current_unit->bytes_left;
    }

  current_unit->bytes_left -= *length;

  nread = *length;
  source = salloc_r (current_unit->s, &nread);

  if (ioparm.size != NULL)
    *ioparm.size += nread;

  if (nread != *length)
    {				/* Short read, this shouldn't happen.  */
      if (current_unit->flags.pad == PAD_YES)
	*length = nread;
      else
	{
	  generate_error (ERROR_EOR, NULL);
	  source = NULL;
	}
    }

  return source;
}


/* Function for writing a block of bytes to the current file at the
   current position, advancing the file pointer. We are given a length
   and return a pointer to a buffer that the caller must (completely)
   fill in.  Returns NULL on error.  */

void *
write_block (int length)
{
  char *dest;

  if (!is_internal_unit() && current_unit->bytes_left < length)
    {
      generate_error (ERROR_EOR, NULL);
      return NULL;
    }

  current_unit->bytes_left -= length;
  dest = salloc_w (current_unit->s, &length);

  if (ioparm.size != NULL)
    *ioparm.size += length;

  return dest;
}


/* Master function for unformatted reads.  */

static void
unformatted_read (bt type, void *dest, int length)
{
  void *source;
  int w;

  /* Transfer functions get passed the kind of the entity, so we have
     to fix this for COMPLEX data which are twice the size of their
     kind.  */
  if (type == BT_COMPLEX)
    length *= 2;

  w = length;
  source = read_block (&w);

  if (source != NULL)
    {
      memcpy (dest, source, w);
      if (length != w)
	memset (((char *) dest) + w, ' ', length - w);
    }
}

/* Master function for unformatted writes.  */

static void
unformatted_write (bt type, void *source, int length)
{
  void *dest;

  /* Correction for kind vs. length as in unformatted_read.  */
  if (type == BT_COMPLEX)
    length *= 2;

  dest = write_block (length);
  if (dest != NULL)
    memcpy (dest, source, length);
}


/* Return a pointer to the name of a type.  */

const char *
type_name (bt type)
{
  const char *p;

  switch (type)
    {
    case BT_INTEGER:
      p = "INTEGER";
      break;
    case BT_LOGICAL:
      p = "LOGICAL";
      break;
    case BT_CHARACTER:
      p = "CHARACTER";
      break;
    case BT_REAL:
      p = "REAL";
      break;
    case BT_COMPLEX:
      p = "COMPLEX";
      break;
    default:
      internal_error ("type_name(): Bad type");
    }

  return p;
}


/* Write a constant string to the output.
   This is complicated because the string can have doubled delimiters
   in it.  The length in the format node is the true length.  */

static void
write_constant_string (fnode * f)
{
  char c, delimiter, *p, *q;
  int length;

  length = f->u.string.length;
  if (length == 0)
    return;

  p = write_block (length);
  if (p == NULL)
    return;

  q = f->u.string.p;
  delimiter = q[-1];

  for (; length > 0; length--)
    {
      c = *p++ = *q++;
      if (c == delimiter && c != 'H')
	q++;			/* Skip the doubled delimiter.  */
    }
}


/* Given actual and expected types in a formatted data transfer, make
   sure they agree.  If not, an error message is generated.  Returns
   nonzero if something went wrong.  */

static int
require_type (bt expected, bt actual, fnode * f)
{
  char buffer[100];

  if (actual == expected)
    return 0;

  st_sprintf (buffer, "Expected %s for item %d in formatted transfer, got %s",
	      type_name (expected), g.item_count, type_name (actual));

  format_error (f, buffer);
  return 1;
}


/* This subroutine is the main loop for a formatted data transfer
   statement.  It would be natural to implement this as a coroutine
   with the user program, but C makes that awkward.  We loop,
   processesing format elements.  When we actually have to transfer
   data instead of just setting flags, we return control to the user
   program which calls a subroutine that supplies the address and type
   of the next element, then comes back here to process it.  */

static void
formatted_transfer (bt type, void *p, int len)
{
  int pos ,m ;
  fnode *f;
  int i, n;
  int consume_data_flag;

  /* Change a complex data item into a pair of reals.  */

  n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
  if (type == BT_COMPLEX)
    type = BT_REAL;

  for (;;)
    {
      /* If reversion has occurred and there is another real data item,
         then we have to move to the next record.  */
      if (g.reversion_flag && n > 0)
        {
          g.reversion_flag = 0;
          next_record (0);
        }

      consume_data_flag = 1 ;
      if (ioparm.library_return != LIBRARY_OK)
	break;

      f = next_format ();
      if (f == NULL)
	return;		/* No data descriptors left (already raised).  */

      switch (f->format)
	{
	case FMT_I:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_INTEGER, type, f))
	    return;

	  if (g.mode == READING)
	    read_decimal (f, p, len);
	  else
	    write_i (f, p, len);

	  break;

	case FMT_B:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_INTEGER, type, f))
	    return;

	  if (g.mode == READING)
	    read_radix (f, p, len, 2);
	  else
	    write_b (f, p, len);

	  break;

	case FMT_O:
	  if (n == 0)
	    goto need_data;

	  if (g.mode == READING)
	    read_radix (f, p, len, 8);
	  else
	    write_o (f, p, len);

	  break;

	case FMT_Z:
	  if (n == 0)
	    goto need_data;

	  if (g.mode == READING)
	    read_radix (f, p, len, 16);
	  else
	    write_z (f, p, len);

	  break;

	case FMT_A:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_CHARACTER, type, f))
	    return;

	  if (g.mode == READING)
	    read_a (f, p, len);
	  else
	    write_a (f, p, len);

	  break;

	case FMT_L:
	  if (n == 0)
	    goto need_data;

	  if (g.mode == READING)
	    read_l (f, p, len);
	  else
	    write_l (f, p, len);

	  break;

	case FMT_D:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_REAL, type, f))
	    return;

	  if (g.mode == READING)
	    read_f (f, p, len);
	  else
	    write_d (f, p, len);

	  break;

	case FMT_E:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_REAL, type, f))
	    return;

	  if (g.mode == READING)
	    read_f (f, p, len);
	  else
	    write_e (f, p, len);
	  break;

	case FMT_EN:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_REAL, type, f))
	    return;

	  if (g.mode == READING)
	    read_f (f, p, len);
	  else
	    write_en (f, p, len);

	  break;

	case FMT_ES:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_REAL, type, f))
	    return;

	  if (g.mode == READING)
	    read_f (f, p, len);
	  else
	    write_es (f, p, len);

	  break;

	case FMT_F:
	  if (n == 0)
	    goto need_data;
	  if (require_type (BT_REAL, type, f))
	    return;

	  if (g.mode == READING)
	    read_f (f, p, len);
	  else
	    write_f (f, p, len);

	  break;

	case FMT_G:
	  if (n == 0)
	    goto need_data;
	  if (g.mode == READING)
	    switch (type)
	      {
	      case BT_INTEGER:
		read_decimal (f, p, len);
		break;
	      case BT_LOGICAL:
		read_l (f, p, len);
		break;
	      case BT_CHARACTER:
		read_a (f, p, len);
		break;
	      case BT_REAL:
		read_f (f, p, len);
		break;
	      default:
		goto bad_type;
	      }
	  else
	    switch (type)
	      {
	      case BT_INTEGER:
		write_i (f, p, len);
		break;
	      case BT_LOGICAL:
		write_l (f, p, len);
		break;
	      case BT_CHARACTER:
		write_a (f, p, len);
		break;
	      case BT_REAL:
		write_d (f, p, len);
		break;
	      default:
	      bad_type:
		internal_error ("formatted_transfer(): Bad type");
	      }

	  break;

	case FMT_STRING:
          consume_data_flag = 0 ;
	  if (g.mode == READING)
	    {
	      format_error (f, "Constant string in input format");
	      return;
	    }
	  write_constant_string (f);
	  break;

	  /* Format codes that don't transfer data.  */
	case FMT_X:
	case FMT_TR:
          consume_data_flag = 0 ;
	  if (g.mode == READING)
	    read_x (f);
	  else
	    write_x (f);

	  break;

        case FMT_TL:
        case FMT_T:
           if (f->format==FMT_TL)
             {
                pos = f->u.n ;
                pos= current_unit->recl - current_unit->bytes_left - pos;
             }
           else // FMT==T
             {
                consume_data_flag = 0 ;
                pos = f->u.n - 1; 
             }

           if (pos < 0 || pos >= current_unit->recl )
           {
             generate_error (ERROR_EOR, "T Or TL edit position error");
             break ;
            }
            m = pos - (current_unit->recl - current_unit->bytes_left);

            if (m == 0)
               break;

            if (m > 0)
             {
               f->u.n = m;
               if (g.mode == READING)
                 read_x (f);
               else
                 write_x (f);
             }
            if (m < 0)
             {
               move_pos_offset (current_unit->s,m);
             }

	  break;

	case FMT_S:
          consume_data_flag = 0 ;
	  g.sign_status = SIGN_S;
	  break;

	case FMT_SS:
          consume_data_flag = 0 ;
	  g.sign_status = SIGN_SS;
	  break;

	case FMT_SP:
          consume_data_flag = 0 ;
	  g.sign_status = SIGN_SP;
	  break;

	case FMT_BN:
          consume_data_flag = 0 ;
	  g.blank_status = BLANK_NULL;
	  break;

	case FMT_BZ:
          consume_data_flag = 0 ;
	  g.blank_status = BLANK_ZERO;
	  break;

	case FMT_P:
          consume_data_flag = 0 ;
	  g.scale_factor = f->u.k;
	  break;

	case FMT_DOLLAR:
          consume_data_flag = 0 ;
	  g.seen_dollar = 1;
	  break;

	case FMT_SLASH:
          consume_data_flag = 0 ;
	  for (i = 0; i < f->repeat; i++)
	    next_record (0);

	  break;

	case FMT_COLON:
	  /* A colon descriptor causes us to exit this loop (in
	     particular preventing another / descriptor from being
	     processed) unless there is another data item to be
	     transferred.  */
          consume_data_flag = 0 ;
	  if (n == 0)
	    return;
	  break;

	default:
	  internal_error ("Bad format node");
	}

      /* Free a buffer that we had to allocate during a sequential
	 formatted read of a block that was larger than the static
	 buffer.  */

      if (line_buffer != NULL)
	{
	  free_mem (line_buffer);
	  line_buffer = NULL;
	}

      /* Adjust the item count and data pointer.  */

      if ((consume_data_flag > 0) && (n > 0))
      {
	n--;
        p = ((char *) p) + len;
      }
    }

  return;

  /* Come here when we need a data descriptor but don't have one.  We
     push the current format node back onto the input, then return and
     let the user program call us back with the data.  */
 need_data:
  unget_format (f);
}


/* Data transfer entry points.  The type of the data entity is
   implicit in the subroutine call.  This prevents us from having to
   share a common enum with the compiler.  */

void
transfer_integer (void *p, int kind)
{
  g.item_count++;
  if (ioparm.library_return != LIBRARY_OK)
    return;
  transfer (BT_INTEGER, p, kind);
}


void
transfer_real (void *p, int kind)
{
  g.item_count++;
  if (ioparm.library_return != LIBRARY_OK)
    return;
  transfer (BT_REAL, p, kind);
}


void
transfer_logical (void *p, int kind)
{
  g.item_count++;
  if (ioparm.library_return != LIBRARY_OK)
    return;
  transfer (BT_LOGICAL, p, kind);
}


void
transfer_character (void *p, int len)
{
  g.item_count++;
  if (ioparm.library_return != LIBRARY_OK)
    return;
  transfer (BT_CHARACTER, p, len);
}


void
transfer_complex (void *p, int kind)
{
  g.item_count++;
  if (ioparm.library_return != LIBRARY_OK)
    return;
  transfer (BT_COMPLEX, p, kind);
}


/* Preposition a sequential unformatted file while reading.  */

static void
us_read (void)
{
  char *p;
  int n;
  gfc_offset i;

  n = sizeof (gfc_offset);
  p = salloc_r (current_unit->s, &n);

  if (n == 0)
    return;  /* end of file */

  if (p == NULL || n != sizeof (gfc_offset))
    {
      generate_error (ERROR_BAD_US, NULL);
      return;
    }

  memcpy (&i, p, sizeof (gfc_offset));
  current_unit->bytes_left = i;
}


/* Preposition a sequential unformatted file while writing.  This
   amount to writing a bogus length that will be filled in later.  */

static void
us_write (void)
{
  char *p;
  int length;

  length = sizeof (gfc_offset);
  p = salloc_w (current_unit->s, &length);

  if (p == NULL)
    {
      generate_error (ERROR_OS, NULL);
      return;
    }

  memset (p, '\0', sizeof (gfc_offset));	/* Bogus value for now.  */
  if (sfree (current_unit->s) == FAILURE)
    generate_error (ERROR_OS, NULL);

  /* For sequential unformatted, we write until we have more bytes than
     can fit in the record markers. If disk space runs out first, it will
     error on the write.  */
  current_unit->recl = g.max_offset;

  current_unit->bytes_left = current_unit->recl;
}


/* Position to the next record prior to transfer.  We are assumed to
   be before the next record.  We also calculate the bytes in the next
   record.  */

static void
pre_position (void)
{
  if (current_unit->current_record)
    return;			/* Already positioned.  */

  switch (current_mode ())
    {
    case UNFORMATTED_SEQUENTIAL:
      if (g.mode == READING)
	us_read ();
      else
	us_write ();

      break;

    case FORMATTED_SEQUENTIAL:
    case FORMATTED_DIRECT:
    case UNFORMATTED_DIRECT:
      current_unit->bytes_left = current_unit->recl;
      break;
    }

  current_unit->current_record = 1;
}


/* Initialize things for a data transfer.  This code is common for
   both reading and writing.  */

static void
data_transfer_init (int read_flag)
{
  unit_flags u_flags;  /* Used for creating a unit if needed.  */

  g.mode = read_flag ? READING : WRITING;

  if (ioparm.size != NULL)
    *ioparm.size = 0;		/* Initialize the count.  */

  current_unit = get_unit (read_flag);
  if (current_unit == NULL)
  {  /* Open the unit with some default flags.  */
     memset (&u_flags, '\0', sizeof (u_flags));
     u_flags.access = ACCESS_SEQUENTIAL;
     u_flags.action = ACTION_READWRITE;
     /* Is it unformatted?  */
     if (ioparm.format == NULL && !ioparm.list_format)
       u_flags.form = FORM_UNFORMATTED;
     else
       u_flags.form = FORM_UNSPECIFIED;
     u_flags.delim = DELIM_UNSPECIFIED;
     u_flags.blank = BLANK_UNSPECIFIED;
     u_flags.pad = PAD_UNSPECIFIED;
     u_flags.status = STATUS_UNKNOWN;
     new_unit(&u_flags);
     current_unit = get_unit (read_flag);
  }

  if (current_unit == NULL)
    return;

  if (is_internal_unit())
    {
      current_unit->recl = file_length(current_unit->s);
      if (g.mode==WRITING)
        empty_internal_buffer (current_unit->s);
    }

  /* Check the action.  */

  if (read_flag && current_unit->flags.action == ACTION_WRITE)
    generate_error (ERROR_BAD_ACTION,
		    "Cannot read from file opened for WRITE");

  if (!read_flag && current_unit->flags.action == ACTION_READ)
    generate_error (ERROR_BAD_ACTION, "Cannot write to file opened for READ");

  if (ioparm.library_return != LIBRARY_OK)
    return;

  /* Check the format.  */

  if (ioparm.format)
    parse_format ();

  if (ioparm.library_return != LIBRARY_OK)
    return;

  if (current_unit->flags.form == FORM_UNFORMATTED
      && (ioparm.format != NULL || ioparm.list_format))
    generate_error (ERROR_OPTION_CONFLICT,
		    "Format present for UNFORMATTED data transfer");

  if (ioparm.namelist_name != NULL && ionml != NULL)
     {
        if(ioparm.format != NULL)
           generate_error (ERROR_OPTION_CONFLICT,
                    "A format cannot be specified with a namelist");
     }
  else if (current_unit->flags.form == FORM_FORMATTED &&
           ioparm.format == NULL && !ioparm.list_format)
    generate_error (ERROR_OPTION_CONFLICT,
                    "Missing format for FORMATTED data transfer");


  if (is_internal_unit () && current_unit->flags.form == FORM_UNFORMATTED)
    generate_error (ERROR_OPTION_CONFLICT,
		    "Internal file cannot be accessed by UNFORMATTED data transfer");

  /* Check the record number.  */

  if (current_unit->flags.access == ACCESS_DIRECT && ioparm.rec == 0)
    {
      generate_error (ERROR_MISSING_OPTION,
		      "Direct access data transfer requires record number");
      return;
    }

  if (current_unit->flags.access == ACCESS_SEQUENTIAL && ioparm.rec != 0)
    {
      generate_error (ERROR_OPTION_CONFLICT,
		      "Record number not allowed for sequential access data transfer");
      return;
    }

  /* Process the ADVANCE option.  */

  advance_status = (ioparm.advance == NULL) ? ADVANCE_UNSPECIFIED :
    find_option (ioparm.advance, ioparm.advance_len, advance_opt,
		 "Bad ADVANCE parameter in data transfer statement");

  if (advance_status != ADVANCE_UNSPECIFIED)
    {
      if (current_unit->flags.access == ACCESS_DIRECT)
	generate_error (ERROR_OPTION_CONFLICT,
			"ADVANCE specification conflicts with sequential access");

      if (is_internal_unit ())
	generate_error (ERROR_OPTION_CONFLICT,
			"ADVANCE specification conflicts with internal file");

      if (ioparm.format == NULL || ioparm.list_format)
	generate_error (ERROR_OPTION_CONFLICT,
			"ADVANCE specification requires an explicit format");
    }

  if (read_flag)
    {
      if (ioparm.eor != 0 && advance_status == ADVANCE_NO)
	generate_error (ERROR_MISSING_OPTION,
			"EOR specification requires an ADVANCE specification of NO");

      if (ioparm.size != NULL && advance_status != ADVANCE_NO)
	generate_error (ERROR_MISSING_OPTION,
			"SIZE specification requires an ADVANCE specification of NO");

    }
  else
    {				/* Write constraints.  */
      if (ioparm.end != 0)
	generate_error (ERROR_OPTION_CONFLICT,
			"END specification cannot appear in a write statement");

      if (ioparm.eor != 0)
	generate_error (ERROR_OPTION_CONFLICT,
			"EOR specification cannot appear in a write statement");

      if (ioparm.size != 0)
	generate_error (ERROR_OPTION_CONFLICT,
			"SIZE specification cannot appear in a write statement");
    }

  if (advance_status == ADVANCE_UNSPECIFIED)
    advance_status = ADVANCE_YES;
  if (ioparm.library_return != LIBRARY_OK)
    return;

  /* Sanity checks on the record number.  */

  if (ioparm.rec)
    {
      if (ioparm.rec <= 0)
	{
	  generate_error (ERROR_BAD_OPTION, "Record number must be positive");
	  return;
	}

      if (ioparm.rec >= current_unit->maxrec)
	{
	  generate_error (ERROR_BAD_OPTION, "Record number too large");
	  return;
	}

      /* Check to see if we might be reading what we wrote before  */

      if (g.mode == READING && current_unit->mode  == WRITING)
         flush(current_unit->s);

      /* Position the file.  */
      if (sseek (current_unit->s,
               (ioparm.rec - 1) * current_unit->recl) == FAILURE)
	generate_error (ERROR_OS, NULL);
    }

  current_unit->mode = g.mode;

  /* Set the initial value of flags.  */

  g.blank_status = current_unit->flags.blank;
  g.sign_status = SIGN_S;
  g.scale_factor = 0;
  g.seen_dollar = 0;
  g.first_item = 1;
  g.item_count = 0;
  sf_seen_eor = 0;

  pre_position ();

  /* Set up the subroutine that will handle the transfers.  */

  if (read_flag)
    {
      if (current_unit->flags.form == FORM_UNFORMATTED)
	transfer = unformatted_read;
      else
	{
	  if (ioparm.list_format)
            {
               transfer = list_formatted_read;
               init_at_eol();
            }
	  else
	    transfer = formatted_transfer;
	}
    }
  else
    {
      if (current_unit->flags.form == FORM_UNFORMATTED)
	transfer = unformatted_write;
      else
	{
	  if (ioparm.list_format)
	    transfer = list_formatted_write;
	  else
	    transfer = formatted_transfer;
	}
    }

  /* Make sure that we don't do a read after a nonadvancing write.  */

  if (read_flag)
    {
      if (current_unit->read_bad)
	{
	  generate_error (ERROR_BAD_OPTION,
			  "Cannot READ after a nonadvancing WRITE");
	  return;
	}
    }
  else
    {
      if (advance_status == ADVANCE_YES)
	current_unit->read_bad = 1;
    }

  /* Start the data transfer if we are doing a formatted transfer.  */
  if (current_unit->flags.form == FORM_FORMATTED && !ioparm.list_format
      && ioparm.namelist_name == NULL && ionml == NULL)
    formatted_transfer (0, NULL, 0);
}


/* Space to the next record for read mode.  If the file is not
   seekable, we read MAX_READ chunks until we get to the right
   position.  */

#define MAX_READ 4096

static void
next_record_r (int done)
{
  int rlength, length;
  gfc_offset new;
  char *p;

  switch (current_mode ())
    {
    case UNFORMATTED_SEQUENTIAL:
      current_unit->bytes_left += sizeof (gfc_offset);	/* Skip over tail */

      /* Fall through...  */

    case FORMATTED_DIRECT:
    case UNFORMATTED_DIRECT:
      if (current_unit->bytes_left == 0)
	break;

      if (is_seekable (current_unit->s))
	{
	  new = file_position (current_unit->s) + current_unit->bytes_left;

	  /* Direct access files do not generate END conditions, 
	     only I/O errors.  */
	  if (sseek (current_unit->s, new) == FAILURE)
	    generate_error (ERROR_OS, NULL);

	}
      else
	{			/* Seek by reading data.  */
	  while (current_unit->bytes_left > 0)
	    {
	      rlength = length = (MAX_READ > current_unit->bytes_left) ?
		MAX_READ : current_unit->bytes_left;

	      p = salloc_r (current_unit->s, &rlength);
	      if (p == NULL)
		{
		  generate_error (ERROR_OS, NULL);
		  break;
		}

	      current_unit->bytes_left -= length;
	    }
	}
      break;

    case FORMATTED_SEQUENTIAL:
      length = 1;
      /* sf_read has already terminated input because of an '\n'  */
      if (sf_seen_eor) 
         break;

      do
        {
          p = salloc_r (current_unit->s, &length);

          /* In case of internal file, there may not be any '\n'.  */
          if (is_internal_unit() && p == NULL)
            {
               break;
            }

          if (p == NULL)
            {
              generate_error (ERROR_OS, NULL);
              break;
            }

          if (length == 0)
            {
              current_unit->endfile = AT_ENDFILE;
              break;
            }
        }
      while (*p != '\n');

      break;
    }

  if (current_unit->flags.access == ACCESS_SEQUENTIAL)
    test_endfile (current_unit);
}


/* Position to the next record in write mode.  */

static void
next_record_w (int done)
{
  gfc_offset c, m;
  int length;
  char *p;

  switch (current_mode ())
    {
    case FORMATTED_DIRECT:
      if (current_unit->bytes_left == 0)
	break;

      length = current_unit->bytes_left;
      p = salloc_w (current_unit->s, &length);

      if (p == NULL)
	goto io_error;

      memset (p, ' ', current_unit->bytes_left);
      if (sfree (current_unit->s) == FAILURE)
	goto io_error;
      break;

    case UNFORMATTED_DIRECT:
      if (sfree (current_unit->s) == FAILURE)
        goto io_error;
      break;

    case UNFORMATTED_SEQUENTIAL:
      m = current_unit->recl - current_unit->bytes_left; /* Bytes written.  */
      c = file_position (current_unit->s);

      length = sizeof (gfc_offset);

      /* Write the length tail.  */

      p = salloc_w (current_unit->s, &length);
      if (p == NULL)
	goto io_error;

      memcpy (p, &m, sizeof (gfc_offset));
      if (sfree (current_unit->s) == FAILURE)
	goto io_error;

      /* Seek to the head and overwrite the bogus length with the real
	 length.  */

      p = salloc_w_at (current_unit->s, &length, c - m - length);
      if (p == NULL)
	generate_error (ERROR_OS, NULL);

      memcpy (p, &m, sizeof (gfc_offset));
      if (sfree (current_unit->s) == FAILURE)
	goto io_error;

      /* Seek past the end of the current record.  */

      if (sseek (current_unit->s, c + sizeof (gfc_offset)) == FAILURE)
	goto io_error;

      break;

    case FORMATTED_SEQUENTIAL:
      length = 1;
      p = salloc_w (current_unit->s, &length);

      if (!is_internal_unit())
        {
          if (p)
            *p = '\n'; /* No CR for internal writes.  */
          else
            goto io_error;
        }

      if (sfree (current_unit->s) == FAILURE)
 	goto io_error;

      break;

    io_error:
      generate_error (ERROR_OS, NULL);
      break;
    }
}


/* Position to the next record, which means moving to the end of the
   current record.  This can happen under several different
   conditions.  If the done flag is not set, we get ready to process
   the next record.  */

void
next_record (int done)
{
  gfc_offset fp; /* File position.  */

  current_unit->read_bad = 0;

  if (g.mode == READING)
    next_record_r (done);
  else
    next_record_w (done);

  current_unit->current_record = 0;
  if (current_unit->flags.access == ACCESS_DIRECT)
   {
    fp = file_position (current_unit->s);
    /* Calculate next record, rounding up partial records.  */
    current_unit->last_record = (fp + current_unit->recl - 1)
				/ current_unit->recl;
   }
  else
    current_unit->last_record++;

  if (!done)
    pre_position ();
}


/* Finalize the current data transfer.  For a nonadvancing transfer,
   this means advancing to the next record.  For internal units close the
   steam associated with the unit.  */

static void
finalize_transfer (void)
{
  if ((ionml != NULL) && (ioparm.namelist_name != NULL))
    {
       if (ioparm.namelist_read_mode)
         namelist_read();
       else
         namelist_write();
    }

  transfer = NULL;
  if (current_unit == NULL)
    return;

  if (setjmp (g.eof_jump))
    {
      generate_error (ERROR_END, NULL);
      return;
    }

  if (ioparm.list_format && g.mode == READING)
    finish_list_read ();
  else
    {
      free_fnodes ();

      if (advance_status == ADVANCE_NO)
	{
	  /* Most systems buffer lines, so force the partial record
	     to be written out.  */
	  flush (current_unit->s);
	  return;
	}

      next_record (1);
      current_unit->current_record = 0;
    }

  sfree (current_unit->s);

  if (is_internal_unit ())
    sclose (current_unit->s);
}


/* Transfer function for IOLENGTH. It doesn't actually do any
   data transfer, it just updates the length counter.  */

static void
iolength_transfer (bt type, void *dest, int len)
{
  if (ioparm.iolength != NULL)
    *ioparm.iolength += len;
}


/* Initialize the IOLENGTH data transfer. This function is in essence
   a very much simplified version of data_transfer_init(), because it
   doesn't have to deal with units at all.  */

static void
iolength_transfer_init (void)
{
  if (ioparm.iolength != NULL)
    *ioparm.iolength = 0;

  g.item_count = 0;

  /* Set up the subroutine that will handle the transfers.  */

  transfer = iolength_transfer;
}


/* Library entry point for the IOLENGTH form of the INQUIRE
   statement. The IOLENGTH form requires no I/O to be performed, but
   it must still be a runtime library call so that we can determine
   the iolength for dynamic arrays and such.  */

extern void st_iolength (void);
export_proto(st_iolength);

void
st_iolength (void)
{
  library_start ();
  iolength_transfer_init ();
}

extern void st_iolength_done (void);
export_proto(st_iolength_done);

void
st_iolength_done (void)
{
  library_end ();
}


/* The READ statement.  */

extern void st_read (void);
export_proto(st_read);

void
st_read (void)
{
  library_start ();

  data_transfer_init (1);

  /* Handle complications dealing with the endfile record.  It is
     significant that this is the only place where ERROR_END is
     generated.  Reading an end of file elsewhere is either end of
     record or an I/O error. */

  if (current_unit->flags.access == ACCESS_SEQUENTIAL)
    switch (current_unit->endfile)
      {
      case NO_ENDFILE:
	break;

      case AT_ENDFILE:
        if (!is_internal_unit())
          {
            generate_error (ERROR_END, NULL);
            current_unit->endfile = AFTER_ENDFILE;
          }
	break;

      case AFTER_ENDFILE:
	generate_error (ERROR_ENDFILE, NULL);
	break;
      }
}

extern void st_read_done (void);
export_proto(st_read_done);

void
st_read_done (void)
{
  finalize_transfer ();
  library_end ();
}

extern void st_write (void);
export_proto(st_write);

void
st_write (void)
{
  library_start ();
  data_transfer_init (0);
}

extern void st_write_done (void);
export_proto(st_write_done);

void
st_write_done (void)
{
  finalize_transfer ();

  /* Deal with endfile conditions associated with sequential files.  */

  if (current_unit != NULL && current_unit->flags.access == ACCESS_SEQUENTIAL)
    switch (current_unit->endfile)
      {
      case AT_ENDFILE:		/* Remain at the endfile record.  */
	break;

      case AFTER_ENDFILE:
	current_unit->endfile = AT_ENDFILE;	/* Just at it now.  */
	break;

      case NO_ENDFILE:
	if (current_unit->current_record > current_unit->last_record)
          {
            /* Get rid of whatever is after this record.  */
            if (struncate (current_unit->s) == FAILURE)
              generate_error (ERROR_OS, NULL);
          }

	current_unit->endfile = AT_ENDFILE;
	break;
      }

  library_end ();
}


static void
st_set_nml_var (void * var_addr, char * var_name, int var_name_len,
                int kind, bt type, int string_length)
{
  namelist_info *t1 = NULL, *t2 = NULL;
  namelist_info *nml = (namelist_info *) get_mem (sizeof (namelist_info));
  nml->mem_pos = var_addr;
  if (var_name)
    {
      assert (var_name_len > 0);
      nml->var_name = (char*) get_mem (var_name_len+1);
      strncpy (nml->var_name, var_name, var_name_len);
      nml->var_name[var_name_len] = 0;
    }
  else
    {
      assert (var_name_len == 0);
      nml->var_name = NULL;
    }

  nml->len = kind;
  nml->type = type;
  nml->string_length = string_length;

  nml->next = NULL;

  if (ionml == NULL)
     ionml = nml;
  else
    {
      t1 = ionml;
      while (t1 != NULL)
       {
         t2 = t1;
         t1 = t1->next;
       }
       t2->next = nml;
    }
}

extern void st_set_nml_var_int (void *, char *, int, int);
export_proto(st_set_nml_var_int);

extern void st_set_nml_var_float (void *, char *, int, int);
export_proto(st_set_nml_var_float);

extern void st_set_nml_var_char (void *, char *, int, int, gfc_charlen_type);
export_proto(st_set_nml_var_char);

extern void st_set_nml_var_complex (void *, char *, int, int);
export_proto(st_set_nml_var_complex);

extern void st_set_nml_var_log (void *, char *, int, int);
export_proto(st_set_nml_var_log);

void
st_set_nml_var_int (void * var_addr, char * var_name, int var_name_len,
		    int kind)
{
  st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_INTEGER, 0);
}

void
st_set_nml_var_float (void * var_addr, char * var_name, int var_name_len,
		      int kind)
{
  st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_REAL, 0);
}

void
st_set_nml_var_char (void * var_addr, char * var_name, int var_name_len,
		     int kind, gfc_charlen_type string_length)
{
  st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_CHARACTER,
		  string_length);
}

void
st_set_nml_var_complex (void * var_addr, char * var_name, int var_name_len,
			int kind)
{
  st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_COMPLEX, 0);
}

void
st_set_nml_var_log (void * var_addr, char * var_name, int var_name_len,
		    int kind)
{
   st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_LOGICAL, 0);
}